1,059 research outputs found

    Thermoelectric temperature control system for the pushbroom microwave radiometer (PBMR)

    Get PDF
    A closed loop thermoelectric temperature control system is developed for stabilizing sensitive RF integrated circuits within a microwave radiometer to an accuracy of + or - 0.1 C over a range of ambient conditions from -20 C to +45 C. The dual mode (heating and cooling) control concept utilizes partial thermal isolation of the RF units from an instrument deck which is thermally controlled by thermoelectric coolers and thin film heaters. The temperature control concept is simulated with a thermal analyzer program (MITAS) which consists of 37 nodes and 61 conductors. A full scale thermal mockup is tested in the laboratory at temperatures of 0 C, 21 C, and 45 C to confirm the validity of the control concept. A flight radiometer and temperature control system is successfully flight tested on the NASA Skyvan aircraft

    Postural Stability is Reduced in People with Multiple Sclerosis due to Walking-imposed Fatigue

    Get PDF
    The most limiting symptoms reported by individuals with multiple sclerosis (MS) are impaired balance and symptomatic fatigue. We have reported greater postural sway and reduced stability following local muscular fatigue in individuals with MS, suggesting that these symptoms may be related. However, it is unknown whether a similar relationship exists with modest increases in fatigue resulting from an activity of daily living (ADL). Thus, the purpose of this study was to determine whether walking has a greater impact on balance during postural tasks in people with MS (PwMS) compared to those without. Seven PwMS (43±12 yrs, 6F/1M) and 10 controls (CON; 42±12 yrs, 7F/3M) performed postural tasks (quiet stance, fixed/maximal reaches) pre/post 30 minutes of treadmill walking at a range of speeds (0.6-1.4 m/s). Individuals rated their fatigue pre/post walking using a Visual Analog Scale. Kinematic data were recorded using a passive marker system (Qualysis AB) and kinetic data were recorded using two forceplates (AMTI), one under each foot. The net center of pressure was analysed using a time to contact analysis to assess postural stability. Following prolonged walking PwMS demonstrated greater reductions in stability than the CON group during the most challenging task (P=0.04), that may be related to increased fatigue (P\u3c0.0001) following walking. PwMS demonstrated greater stability than the CON group for maximal reaches (backward, P=0.009; forward, P=0.03 frontal plane only), which may be explained by reduced reach distances performed by the PwMS (backward, P=0.2; forward, P=0.008). These findings suggest that PwMS place a higher priority on stability, than maximal reach distance, which could relate to fall-related fear or specific disease-related limitations. These findings indicate that postural stability is reduced in PwMS following a common ADL, thus individuals with MS should be counseled on the increased likelihood of balance loss with heightened fatigue, even at relatively low levels

    Potential hazard consequences to personnel exposed to the ignition of small volumes of weakly confined stoichiometric hydrogen/air mixture

    Get PDF
    Many studies have been devoted to understanding the consequence of ignition events that could occur as a result of using hydrogen as an alternative to fossil fuels or when hydrogen is present in large scale industrial or nuclear waste sites. Little attention has however, been given to the effect of explosion in small scale operations: this could involve service work with manual handling and manipulation of gas containing packages or vessels. The purpose of this study is to begin to address this knowledge gap and report the results of an experimental program carried out to simulate the effect of localised and weakly confined small volume hydrogen explosions on personal safety. Three aspects of personal injury consequences are considered; injury from shock loading to the head/brain, skin burns and acoustic/hearing damage. It is concluded from ignition and acoustic noise exposure experiments, carried with stoichiometric hydrogen /air mixtures, that injuries arising from shock loading or burns to the skin are less likely than hearing damage. It is suggested that further work should focus on the noise exposure and hearing damage effects of small scale explosions
    corecore