3 research outputs found

    Sensitivities of baseline isolates and boscalid-resistant mutants of Alternaria alternata from pistachio to fluopyram, penthiopyrad, and fluxapyroxad

    No full text
    Resistance of Alternaria alternata to boscalid, the first succinate dehydrogenase inhibitor (SDHI) fungicide labeled on pistachio, has become a common occurrence in California pistachio orchards and affects the performance of this fungicide. In this study, we established the baseline sensitivities of A. alternata to the new SDHIs fluopyram, fluxapyroxad, and penthiopyrad and assessed their cross resistance patterns with boscalid. Examination of the effective fungicide concentration that inhibits mycelial growth to 50% relative to the control (EC50) for 50 baseline isolates revealed that the majority were sensitive to boscalid, penthiopyrad, fluopyram, and fluxapyroxad. Analysis of EC50 values for boscalid for 117 A. alternata isolates originating from boscalid-exposed orchards showed that 44, 3, 1, and 69 isolates had sensitive, reduced sensitivity, moderately resistant, and highly resistant boscalid phenotypes, respectively. Molecular investigation of the occurrence of known SDH mutations showed that, among the 69 isolates highly resistant to boscalid, 44, 2, 14, and 1 isolates possessed the mutations leading to the H277Y, H277R, H134R, and H133R amino acid substitutions in AaSDHB, AaSDHB, AaSDHC, and AaSDHD subunits, respectively. Some SDHB or SDHC mutants displayed highly sensitive, sensitive, or reduced sensitivity phenotypes toward penthiopyrad or fluxapyroxad, whereas other had low, moderate, or high levels of resistance to these fungicides. In contrast, all the SDHB mutants were sensitive to fluopyram, while 10, 5, and 1 SDHC mutants had sensitive, reduced sensitivity, and moderately resistant fluopyram phenotypes, respectively. The SDHD mutant had reduced sensitivity to fluopyram and penthiopyrad but was highly resistant to fluxapyroxad. The discrepancies of cross-resistance patterns between SDHIs suggest that their binding sites in complex II may differ slightly and that additional mechanisms of resistance to these compounds are likely involved. Ultimately, the findings of this study should lead to the rational and sustained deployment of new SDHIs in Alternaria late blight spray programs

    Sensitivities of baseline isolates and boscalid-resistant mutants of Alternaria alternata from pistachio to fluopyram, penthiopyrad, and fluxapyroxad

    No full text
    Resistance of Alternaria alternata to boscalid, the first succinate dehydrogenase inhibitor (SDHI) fungicide labeled on pistachio, has become a common occurrence in California pistachio orchards and affects the performance of this fungicide. In this study, we established the baseline sensitivities of A. alternata to the new SDHIs fluopyram, fluxapyroxad, and penthiopyrad and assessed their cross resistance patterns with boscalid. Examination of the effective fungicide concentration that inhibits mycelial growth to 50% relative to the control (EC50) for 50 baseline isolates revealed that the majority were sensitive to boscalid, penthiopyrad, fluopyram, and fluxapyroxad. Analysis of EC50 values for boscalid for 117 A. alternata isolates originating from boscalid-exposed orchards showed that 44, 3, 1, and 69 isolates had sensitive, reduced sensitivity, moderately resistant, and highly resistant boscalid phenotypes, respectively. Molecular investigation of the occurrence of known SDH mutations showed that, among the 69 isolates highly resistant to boscalid, 44, 2, 14, and 1 isolates possessed the mutations leading to the H277Y, H277R, H134R, and H133R amino acid substitutions in AaSDHB, AaSDHB, AaSDHC, and AaSDHD subunits, respectively. Some SDHB or SDHC mutants displayed highly sensitive, sensitive, or reduced sensitivity phenotypes toward penthiopyrad or fluxapyroxad, whereas other had low, moderate, or high levels of resistance to these fungicides. In contrast, all the SDHB mutants were sensitive to fluopyram, while 10, 5, and 1 SDHC mutants had sensitive, reduced sensitivity, and moderately resistant fluopyram phenotypes, respectively. The SDHD mutant had reduced sensitivity to fluopyram and penthiopyrad but was highly resistant to fluxapyroxad. The discrepancies of cross-resistance patterns between SDHIs suggest that their binding sites in complex II may differ slightly and that additional mechanisms of resistance to these compounds are likely involved. Ultimately, the findings of this study should lead to the rational and sustained deployment of new SDHIs in Alternaria late blight spray programs

    Toxicity of copper hydroxide, dithianon, fluazinam, tebuconazole and pyraclostrobin to Didymella applanata isolates from Serbia

    No full text
    A study of the in vitro sensitivity of 10 isolates of Didymella applanata to copper hydroxide, dithianon, fluazinam, tebuconazole and pyraclostrobin, was conducted. The isolates were derived from diseased raspberry canes sampled during 2013 at five localities in western part of Serbia, known as the main raspberry growing region of the country. Prior to sensitivity testing experimental conditions for radial growth assay were optimized. The results showed that the temperature of 22 degrees C, oatmeal agar medium and 12/12 hrs light/ darkness light regimen provided the best conditions for sensitivity tests. Most of D. applanata isolates were sensitive to the tested fungicides. The narrowest range of EC50 values was recorded for tebuconazole (1.42-2.66mg L-1). The widest range of EC50 values was obtained for pyraclostrobin, ranging from 0.17mg L-1 to 55.33mg L-1. The EC50 values for the studied isolates were 39.48-51.19mg L-1 for copper hydroxide, 12.12-18.73mg L-1 for dithianon and 5.72-42.56mg L-1 for fluazinam. According to resistance factor values, all D. applanata isolates were sensitive to copper hydroxide, dithianon and tebuconazole. Among tested isolates, six were highly resistant to pyraclostrobin (RFs in the range of 207.1-325.5) and two moderately resistant to fluazinam (RFs were 3 and 7.4), respectively
    corecore