53 research outputs found

    Additional chromosome abnormalities in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy

    Get PDF
    Background Acute promyelocytic leukemia is a subtype of acute myeloid leukemia characterized by the t(15;17). The incidence and prognostic significance of additional chromosomal abnormalities in acute promyelocytic leukemia is still a controversial matter. Design and Methods Based on cytogenetic data available for 495 patients with acute promyelocytic leukemia enrolled in two consecutive PETHEMA trials (LPA96 and LPA99), we analyzed the incidence, characteristics, and outcome of patients with acute promyelocytic leukemia with and without additional chromosomal abnormalities who had been treated with all-trans retinoic acid plus anthracycline monochemotherapy for induction and consolidation. Results Additional chromosomal abnormalities were observed in 140 patients (28%). Trisomy 8 was the most frequent abnormality (36%), followed by abn(7q) (5%). Patients with additional chromosomal abnormalities more frequently had coagulopathy (P=0.03), lower platelet counts (P=0.02), and higher relapse-risk scores (P=0.02) than their counterparts without additional abnormalities. No significant association with FLT3/ITD or other clinicopathological characteristics was demonstrated. Patients with and without additional chromosomal abnormalities had similar complete remission rates (90% and 91%, respectively). Univariate analysis showed that additional chromosomal abnormalities were associated with a lower relapse-free survival in the LPA99 trial (P=0.04), but not in the LPA96 trial. However, neither additional chromosomal abnormalities overall nor any specific abnormality was identified as an independent risk factor for relapse in multivariate analysis. Conclusions The lack of independent prognostic value of additional chromosomal abnormalities in acute promyelocytic leukemia does not support the use of alternative therapeutic strategies when such abnormalities are found

    MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene

    Get PDF
    Double minutes (dmin)-circular, extra-chromosomal amplifications of specific acentric DNA fragments-are relatively frequent in malignant disorders, particularly in solid tumors. In acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), dmin are observed in approximately 1% of the cases. Most of them consist of an amplified segment from chromosome band 8q24, always including the MYC gene. Besides this information, little is known about their internal structure. We have characterized in detail the genomic organization of 32 AML and two MDS cases with MYC-containing dmin. The minimally amplified region was shown to be 4.26 Mb in size, harboring five known genes, with the proximal and the distal amplicon breakpoints clustering in two regions of approximately 500 and 600 kb, respectively. Interestingly, in 23 (68%) of the studied cases, the amplified region was deleted in one of the chromosome 8 homologs at 8q24, suggesting excision of a DNA segment from the original chromosomal location according to the 'episome model'. In one case, sequencing of both the dmin and del(8q) junctions was achieved and provided definitive evidence in favor of the episome model for the formation of dmin. Expression status of the TRIB1 and MYC genes, encompassed by the minimally amplified region, was assessed by northern blot analysis. The TRIB1 gene was found over-expressed in only a subset of the AML/MDS cases, whereas MYC, contrary to expectations, was always silent. The present study, therefore, strongly suggests that MYC is not the target gene of the 8q24 amplifications

    Evaluation of the 2021 ESC recommendations for family screening in hereditary transthyretin cardiac amyloidosis

    Get PDF
    AIMS: The 2021 European Society of Cardiology (ESC) screening recommendations for individuals carrying a pathogenic transthyretin amyloidosis variant (ATTRv) are based on expert opinion. We aimed to (i) determine the penetrance of ATTRv cardiomyopathy (ATTRv-CM) at baseline; (ii) examine the value of serial evaluation; and (iii) establish the yield of first-line diagnostic tests (i.e. electrocardiogram, echocardiogram, and laboratory tests) as per 2021 ESC position statement.METHODS AND RESULTS: We included 159 relatives (median age 55.6 [43.2-65.9] years, 52% male) at risk for ATTRv-CM from 10 centres. The primary endpoint, ATTRv-CM diagnosis, was defined as the presence of (i) cardiac tracer uptake in bone scintigraphy; or (ii) transthyretin-positive cardiac biopsy. The secondary endpoint was a composite of heart failure (New York Heart Association class ≥II) and pacemaker-requiring conduction disorders. At baseline, 40/159 (25%) relatives were diagnosed with ATTRv-CM. Of those, 20 (50%) met the secondary endpoint. Indication to screen (≤10 years prior to predicted disease onset and absence of extracardiac amyloidosis) had an excellent negative predictive value (97%). Other pre-screening predictors for ATTRv-CM were infrequently identified variants and male sex. Importantly, 13% of relatives with ATTRv-CM did not show any signs of cardiac involvement on first-line diagnostic tests. The yield of serial evaluation (n = 41 relatives; follow-up 3.1 [2.2-5.2] years) at 3-year interval was 9.4%.CONCLUSIONS: Screening according to the 2021 ESC position statement performs well in daily clinical practice. Clinicians should adhere to repeating bone scintigraphy after 3 years, as progressing to ATTRv-CM without signs of ATTRv-CM on first-line diagnostic tests or symptoms is common.</p

    Similar mechanisms formed ring markers containing chromosome 12 pericentromeric region in two patients with therapy-related acute myeloid leukemia

    No full text
    Two cases of therapy-related acute myeloid leukemia showed complex karyotypes, including a small ring and a larger D-chromosome. Multicolor fluorescence in situ hybridization and bacterial artificial chromosome and fosmid clones showed that both ring chromosomes were composed entirely of material excised from chromosome 12. The deleted segment of 12 was found fused to the short arm of a D-group chromosome. We hypothesized that similar mechanisms were involved in both rearrangements. A fusion at the short arms of chromosome 12 and a D-group chromosome was accompanied by excision and ligation of the chromosome 12 pericentromeric region to form a small ring chromosome

    Genomic organization of human JAK2 and mutation analysis of its JH2-domain in leukemia

    No full text
    The Janus kinase family of proteins, with four mammalian members (JAK1, JAK2, JAK3 and TYK2), plays an essential role in the signal transduction pathway from non-catalytic cytokine receptors to the nucleus. We recently reported the involvement of ETV6-JAK2 fusion genes in the development of leukemia of both lymphoid and myeloid origin. Dominant missense mutations of hopscotch, a Drosophila JAK homologue, causing leukemia-like defects were described. One of these mutations affected a conserved residue of the kinase- like JH2 domain and the introduction of this mutation in murine Jak2 resulted in the constitutional activation of its kinase activity. In order to further analyze its role in leukemogenesis, we cloned human JAK2 and determined its genomic organization. Twenty-four exons spanning a region of approximately 150 kb were identified. A mutation analysis of the exons 13 to 19, encoding the kinase-like JH2 domain failed to detect activating mutations in leukemia samples, suggesting that this is a rare event in human leukemia.status: publishe

    NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t(8;11)(p11.2;p15)

    No full text
    Fusion between the NUP98 and NSD3 genes in a patient with acute myeloid leukemia associated with t(8;11)(p11.2;p15), is reported for the first time. The t(8;11)(p11.2;p15) was identified by classical cytogenetics. Fluorescence in situ hybridization (FISH) analysis revealed a split signal with a mix of BAC 118H17 and 290A12, indicating the translocation disrupted NUP98. FISH restriction at 8p11-12 showed a split of BAC 350N15. Molecular investigations into candidate genes in this BAC showed the NUP98 fusion partner at 8p11.2 was the NSD3 gene. To date the NSD3 gene has never been implicated in hematologic malignancies
    corecore