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Abstract 

 
Many studies have been devoted to understanding the consequence of ignition events that 

could occur as a result of using hydrogen as an alternative to fossil fuels or when 

hydrogen is present in large scale industrial or nuclear waste sites. Little attention has 

however, been given to the effect of explosion in small scale operations: this could 

involve service work with manual handling and manipulation of gas containing packages 

or vessels. The purpose of this study is to begin to address this knowledge gap and report the 

results of an experimental program carried out to simulate the effect of localised and weakly 

confined small volume hydrogen explosions on personal safety. Three aspects of personal 

injury consequences are considered; injury from shock loading to the head/brain, skin 

burns and acoustic/hearing damage. It is concluded from ignition and acoustic noise 

exposure experiments, carried with stoichiometric hydrogen /air mixtures, that injuries 

arising from shock loading or burns to the skin are less likely than hearing damage. It is 

suggested that further work should focus on the noise exposure and hearing damage 

effects of small scale explosions. 
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1.  Introduction 
 

Much has been written in recent years about the future of hydrogen as an alternative to 

fossil fuels [1-10] and the challenges that ensue concerning safety aspects involving 

hydrogen containment or storage. These safety aspects are also of great importance in the 

context of nuclear decommissioning operations where hydrogen issues arise due to the 

corrosion of nuclear waste [11-14].  

 

The much lower density of hydrogen than air gives it a large degree of buoyancy so that 

in this respect it can be considered to be inherently safer than other flammable gases in 

unconstrained and well ventilated spaces. On the other hand, the wide flammability range 

of the gas in air makes the likelihood of ignition greater. Zhang and Li [1] compared the 

explosion characteristics of large volume hydrogen, propane and methane clouds at the 

stoichiometric concentration. As would be expected, the hydrogen/air cloud explosion 

was found to have the highest peak overpressure with the overpressure rising at the 

                                                 
* Corresponding author. E-mail address averilla@lsbu.ac.uk 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSBU Research Open

https://core.ac.uk/display/227106735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

nearby locality of the cloud boundary. The dynamic pressure of the cloud explosion was 

found to be of similar order to the overpressure and the explosion/flame region 

approximately 1.25 times the original width of the cloud. Dadashzadeh et al. [2] have 

recently provided a risk assessment methodology for onboard hydrogen-powered vehicle 

storage. The fire risk is defined in terms of "cost of human life per vehicle fire, and 

annual fatality rate per vehicle". Hazard distances were calculated for blast wave and 

fireball following a catastrophic storage tank rupture. They found that the resulting fire 

acts in all directions with larger hazard distances in comparison with a jet fire.  

 

An evaluation of the common hazards associated with hydrogen storage facilities and 

distribution systems was carried out by Rigas and Sklavounos [3]. They reported that 

their hazard analysis had shown that hydrogen ignition can result in accidents that "pose a 

severe threat for property and public safety". Interestingly, they also found that the 

resulting cloud arising from liquefied hydrogen spillage behaves as a heavy gas rather 

than a light one with flammable concentrations remaining at low heights above the 

ground. Particular safety concerns have been highlighted where H2 fuel cells have 

replaced lead-acid batteries for industrial forklift operation [4]. Safely refuelling these 

trucks with compressed hydrogen in a confined space offers new challenges and requires 

further operational considerations. In their experiments, Ekoto et al. [4], used a sub-scale 

test facility (45 m3 internal volume) with Froude scale-up calculations to simulate the 

release of 0.8 kg H2 into a 1000 m3 enclosure. Dispersion measurements showed that the 

transient release plume first became a momentum guided jet (relatively insensitive to 

buoyancy) which quickly diverted upwards as the storage tank pressure decreased. 

Tanaka et al. [5] have carried out an experimental study on hydrogen explosions in a full-

scale hydrogen filling station. High pressure hydrogen was released into the storage room 

in the full-scale model of the refuelling station. Igniting the releases showed that the 

overpressures generated had a clear correlation with the timing of ignition and distance 

from the ignition point.    

 

Many studies have been devoted to understanding the likelihood and consequence of 

ignition events that could occur in large scale industrial or nuclear waste sites. For 

example, in a recent paper, Averill et al. [14] examined how Bayesian networks could be 

used to represent and understand potential ignition scenarios in nuclear waste 

decommissioning. In the work, prediction of the hydrogen concentration produced by 

corroding pyrophoric material contained in large stacked storage boxes was explored and 

related to a number of operational parameters. However, in contrast to the large-scale or 

relatively large-scale ignition and safety studies carried out, little attention has been given 

to the effect of ignition in small scale operations such as service work involving manual 

manipulation of gas containing packages or vessels. A great deal of personal operational 

intervention may be required in practical processing rather than the use of remote, 

engineered systems. In one nuclear processing scenario for example, a rebottling activity 

for analytical purposes requires that operators in air fed suits pick up and move 

packages/bottles that contain hydrogen. There is an increasing interest in the personal 

injury consequences of ignition of small volumes of gas containing hydrogen during such 

operations. These may result from localised hydrogen leaks released to air with an 

external ignition source or through an internal ignition source that results in deflagration 
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of the contained flammable gas mixture. Concerning this ‘hands on’ processing activity, 

conventional/personal safety management must be considered to be of the greatest 

importance. Although there have been reports and discussions on the effects of 

explosions on the body (e.g. in the Oklahoma City bombing [15]) the consequence of 

exposure to ignition of small volumes of localized flammable hydrogen leaks is difficult 

to estimate theoretically and there appears to be little industrial evidence or literature to 

refer to. 

 

 The purpose of this paper is to address this knowledge gap and to report the results of an 

experimental program carried out to simulate the effect of localised (weakly confined) 

small volume hydrogen explosions on personal safety.  Of particular importance is 

identifying the most serious consequences that require further study.  

 

 

2. Potential hazards 
 

With any explosion event there are several ways in which injury could be caused to 

people in its proximity. These can be categorised as being due to the effects of the 

blast/shock wave or the resulting flying fragments/projectiles, burns or hearing damage. 

Many of the issues involved have been examined in other studies but these have typically 

been on much larger scales or involved small high explosive charges producing shock 

waves much greater than produced by weakly confined hydrogen gas explosions. One 

approach in determining the effect of an explosion is to make a comparison with 

published data on the basis of TNT equivalence but the fraction of the TNT equivalence 

value actually realised in an unconfined or mostly unconfined explosion is only a few % 

of the destructive effect indicated by the equivalence value. It would be very unclear as to 

what fraction should be assumed in the case of a small gas filled bag of a few litres. A 

better indication of explosive energy in this case is to take account of the equivalence 

ratio () of the hydrogen gas mixture since an equivalence ratio of 1 corresponds to peak 

overpressure in an enclosed volume. Although  = 1 does not correspond to the 

concentration at which the maximum burning velocity occurs it can be considered to be 

(or close to being) a worse case scenario regarding blast pressure and acoustic noise.   

 

One area of the body that is particularly prone to suffer serious injury from shock loading 

is the head/brain. The shock loading could result either from the blast itself or from a 

projectile impacting the head. This has been investigated in a number of different 

contexts such as traffic collisions, sporting injuries and blast suits for improvised 

explosive devices (IEDs) [16]. The likelihood of serious injury is related to both the 

magnitude and duration of the g-force experienced. Based on this, one of the earliest and 

most widely used measures for head injury is the Wayne State Tolerance Curve [17], 

shown in Figure 1. This in turn has led to the development of criteria such as the Head 

Injury Criterion (HIC). A full discussion of the sensitivity of the various biomechanical 

measures of head impact (rotational and linear acceleration, impact duration and location) 

to the clinical diagnosis of concussion has been given by Greenwald et al. [18].  
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Figure 1 The Wayne State Tolerance Curve defines an injury threshold based on the onset of 

skull fracture.  

 

Another area of major concern is that of burns. The conditions necessary to cause burns (i.e.              

temperature and time) are well known. Damage to the skin with 1st degree burns begins once 

the temperature of the basal layer (deepest layer of the five layers of the epidermis) reaches 

44°C. Should the basal layer reach 72°C then the skin will be destroyed instantly [19]. 

However, in the case of nuclear or industrial process workers likely to be exposed to effects 

from ignition of small volumes of hydrogen, it is highly unlikely that direct impingement of 

flames onto bare skin would occur. Workers should invariably be wearing protective 

equipment, typically air-fed suits of polymeric material covering the entire body for 

radiological protection. In a small localised hydrogen explosion, High flame temperatures 

will be generated (2000°C) but only for a very short period of time (typically <0.1 s). This 

raises the important question of whether the heat flux and its duration would be sufficient to 

ignite/damage the film and burn the skin directly or instead permit enough heat transfer 

through the intact film to damage skin underneath.  

 

Hearing damage is a significant concern following any explosion and often occurs in 

situations where persons are otherwise uninjured. The human hearing system is an 

extremely delicate and sensitive detector of pressure fluctuations in the air. Despite its 

large range of detection, high levels of impulsive sound arising from explosions or 

industrial processes can carry excessive acoustics energy posing a considerable risk to the 

hearing system of the person exposed. Instant damage can occur to the middle and/or and 

inner ear from high level impulsive sounds resulting in permanent hearing loss. 

In the European Union, the Directive 2003/10/EC (noise)† stipulates the minimum health 

and safety requirements regarding the exposure of workers to the risks arising or likely to 

arise from noise and in particular the risk to hearing. The Directive defines the physical 

parameters that serve as risk predictors in noise exposure assessments. The C-weighted 

peak sound pressure level (LCpeak) is specified as the parameter to be used for measuring 

                                                 
† This is implemented in the UK as the Control of Noise at Work Regulations 2005 [21].  
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and assessing noise exposure from impulsive sound sources. It also designates legal 

obligations for employers when certain exposure limit levels of those parameters are  

reached or exceeded. Under the Directive, employers are required to implement a 

programme of technical and organizational measures to reduce the level of exposure if an 

employee is likely to be exposed to sounds measuring LCpeak of 137 dB or above. An 

absolute limit is placed at 140 dB which must not be exceeded. Only for this limit can the 

reduction afforded by hearing protection be taken into account in the exposure 

assessment.  

 

Impulsive noise sources investigated previously have included fireworks as well as 

various kinds of weapons and explosive devices. Of particular relevance is the study of 

acoustical characterisation of exploding hydrogen-oxygen balloon carried out by Vernon 

and Gee [20]. In this study, balloons of 23 l capacity were filled with varying amounts of  

hydrogen and oxygen and then ignited in an anechoic chamber  using a small butane 

torch attached to a metre stick. Although the issue of hearing damage was not directly 

addressed, acoustic data was collected over a spherical surface geometry at a radial 

distance of mostly 1.83 m. At this distance, the lowest Lpeak value‡ measured was 126.1 

dB with a balloon containing 1.98 l of hydrogen in the absence of oxygen. The highest 

Lpeak value (161.5 dB) found was for a balloon filled with 22.1 l of stoichiometric mixture 

of hydrogen/oxygen. It was also observed that balloons filled with pure hydrogen showed 

more variability in the results obtained whereas the balloons that also contained oxygen 

produced more consistent sound levels that grew with the balloon size.  

 

It is expected that because of the need for process workers to closely inspect and visually 

examine packages for degradation, the head would be at most risk and potentially 

subjected to the full force of any explosion blast. For this reason, to carry out an 

experimental program which would throw most light on the personal damage and injury 

likely to be caused by a small localized hydrogen gas explosion, it was decided that 

measurements should be made using an exploding gas sac or balloon in the proximity of 

a simulated human head. The following parameters were considered most important for 

measurement; force and movement experienced by the simulated head mass, blast 

pressure and noise exposure levels, and surface temperatures in the facial region. To 

represent a worse case scenario, all tests were carried out with a stoichiometric hydrogen 

/air mixture ( = 1). 

 

3. Experimental Apparatus  

 
The experimental apparatus was assembled as shown in Figure 2.  

 

                                                 
‡ It was noted by the authors that the Lpeak values were similar to the C weighted results which were not 

specifically given. 
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Figure 2. Schematic diagram of exploding sac/balloon test apparatus  

 

A 30% (v/v) stoichiometric hydrogen/ air gas mixture was supplied to the sac/balloons 

from a blending panel through a solenoid valve that could be operated remotely. 

Polyethylene zip-tie plastic sacs or heavy duty seam welded PVC sacs (supplied by 

Sellafield Ltd) were sealed in the deflated condition and filled through an inserted 

hypodermic needle. The latex composition balloons used in the tests were directly filled 

through a nozzle with the gas mixture to the required volume and sealed. To initiate an 

explosion, a small propane blow torch was used attached to a 2 m long rod, the flame 

allowed to contact the sac/balloon surface in a position outside of the line of the 

measuring devices. Attempts to use an electric arc from a 10kV ignition transformer for 

this purpose proved unsuitable on account of the electrical noise produced interfering 

with the triggering and measurement systems. The ignition events were recorded with 

high speed digital imaging using an Olympus i-speed camera at 1000 fps.  

 

Pendulum and accelerometer for simulated head movement 
 

A ballistic pendulum was constructed to proximately simulate a workers head. It 

consisted of a circular plate (230 mm diameter) attached by a threaded rod in its center to 

a steel bar (200 mm x 40 mm x 5 mm thick). The pendulum was suspended, from a 

height of 1.25 m to the centre of the plate, by 3 steel cables; two attached to the plate and 

the third to the bar at the rear. Initial tests were conducted using a 6 mm thick steel 

circular plate (1.9 kg) with a centrally attached 100 mm diameter steel disk of mass 2.5 

kg. Together with the rod and bar this gave a total mass of 5 kg which is comparable to 

the mass of a human head. In later tests this was reduced by using a 5 mm thick Perspex 
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disk to give a total mass of 0.8 kg. A marker was applied to the edge of each disk to 

enable its movement to be tracked during analysis of the high speed digital imaging. 

  

Attached to the threaded rod, immediately behind the back of the disk was a single axis ± 

250 g accelerometer (EVAL-ADXL001-250Z) operating at 5V to give a specified output 

of 6.7 mV/g. A 75kHz low pass filter was attached to the output and a differential op-amp 

circuit used to remove the zero bias voltage. 

  

Pressure transducer for blast measurement 

             

To record blast pressure levels, a Honeywell piezoresistive 26PCAFA6D 0 to 1 psi, (0 to 

6895 Pa) differential pressure transducer was used that enabled a maximum measurement 

response time of 1ms. One of the outlets of the differential transducer was exited through 

a rigid pipe to the atmosphere at a distance of 5m from the blast so that it was referenced 

to normal atmospheric pressure. The position of the transducer and its orientation was 

varied as shown in Figure 2, placed in one of two positions to give either a general in line 

record of the blast pressure (A) or a direct indication of the pressure close to the 

pendulum (B. i.e. the human head position). Output from the transducer was amplified 

using a Burr Brown INA125 instrumentation amplifier and precision voltage reference IC 

circuit. The amplified sensor output was calibrated against a mercury manometer.  

 

 

 

Temperature measurement and film surface ignition 

 

Temperature measurements were made using two fine bare wire (0.13 mm dia.) k type 

thermocouples to provide rapid response and minimise thermal lag. The thermocouple 

outputs were amplified using an AD595 thermocouple amplifier to give a linearised 

output of 10 mV/°C. One of the thermocouples (T1) was placed between the sac/balloon 

and the pendulum for the purpose of triggering the oscilloscope after an explosion. The 

second (T2) was placed under a layer of polymer film (0.37 mm thick glove material). 

The glove material test pieces (20 x 40 mm) were attached to the front of the pendulum 

with a thin layer of adhesive putty to represent the presence of facial skin or its protective 

cover. A small section of the film was allowed to overhang the edge of the putty to  

maximise the chance of realizing ignition or physical damage.  

 

Acoustic measurements for noise exposure assessment 

 

Acoustic measurements were made to determine peak sound pressure levels at the 

proximate head position. These were carried out using a fully calibrated sound level 

meter (SLM): Norsonics-140 conforming to BS EN 60804: 2001 [22] Class I of SLM. To 

avoid the possibility of instrument damage, measurements of LCpeak were taken at a 

distance 4.2 m (in an unimpeded line of sight) from the point of an exploding sac/balloon 

(Figure 3). LCpeak levels at the assumed distance of 0.6 m (i.e. approximate arms length) 

between the unprotected ear of the employee and the center of the exploding bag were 

predicted using room acoustics theory taking into account reverberation time data for the 
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laboratory.  The necessary reverberation time measurements and calculations were made 

in accordance with BS ISO 3382-2: 2008 [23] using the SLM. 

  

 
Figure 3. Plan view of the peak sound pressure level measurement arrangement showing 

the laboratory dimensions and distances between the SLM and exploding sac/balloon 

position. The SLM is positioned at a height of 1.5 m from the floor. Laboratory height 

6m. 

  

 

 

 

Data logging the measurements 

 

The outputs from the pressure sensor, thermocouples and accelerometer were recorded 

using a 4 channel 100 MHz mixed signal storage oscilloscope (Agilent Technologies 

Model MSO-X 3014A) to enable capture of data. It was found that the most reliable 

option for triggering the oscilloscope reading was to activate it on the leading edge 

response of the thermocouple T1.  

 

Experimental methodology  

  

Tests were conducted in a straightforward sequence. Firstly the solenoid valve was 

opened and the hydrogen and air flow meters adjusted to give the required concentration. 

After closing the valve and positioning a sac or balloon in place, the solenoid valve was 

opened again and the sac/balloon filled. The oscilloscope was then set to wait for trigger 

until the high speed camera was triggered manually prompted by ignition of the gas 

mixture. Finally, measurement data was collected and the high speed digital images 

examined using Olympus "De-luxe" i-speed tracking software to calibrate and analyse the 

movement of the pendulum plate. This also enabled an estimate to be made of the 

duration of the explosion event, of great importance as discussed earlier in the context of 

HIC. The logged data was analysed to obtain peak pressure values, accelerations and 

temperatures.   
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4. Results  

 
Since sacs made of relatively un-elastic material are more likely to be representative of 

the flexible gas containing vessels used in the nuclear/process industries, zip-tie 

polyethylene sacs were used for the majority of the experiments filled to a capacity of 3.3 

litres. Rubber balloons were also used to give some information and understanding of 

how elastic containers, which forcibly contract from the gas mixture on puncturing, 

influence the explosion hazard. These were filled to a capacity of approximately 4 litres 

which, allowing for the elastic properties of the balloon material would have resulted in 

an internal pressure 2-4% above atmospheric. The plastic protection suit material used by 

process operatives was simulated using polymer glove material (0.037 mm thick) directly 

covering and in contact with thermocouple T2. 

   

Tests with the 5kg pendulum  
 

Tests were first carried out using the 5 kg pendulum to simulate the mass and cross 

sectional area of a human head with the pressure sensor located in position A (Fig. 2) to 

register the overpressure produced by ignition of gas mixture in a sac. From the high 

speed digital imaging it was apparent that the deflagration event lasted for some 20 ms 

and that the flames and combustion products clearly impinged on the pendulum and the 

polymer film. No movement was detected of the pendulum resulting from the blast as can 

be seen from the selected image frames of the ignition progress given in Figure 4. This 

was confirmed by the lack of any acceleration force registered by the accelerometer.  The 

pressure time history of the ignition in Fig.5 shows an initial positive peak of 0.4 kPa 

which rapidly goes negative indicating a suction phase before rapidly returning to 

atmospheric pressure. It should be noted that the zero time on the plot is referenced to the 

temperature response and as such does not directly correlate with the times of the images 

given in Fig.4. The temperature response (T2) as recorded on the underside of the 

polymer glove material (Fig. 6), shows that even though the digital images reveal 

combustion flames impinging on the material, the temperature rise is only approximately  

3ºC. Furthermore, inspection of the film after the test did not indicate any sign of 

damage.    
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Figure 4. Image frames from ignition of stoichiometric H2/air mixture in zip-tie sac with 

the 5 kg pendulum. 
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Figure 5. Pressure-time history for ignition of stoichiometric H2/air mixture in zip-tie sac 

with the 5kg pendulum and pressure sensor in position A. 
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Figure 6.  Temperature (T2) rise-time history for ignition of stoichiometric H2/air mixture 

in zip-tie sac with 5kg pendulum.  

 

  Tests were then carried out under similar conditions substituting balloons for the zip-tie 

sacs. It can immediately be seen from Figure 7, which shows image frames from the high 

speed video, that there are significant differences in the explosions with balloons and zip-

tie sacs. With the zip-tie sacs, the flames and combustion products are very clearly 

directed away from the point of ignition whereas with balloons the skin of the balloon 

retracts very rapidly leaving a ball of pre-mixed flammable atmosphere which ignites to 

produce a flame extending more evenly in all directions. The peak temperature recorded 

by the thermocouple between the balloon and pendulum was approximately 550 ºC. For a 

beaded thermocouple with even such fine wire as used here (0.13 mm) thermal lag is still 

significant with a time constant of around 0.135 s [24]. Since the period of temperature 

rise during the explosion was around 100 ms and that of the visible flaming 90 ms, the 

time constant implies that substantially less than 50% of the instantaneous temperature 

rise would have been recorded. Taking into account this difference it is unsurprising that 

the recorded temperature is much smaller than the adiabatic flame temperature for a 

stoichiometric hydrogen/air mixture (2483K). Figures 8 and 9 show the data recorded 

from the pressure sensor (position A) and thermocouple behind the polymer film.  The 

pressure time history is similar to that observed for the zip-tie sacs but the initial positive 

impulse is greater (1.13 kPa) consistent with the effect of a less directional blast on the 

transducer in position A. As with previous zip-tie sac tests, only a small temperature rise 

(1.5ºC) was detected behind the polymer film and the accelerometer did not record any 

acceleration of the pendulum. It can be seen from Fig. 9 that there was an initial rapid 

temperature rise of 0.5ºC over a period of 100 ms coinciding with the duration of the 

temperature rise recorded by the other thermocouple. Unlike the zip-tie sac tests, the 

temperature of the film then continued to increase slightly. 
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Figure 7. Image frames from the ignition of stoichiometric H2/air mixture in a balloon 

with the 5kg pendulum. 
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Figure 8.  Pressure-time history for ignition of stoichiometric H2/air mixture in a balloon 

with the 5kg pendulum. Pressure sensor in position A.  

 

 

           

-0.2

0.3

0.8

1.3

1.8

0 1000 2000 3000 4000 5000

°C

Time (ms)

 

Figure 9. Temperature (T2) rise time history for ignition of stoichiometric H2/air mixture 

in a balloon with 5kg pendulum.  
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Tests with the 0.8 kg pendulum 

 

  Since no movement of the 5 kg pendulum was detected in the experiments, a further 

series of tests with gas filled zip-tie sacs were carried out with the much lighter Perspex 

disc (0.8 kg) and locating a pressure sensor in position B to determine the blast pressure 

close to the pendulum (simulated head position). The image frames for ignition of a gas 

filled zip-tie sac and the 0.8 kg pendulum (Fig. 10) show that the general progression of 

the explosion appears similar to that which occurs with the 5 kg pendulum. Although it 

cannot easily be seen from the still images, analysis of the high speed video indicated 

significant movement of the 0.8 kg pendulum with some superimposed vibration. 

Tracking of the markers on the pendulum indicated that the blast rapidly accelerated the 

pendulum to a stable net directional velocity of 0.16 m/s over a period of a few 

milliseconds. Consistent with data recorded from the accelerometer, this suggests that the 

blast force could result in an initial net directional acceleration of about 5g. The 

accelerometer measurements also showed that the initial net unidirectional acceleration 

was followed by a (net zero) fluctuating acceleration of up to around ± 6g.  

 

             

0ms 3ms

5ms 10ms

15ms 20ms  
Figure 10. Image frames from ignition of stoichiometric H2/air mixture in a zip-tie sac 

with the 0.8kg pendulum. 
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The pressure time history recorded for the sensor in position B indicated that the initial 

acceleration of the pendulum coincided with an impulsive pressure peak of 

approximately 1kPa followed by high frequency oscillations. As with previous tests only 

a small increase of temperature (T2) was recorded. 
 

 Finally, several tests were carried out using heavy duty sacs of the kind used in some 

storage operations in the UK nuclear industry. These sacs, of similar volume to the lighter 

zip-tie sacs (0.02 mm thick), comprised two 0.3 mm thick sheets of PVC seam welded on 

all sides. Figure 11 shows a sequence of still images from the video of a typical test using 

these sacs. It can be seen that the much thicker sac has made a significant difference to 

the nature of the explosion. Following ignition there is an extended time period during 

which a jet flame burns which then after 33 ms extends far enough to heat thermocouple 

T1. This longer duration, compared to the thinner bags, possibly relates to a slightly 

higher initial internal pressure. After 209 ms the flame can be seen to blow back into the 

sac and it was apparent that the ejected combustion products/flame was confined to a 

narrower jet than hitherto and appeared more violent. After the explosion, the area of the 

hole was only around 1.2 x 10-3 m2 whereas with the thinner zip-tie sacs the hole was 

around 6 to 11 x 10-3 m2. This is consistent with a considerably higher pressure being 

developed within the PVC sac. 
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0 ms 33 ms

209 ms 212 ms

216 ms 217 ms

220 ms 226 ms   
     

Figure 11. Image frames from ignition of stoichiometric H2/air mixture in a thick PVC 

sac with the 0.8kg pendulum. 
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From the movement of the markers on the pendulum, shown in Figure 12, it was found 

that the pendulum was accelerated rapidly away from the blast to a velocity exceeding 1 

m/s, considerably greater than that observed with the zip-tie sacs. It was also evident 

from the tracking measurements, that the initial acceleration to give this stable velocity 

occurred over a time period of around 6-7 ms which indicated an average initial 

acceleration of the pendulum in the region of 22g. This observation is consistent with the 

typical acceleration force - time history for these tests, shown in Figure 13, where there is 

an initial period of uni-directional acceleration force. Rapid fluctuation of pendulum 

movement is smoothed out due to the inertial tendency to resist sudden changes in its 

current momentum. The accelerometer records the effect of acceleration force on the 

device rather than physical movement of the pendulum.  
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Figure 12. Movement of the 0.8kg pendulum resulting from ignition of stoichiometric 

H2/air mixture in a thick PVC sac. 
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Figure 13. Acceleration force - time history for the 0.8kg pendulum after ignition of 

stoichiometric H2/air mixture in a thick PVC sac. 

  

 Figure 14 shows the output from the pressure sensor located close to the initial position 

of the pendulum. Comparison with Figure 13 suggests that the initial acceleration of the 

pendulum coincides with the arrival of the initial impulsive pressure peaks. Following the 

initial peak of around 1to 1.5 kPa the pressure trace becomes complex with high 

frequency oscillations, followed by several large spikes the largest of which peaks at 

nearly 12 kPa. 
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Figure 14. Time history for pressure (position B) developed near the pendulum (0.8 kg) 

after ignition of stoichiometric H2/air mixture in a thick PVC sac. 
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Figure 15 shows the temperature recorded during a test on the underside of the 0.037mm 

thick glove material. There is an initial rise of around 4°C followed by a slight decay 

before slowly starting to rise again ending at a rise of around 3°C after 1.5 seconds.  
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Figure 15. Polymer film temperature rise (T2) after ignition of stoichiometric H2/air 

mixture in a thick PVC sac. 

 

Noise exposure tests 

 

The results of the acoustics measurements and corresponding predictive calculations of 

peak sound pressure levels at 0.6 m (arm’s length) distance from the exploding 

balloon/sac are given in Table 1. Due to the prevalence of a diffuse sound field in the 

laboratory the sound levels predicted at arm’s length distance are 3.4 dB higher than 

those measured at 4.2 m distance. Two explosion tests were carried out in each case for 

the balloons, zip-tie sacs and thick PVC sacs. The LCpeak dB values given in the Table 

are referenced to 20 µPa and exposure limit or action values of the EU Directive (noise) 

are indicated when the corresponding LCpeak value is predicted to be reached. The lower 

exposure action value applies when a LCpeak value of 135dB is reached and requires the 

employer to inform, instruct and train employees on the potential risks to health and 

safety due to the noise exposure. The exposure limit value recorded for one of the PVC 

sacs indicates a peak sound pressure level which is not permissible.     

 

Table 1. Peak sound pressure level (LCpeak, dB) and European Directive (noise) 

exposure limit and exposure action values. 

 

 Measured at 4.2 m Calculated at 0.6 m European Directive exposure 

limit and Action values 

Balloon           123.6           127.0  

Balloon           131.7           135.1 Lower exposure action value 

Zip-tie sac           126.8           130.2  

Zip-tie sac           126.6           130.0  
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PVC sac           132.2           135.6 Lower exposure action value 

PVC sac           140.1           143.5 Exposure limit value 

 

Discussion 

 

For the reasons given earlier, tests were conducted to investigate three main possible 

types of injury, namely; physical injury from the force of the blast, burn damage and 

hearing damage resulting from the blast/shock wave. Considering first the shock loads 

imparted by the blast from the weakly confined, small volume deflagrations, it seems 

very unlikely that the loads generated would be sufficient to cause significant physical 

injury. With the heavier pendulum, similar in mass to a human head, no response was 

recorded by the accelerometer in any of the tests and no visual movement of the 

pendulum was observed from the digital imaging. Tests with the much lighter pendulum 

show movement in the digital imaging together with corresponding accelerometer 

readings. The stable net directional velocity of 0.16 m/s observed from the digital 

imaging over a period of a few milliseconds indicated that the pendulum movement with 

the zip-tie sac was associated with a blast force that resulted in a net unidirectional 

acceleration of around 5g. Given the short duration of this acceleration period and that a 

human head with 6 times the mass of the lighter pendulum would be subject to less 

acceleration force given a similar applied loading, it can be seen from Fig.1 that the blast 

is very much below that considered likely to cause serious injury/concussion.  

 

The tests carried out using the much thicker and stronger Sellafield supplied sacs, 

however, produced significantly greater shock loads. The accelerometer in one of these 

tests registered a maximum for a very short period that exceeded 30g (Figure 13) and the 

pendulum was accelerated to just over 1 m/s (i.e. around 5-6 times  greater than with the 

zip-tie sac tests). Again, had the heavier pendulum been used, the initial averaged 

unidirectional acceleration would have clearly been much less than that indicated (22g) 

and so considerably less than would be required to cause personal injury. It should be 

noted however, that the thicker sacs can clearly withstand a significant overpressure (as 

evidenced by the smaller area bursting/vent hole), so that should an ignition occur inside 

the sac prior to puncture, the blast on bursting could be much greater. The proximate 

head pendulum used in the study is also only representational and not biofidelic in respect 

to shape and internal head features. 

 

Regarding the possibility of burn damage, this seems very unlikely from the results of 

this study. Although flames/hot gases clearly impinged on the polymer film, it was for a 

very short time and there were no signs of damage/burning of the film sample used in any 

of the tests. Part of the film sample had been deliberately allowed to overhang the 

mounting putty to leave a free edge vulnerable to ignition. The flame temperatures would 

likely (noting the thermocouple time constant) have peaked well in excess of that 

required to start to melt/ignite the material (ca 200 – 500°C) but for only a very short 

time period. The heat flux to the polymer surface during this time would be as a result of 

both convection and radiation and will vary over the course of the explosion.  The 

temperatures recorded on the underside of the polymer glove film showed a maximum 

temperature rise in the polyethylene zip-tie sac tests of only 2.4°C. In the case of the 
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thicker Sellafield PVC sac tests the maximum temperature rise was 4°C. This is clearly 

insufficient to cause burn damage to flesh in contact with the glove material.   

 

The acoustic measurements and noise exposure assessment carried out in this study 

clearly suggest that hearing damage could result from the ignition of small volumes of 

hydrogen/air gas mixture. Although the sound levels recorded in the case of the thin zip-

tie sacs were lower than that which would be required to trigger action under European 

regulations, this was not the case with the thick PVC sacs. Assessing the predicted levels 

at arm’s length against the relevant European Directive (noise), the two instances of gas 

ignition in the PVC sacs reached action values whilst one of the rubber balloon 

explosions reached the lower exposure action limit. Given that the predicted sound levels 

would significantly increase at shorter than full arm’s length distance, with larger sacs or 

with increase in oxygen concentration, the possibility of hearing damage should be 

considered the most likely threat to the health of operatives subjected to the ignition of 

small volumes of weakly contained hydrogen/air gas mixture.  

 

Finally, it must be emphasized that the findings in this study relate to the ignition of 

weakly confined flammable gas mixture and that the consequences of strongly confined 

gas explosions could be considerably more injurious. Taking into account, the work of 

Vernon and Gee [20] it is also apparent that the consequences arising from ignition with 

increased oxygen content in the sacs are likely to be more serious than reported in this 

article. It should be further noted that the injurious effect of any shrapnel has not been 

considered.  

  

Conclusions 

 

A study has been conducted to investigate the potential for injury from ignition of small 

weakly confined volumes (~3-4 litres) of hydrogen/air ( = 1) in close proximity to an 

operator. Given the nature of the personal protective equipment that would be expected to 

be employed by such operators as a matter of course (i.e. of significantly thicker material 

than the film employed in these tests) it is concluded that the risk of injury from burns is 

likely to be very small. Similarly, the measurements obtained regarding blast pressures 

and acceleration forces suggest that even for the worst case scenario investigated (i.e. 

with thick PVC sacs) there is unlikely to be any direct physical injury. The situation that 

would arise with strongly contained gas mixtures, with ignition initiated within the 

package or with the possibility of shrapnel fragments has not been investigated in this 

study but would be expected to lead to quite different findings. It has been shown, 

however, that even with weakly confined explosions, the possibility that hearing damage 

would occur is a matter of concern that should focus future attention and effort.  
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