11,963 research outputs found
A program continuation to develop processing procedures for advanced silicon solar cells
Shallow junctions, aluminum back surface fields and tantalum pentoxide (Ta205) antireflection coatings coupled with the development of a chromium-palladium-silver contact system, were used to produce a 2 x 4 cm wraparound contact silicon solar cell. One thousand cells were successfully fabricated using batch processing techniques. These cells were 0.020 mm thick, with the majority (800) made from nominal ten ohm-cm silicon and the remainder from nominal 30 ohm-cm material. Unfiltered, these cells delivered a minimum AMO efficiency at 25 C of 11.5 percent and successfully passed all the normal in-process and acceptance tests required for space flight cells
The effects of electron and proton radiation on GaSb infrared solar cells
Gallium antimonide (GaSb) infrared solar cells were exposed to 1 MeV electrons and protons up to fluences of 1 times 10(exp 15) cm (-2) and 1 times 10(exp 12) cm (-2) respectively. In between exposures, current voltage and spectral response curves were taken. The GaSb cells were found to degrade slightly less than typical GaAs cells under electron irradiation, and calculations from spectral response curves showed that the damage coefficient for the minority carrier diffusion length was 3.5 times 10(exp 8). The cells degraded faster than GaAs cells under proton irradiation. However, researchers expect the top cell and coverglass to protect the GaSb cell from most damaging protons. Some annealing of proton damage was observed at low temperatures (80 to 160 C)
Operating experiences of retardant bombers during firefighting operations
Data are presented on operational practices and maneuver accelerations experienced by two Douglas DC-6B airplanes converted to retardant bombers and used in firefighting operations. The data cover two fire seasons in the mountainous regions of the northwestern United States
Development of processing procedures for advanced silicon solar cells
Ten ohm-cm silicon solar cells, 0.2 mm thick, were produced with short circuit current efficiencies up to thirteen percent and using a combination of recent technical advances. The cells were fabricated in conventional and wraparound contact configurations. Improvement in cell collection efficiency from both the short and long wavelengths region of the solar spectrum was obtained by coupling a shallow junction and an optically transparent antireflection coating with back surface field technology. Both boron diffusion and aluminum alloying techniques were evaluated for forming back surface field cells. The latter method is less complicated and is compatible with wraparound cell processing
Design and fabrication of wraparound contact silicon solar cells
Both dielectric insulation and etched junction contact techniques were evaluated for use in wraparound contact cell fabrication. Since a suitable process for depositing the dielectrics was not achieved, the latter approach was taken. The relationship between loss of back contact and power degradation due to increased series resistance was established and used to design a simple contact configuration for 10 ohm-cm etched wraparound junction contact N/P cells. A slightly deeper junction significantly improved cell curve shape and the associated loss of current was regained by using thinner contact grid fingers. One thousand cells with efficiencies greater than 10.5% were fabricated to demonstrate the process
Oscillating Starless Cores: The Nonlinear Regime
In a previous paper, we modeled the oscillations of a thermally-supported
(Bonnor-Ebert) sphere as non-radial, linear perturbations following a standard
analysis developed for stellar pulsations. The predicted column density
variations and molecular spectral line profiles are similar to those observed
in the Bok globule B68 suggesting that the motions in some starless cores may
be oscillating perturbations on a thermally supported equilibrium structure.
However, the linear analysis is unable to address several questions, among them
the stability, and lifetime of the perturbations. In this paper we simulate the
oscillations using a three-dimensional numerical hydrodynamic code. We find
that the oscillations are damped predominantly by non-linear mode-coupling, and
the damping time scale is typically many oscillation periods, corresponding to
a few million years, and persisting over the inferred lifetime of gobules.Comment: 7 pages, 7 figures, accepted by Ap
A review of human factors principles for the design and implementation of medication safety alerts in clinical information systems.
The objective of this review is to describe the implementation of human factors principles for the design of alerts in clinical information systems. First, we conduct a review of alarm systems to identify human factors principles that are employed in the design and implementation of alerts. Second, we review the medical informatics literature to provide examples of the implementation of human factors principles in current clinical information systems using alerts to provide medication decision support. Last, we suggest actionable recommendations for delivering effective clinical decision support using alerts. A review of studies from the medical informatics literature suggests that many basic human factors principles are not followed, possibly contributing to the lack of acceptance of alerts in clinical information systems. We evaluate the limitations of current alerting philosophies and provide recommendations for improving acceptance of alerts by incorporating human factors principles in their design
Empirical wind model for the middle and lower atmosphere. Part 1: Local time average
The HWM90 thermospheric wind model was revised in the lower thermosphere and extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating zonal and meridional wind profiles representative of the climatological average for various geophysical conditions. Gradient winds from CIRA-86 plus rocket soundings, incoherent scatter radar, MF radar, and meteor radar provide the data base and are supplemented by previous data driven model summaries. Low-order spherical harmonics and Fourier series are used to describe the major variations throughout the atmosphere including latitude, annual, semiannual, and longitude (stationary wave 1). The model represents a smoothed compromise between the data sources. Although agreement between various data sources is generally good, some systematic differences are noted, particularly near the mesopause. Root mean square differences between data and model are on the order of 15 m/s in the mesosphere and 10 m/s in the stratosphere for zonal wind, and 10 m/s and 4 m/s, respectively, for meridional wind
The Event Horizon of M87
The 6 billion solar mass supermassive black hole at the center of the giant
elliptical galaxy M87 powers a relativistic jet. Observations at millimeter
wavelengths with the Event Horizon Telescope have localized the emission from
the base of this jet to angular scales comparable to the putative black hole
horizon. The jet might be powered directly by an accretion disk or by
electromagnetic extraction of the rotational energy of the black hole. However,
even the latter mechanism requires a confining thick accretion disk to maintain
the required magnetic flux near the black hole. Therefore, regardless of the
jet mechanism, the observed jet power in M87 implies a certain minimum mass
accretion rate. If the central compact object in M87 were not a black hole but
had a surface, this accretion would result in considerable thermal
near-infrared and optical emission from the surface. Current flux limits on the
nucleus of M87 strongly constrain any such surface emission. This rules out the
presence of a surface and thereby provides indirect evidence for an event
horizon.Comment: 9 pages, 2 figures, submitted to Ap
- …