11 research outputs found

    Very Large Array And Atca Search For Natal Star Clusters In Nearby Star-Forming Galaxies

    Get PDF
    In order to investigate the relationship between the local environment and the properties of natal star clusters, we obtained radio observations of 25 star-forming galaxies within 20 Mpc using the Very Large Array and the Australia Telescope Compact Array. Natal star-forming regions can be identified by their characteristic thermal radio emission, which is manifest in their spectral index at centimeter wavelengths. The host galaxies in our sample were selected based upon their likelihood of harboring young star formation. In star-forming regions, the ionizing flux of massive embedded stars powers the dominant thermal free-free emission of those sources, resulting in a spectral index of {alpha} {approx}\u3e -0.2 (where S{sub {nu}} {proportional_to} {nu}{sup {alpha}}), which we compute. With the current sensitivity, we find that of the 25 galaxies in this sample only 5 have radio sources with spectral indices that are only consistent with a thermal origin, 4 have radio sources that are only consistent with a non-thermal origin, 6 have radio sources whose nature is ambiguous due to uncertainties in the spectral index, and 16 have no detected radio sources. For those sources that appear to be dominated by thermal emission, we infer the ionizing flux of the star clusters andmore » the number of equivalent O7.5 V stars that are required to produce the observed radio flux densities. The most radio-luminous clusters that we detect have an equivalent of {approx}7 x 10{sup 3} O7.5 V stars, and the smallest only have an equivalent of {approx}10{sup 2} O7.5 V stars; thus these star-forming regions span the range of large OB associations to moderate \u27super star clusters\u27. With the current detection limits, we also place upper limits on the masses of clusters that could have recently formed; for a number of galaxies we can conclusively rule out the presence of natal clusters significantly more massive than the Galactic star-forming region W49A ({approx}5 x 10{sup 4} M{sub sun}). The dearth of current massive cluster formation in these galaxies suggests that either their current star formation intensities have fallen to near or below that of the Milky Way and/or the evolutionary state that gives rise to thermal radio emission is short-lived.« les

    Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ):Rationale and Study Design of the Largest Global Prospective Cohort Study of Clinical High Risk for Psychosis

    Get PDF
    This article describes the rationale, aims, and methodology of the Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ). This is the largest international collaboration to date that will develop algorithms to predict trajectories and outcomes of individuals at clinical high risk (CHR) for psychosis and to advance the development and use of novel pharmacological interventions for CHR individuals. We present a description of the participating research networks and the data processing analysis and coordination center, their processes for data harmonization across 43 sites from 13 participating countries (recruitment across North America, Australia, Europe, Asia, and South America), data flow and quality assessment processes, data analyses, and the transfer of data to the National Institute of Mental Health (NIMH) Data Archive (NDA) for use by the research community. In an expected sample of approximately 2000 CHR individuals and 640 matched healthy controls, AMP SCZ will collect clinical, environmental, and cognitive data along with multimodal biomarkers, including neuroimaging, electrophysiology, fluid biospecimens, speech and facial expression samples, novel measures derived from digital health technologies including smartphone-based daily surveys, and passive sensing as well as actigraphy. The study will investigate a range of clinical outcomes over a 2-year period, including transition to psychosis, remission or persistence of CHR status, attenuated positive symptoms, persistent negative symptoms, mood and anxiety symptoms, and psychosocial functioning. The global reach of AMP SCZ and its harmonized innovative methods promise to catalyze the development of new treatments to address critical unmet clinical and public health needs in CHR individuals.</p

    Melatonin Rich Plants: Production, Significance in Agriculture and Human Health

    No full text
    corecore