26 research outputs found

    Baliabide molekularrak propieta fotoenikoen sintonizaziorako

    Get PDF
    258 p.(eng.) 144 p. (eusk.)La química de colorantes está presenciando un renovado reconocimiento como herramienta valiosa para diseñar materiales fotónicos inteligentes prácticos. Las recientes rutas sintéticas en química orgánica han permitido el acceso a nuevas estructuras moleculares, en particular las hechas a la medida. En este contexto, nuestro objetivo en esta tesis es diseñar, caracterizar y aplicar una nueva generación de colorantes orgánicos como fluoróforos y fotosensibilizadores con fines fotónicos. En lugar de usar diferentes colorantes para cada propósito de aplicación, la estrategia empleada aquí se basó en el uso de un punto de partida molecular específico, donde, tras adecuadas modificaciones químicas de su núcleo coromofórico, la función fotónica pudo ser modulada de una manera controlada dependiendo del campo de aplicación que se quería perseguir. Es por ello que se eligió el colorante BOro DIPYrrometeno (BODIPY) como patrón molecular para hacer frente a diferentes aplicaciones fotónicas, incluso cuando a veces implicaban propiedades fotofísicas opuestas. Un diseño lógico de su estructura molecular permite el desarrollo de colorantes capaces de emitir en la región roja e infrarroja cercana para ser aplicados como láseres sintonizables, sensores fluorescentes para la detección de biomoléculas, y pruebas fluorescentes para bioimagen, así como fotosensibilizadores no fluorescentes capaces de generar oxigeno singlete para terapia en biomedicina. Su diseño se amplió a través de la combinación de numerosos colorantes en una única estructura molecular, donde los nuevos fenómenos fotofísicos como la transferencia de energía y carga, y los acoplamientos excitónicos, son impulsados. Estos colorantes multicromofóricos complejos y desafiantes presentan un comportamiento excepcional como láseres de colorante mejorados, sistemas ópticamente activos, captadores de luz y antenas moleculares

    Ikuskorreko urdin eremutik gorri aldera igortzen duten BODIPY laser koloratzaile moldagarriak

    Get PDF
    Lan honen bitartez fotofisikari buruzko kontzeptu berriak, karga transferentzia intramolekularreko prozesua, irakasgaian aztertutakoa askoz gehiago sakondu da. Hala nola, kimika konputazionalean ikasitako oinarriak kontuan harturik bestelako metodo berriak aztertu dira. Etekin kuantikoa kalkulatzean erreferentzia egokia erabakitzeko gaitasunak lortu dira. Laborategiari dagokionez, absortzio eta fluoreszentzia teknikak ezagunak izan arren, askoz sentikorragoak diren teknikak erabiltzen ikasi da. Gainera, teknika berriak ere ikasi dira, fotoi kontagailua esate baterako. Lan honen helburua eremu ikuskor osoan lan egiteko zianina familia bat lortzea da. Hain zuen BODIPY laser koloratzaileekin lortu nahi da. Horretarako kromoforo sinpleena, 1. Lagina, erreferentziatzat hartu da eta honen egitura eraldatuz eta ezaugarri fotofisikoak moldatuz bandaren posizioa aldatzea lortu da, ahalmen fluoreszente altua mantendu den bitartean

    Luminiszentzia, baliabide aproposa ioien eta biomolekulen presentzia agerian jartzeko

    Get PDF
    An efficient and high-resolution sensing of biomolecules and ions is of paramount relevance in biomedicine not only to monitor biochemical processes, but also to unravel the underlying mechanisms in diseases and find new drugs against them. Between the tested approaches to this aim, luminescence outstands as a suitable tool to gather such chemical information as an analytical signal, endowed with high sensitivity and specificity. The change of the fluorescence signal allows the visualization of the target molecules and its quantification as well. Therefore, fluorescent sensor can be developed applying dye chemistry, after anchoring a suitable receptor to a given chromophore. Herein, we disclose key guidelines to take into account in the design of such sensors. As a matter of fact, hereafter, we describe two BODIPY fluorophores based sensors to detect cations and amino acids. The monitorization is carried out following the change of the fluorescence efficiency and colour, respectively, being both of them properties easily visualized by the naked eye.; Biomolekulen eta ioien detekzio sentikorra eta eraginkorra premiazkoa da biomedikuntzan, ez soilik prozesu biokimikoak aztertzeko, baita gaixotasun mekanismoak ulertzeko eta sendagaiak bilatzeko ere. Eskuragarri dauden detekzio tekniken artean, luminiszentzia baliabiderik aproposenetariko bat da informazio kimiko hori lortzeko seinale analitiko gisa sentikortasun eta espezifikotasun ezin hobeak bermatzen baititu. Fluoreszentzia aldaketei jarraituz aztertu beharreko molekularen presentzia detektatzeaz gainera, beraren kantitatea ere kuantifika daiteke. Beraz, koloratzaileen kimika moldakorraz baliatuz, sentsore fluoreszenteak gara daitezke kromoforo bati aproposa den hartzaile espezifikoak lotuz. Lan honetan, holako sentsoreak diseinatzeko kontuan hartu behar diren irizpide orokorrak aipatzen dira. Azken hori agerian jartzeko, BODIPY koloratzailean oinarritutako bi sentsore fluoreszente deskribatzen dira, katioiak eta aminoazidoak detektatzeko gai direnak. Euren presentzia eta kantitatea aztertzeko fluoreszentzia ahalmena eta kolore aldaketa ikuskatzen dira, hurrenez hurren, biak begi bistaz erraz behatzen diren fenomenoak izanik

    A Concise Synthesis of a BODIPY-Labeled Tetrasaccharide Related to the Antitumor PI-88

    Get PDF
    A convergent synthetic route to a tetrasaccharide related to PI-88, which allows the incorporation of a fluorescent BODIPY-label at the reducing-end, has been developed. The strategy, which features the use of 1,2-methyl orthoesters (MeOEs) as glycosyl donors, illustrates the usefulness of suitably-designed BODIPY dyes as glycosyl labels in synthetic strategies towards fluorescently-tagged oligosaccharides.This research was funded by Spanish MINISTERIO DE ECONOMIA Y COMPETITIVIDAD, GOBIERNO DE ESPAÑA (projects MAT2017–83856-C3-1-P and 3-P, PiD2020-1147555GB-C33), the MINISTERIO DE CIENCIA INNOVACION Y UNIVERSIDADES (project RTI2018-094862-B-I00), and the GOBIERNO VASCO (project IT912-16)

    Balizko molekula fotoaktibo multifuntzionala biomedikuntzarako

    Get PDF
    Light-emitting organic molecules are appealing for diagnosis in biomedicine. Fluorescence is a valuable tool to visualize ongoing biochemical processes and biomolecules in the human body with great sensibility and easily. Thus, photoactive dyes are applied as fluorescent tags, probes and sensors to monitor biochemical processes, organelles and biomolecules, respectively, by means of fluorescence microscopy. Moreover, no-fluorescent dyes but able to generate singlet oxygen can be applied as photosensitizers for photodynamic therapy in the treatment of cancer. In each of the aforementioned areas dealing with biophotonics, different chromophores are required owing to the opposite photophysical signatures demanded. Herein, we propose BODIPY called chromophore as a molecular scaffold for diagnosis and therapy. The chemical versatility and tunable photophysics of this chromophoric core enables tailoring by the appropriate substitution pattern. Therefore, our aim is to highlight the importance of molecular design to develop fluorophores as well as photosensitizers based solely in BODIPY.; Argia igortzeko gai diren molekula organikoek arreta handia jaso dute azkenaldian biomedikuntzaren esparruan, batez ere diagnosian erabiltzeko helburuarekin. Izan ere, fluoreszentzia, baliabide ezin hobea da gorputzean gertatzen diren hainbat prozesu biokimiko monitorizatzeko eta biomolekulak sentikortasun handiz detektatzeko. Hori dela eta, fotoaktiboak diren kromoforoak markatzaile, zunda edo sentsore fluoreszente gisa erabiltzen dira mikroskopia fluoreszenteari esker; hots, prozesu biokimikoak jarraitzeko, organuluak ikusteko edota biomolekulak detektatzeko. Fluoreszentziarik ez duten kromoforoak, ordea, oxigeno singletea sortzeko gaitasuna ere izan dezakete eta fotosentikortzaile izaerarekin erabil daitezke terapia fotodinamikoan, minbiziaren aurkako tratamenduan. Argi dago, biofotonikako arlo baterako zein besterako eskakizun fotofisikoak guztiz bestelakoak direla eta kromoforo ezberdinak diseinatzea ezinbestekoa dela. Horregatik, lan honetan, BODIPY izeneko kromoforo-familia oinarrizko molekula-egituratzat hartzen da, diagnosian zein terapian aplikatu ahal izateko. Kromoforo mota horren abantaila nagusia da bere egitura eta propietateak erraz molda daitezkeela. Horrela, egituraren gainean ordezkapen sinple batzuk eginda hainbat eskakizun modu errazean ase daitezke. Hortaz, gure helburu nagusia da BODIPYan oinarritutako fluoroforoak zein fotosentikortzaileak garatzea eta diseinu molekularraren garrantzia azpimarratzea

    Formylation as a Chemical Tool to Modulate the Performance of Photosensitizers Based on Boron Dipyrromethene Dimers

    Get PDF
    Heavy-atom-free photosensitizers are envisioned as the next generation of photoactive molecules for photo-theragnosis. In this approach, and after suitable irradiation, a single molecular scaffold is able to visualize and kill tumour cells by fluorescence signalling and photodynamic therapy (PDT), respectively, with minimal side effects. In this regard, BODIPY-based orthogonal dimers have irrupted as suitable candidates for this aim. Herein, we analyse the photophysical properties of a set of formyl-functionalized BODIPY dimers to ascertain their suitability as fluorescent photosensitizers. The conducted computationally aided spectroscopic study determined that the fluorescence/singlet oxygen generation dual performance of these valuable BODIPY dimers not only depends on the BODIPY-BODIPY linkage and the steric hindrance around it, but also can be modulated by proper formyl functionalization at specific chromophoric positions. Thus, we propose regioselective formylation as an effective tool to modulate such a delicate photonic balance in BODIPY-based dimeric photosensitizers. The taming of the excited-state dynamics, in particular intramolecular charge transfer as the key underlying process mediating fluorescence deactivation vs. intersystem crossing increasing, could serve to increase fluorescence for brighter bioimaging, enhance the generation of singlet oxygen for killing activity, or balance both for photo-theragnosis.This research received financial support from the Spanish Ministerio de Ciencia e Innovación (MCIN)/Agencia Estatal de Investigación (AEI) Grants: PID2020-114755GB-C32 and -C33 funded by MCIN/AEI/10.13039/501100011033. Gobierno Vasco (IT1639-22) is also grateful for the financial support

    Koloratzaile fotoaktiboen belaunaldi berria

    Get PDF
    Nature is a source of inspiration for humankind and helps in technological advance. As a matter of fact, the reproduction of the photosynthesis, where natural chromophores absorb the incoming sunlight, is a long seeking challenge. To mimic such antenna systems new organic dyes are designed. However, single molecules show intrinsic limitations to absorb the whole electromagnetic spectrum, for light traveling, and to withstand prolonged irradiation regimes. To offset such shortcoming, multichromophoric dyes are an appealing alternative. In these complex molecular structures dissimilar dyes are covalently linked to promote energy transfer between them, which is the key pathway. Thus, multichromohores enable a broadband and efficient absorption. Therefore, multichromophoric dyes emerge as the next generation of ap-plied photoactive systems for artificial antennae in optic and photovoltaic devices. Herein, we detail the main structural and photophysical requirements to develop efficient and stable multichromophores. As a proof of concept, we showcase multichromophoric dyes based on rhodamine, perylene red and BODIPY and describe their photonic performance applied as lasers and sensors.; Gizakiok, maiz, naturan inspiratzen gara garapen teknologikoa bultzatzeko. Bada, fotosin-tesia horren adibide argia da. Prozesu natural horretan, eguzki-argia kromoforo naturalen bidez xurgatzen da, eta gaur egun antena-sistema natural hori modu eraginkorrean imitatzeko azterlan ugari egiten ari dira, koloratzaile organiko berrien diseinuan oinarrituta. Hala ere, molekula sinpleak direnez, zenbait muga izaten dituzte; adibidez, zailtasunak dituzte espektro elektromagnetiko osoan argia xurgatzeko, argi-energia garraiatzeko eta erradiazio jarraituaren pean luze irauteko. Hala, hainbat kromoforoz osatutako koloratzaileak, multikromoforo deritzenak, irtenbide aproposa dira. Molekula-egitura horietan, kromoforo edo koloratzaile ezberdinak modu kobalentean konbinatzen dira eta energia-trukea sustatzen da. Hortaz, antena naturalak imitatzeko funtsezkoa den prozesua lortzen da eta argiaren xurgapen zabala eta eraginkorra bermatzen da. Hori dela eta, koloratzaileen kimikan, multikromoforoak etorkizuneko sistema fotoaktibotzat hartzen dira antena artifizialak garatzeko eta gailu optiko eta fotovoltaikoetan aplikatzeko. Argitalpen honetan, beraz, antena eraginkor eta egonkorrak garatzeko ezinbestekoak diren irizpide molekularrak eta fotofisikoak zehazten dira. Adibide gisa, errodaminan, perileno gorrian eta BODIPYan oinarritutako koloratzaile multikromoforikoak aurkezten dira, eta horien portaera fotonikoa deskribatzen da laser eta sentsore bezala erabiltzeko

    Tailoring the Photophysical Signatures of BODIPY Dyes: Toward Fluorescence Standards across the Visible Spectral Region

    Get PDF
    The modern synthetic routes in organic chemistry, as well as the recent advances in high-resolution spectroscopic and microscopic techniques, have awakened a renewable interest in the development of organic fluorophores. In this regard, boron-dipyrrin (BODIPY) dyes are ranked at the top position as luminophores to be applied in photonics or biophotonics. This chromophore outstands not only by its excellent and tunable photophysical signatures, but also by the chemical versatility of its core, which is readily available to a myriad of functionalization routes. In this chapter, we show that, after a rational design, bright and photostable BODIPYs can be achieved along the whole visible spectral region, being suitable as molecular probes or active media of lasers. Alternatively, the selective functionalization of the dipyrrin core, mainly at meso position, can induce new photophysical phenomena (such as charge transfer) paving the way to the development of fluorescent sensors, where the fluorescent response is sensitive to a specific environmental property

    4,4′-Dicyano- versus 4,4′-Difluoro-BODIPYs in Chemoselective Postfunctionalization Reactions: Synthetic Advantages and Applications

    Get PDF
    The presence of F or CN substituents at boron in BODIPYs causes a dramatic effect on their reactivity, which allows their chemoselective postfunctionalization. Thus, whereas 1,3,5,7-tetramethyl B(CN)2-BODIPYs displayed enhanced reactivity in Knoevenagel condensations with aldehydes, the corresponding BF2-BODIPYs can experience selective aromatic electrophilic substitution (SEAr) reactions in the presence of the former. These (selective) reactions have been employed in the preparation of BODIPY dimers and tetramers, with balanced fluorescence and singlet oxygen formation, and all-BODIPY trimers and heptamers, with potential application as light-harvesting systems.The authors gratefully acknowledge Spanish Ministerio de Ciencia e Innovación (MCIN)/Agencia Estatal de Investigación (AEI) Grant PID2021-122504NB-I00 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe and Grants PID2020-114755GB-C31 and -C33 funded by MCIN/AEI. The authors thank the Gobierno Vasco (Project IT1639-22) for financial support. The authors are indebted to Ms. Marina Rodríguez (IQOG-CSIC) for skillful technical support

    A BODIPY-Based Fluorescent Sensor for Amino Acids Bearing Thiol

    Get PDF
    Herein, we describe the synthetic route to access a red-emitting BODIPY from its α-diformylated precursor. The photophysical signatures of this dye are sensitive to the presence of thiol-containing amino acids (like cysteine, homocysteine, and glutathione) in the surrounding environment. This sensor provides up to three detection channels to monitor and quantify these biomolecules, even at low concentrations (down to micromolar). Moreover, owing to the pronounced splitting of the spectral band profile induced by these amino acids, the detection can be visualized following just the evolution of the fluorescence color by the naked eye
    corecore