16 research outputs found

    C–H Activation on an Oxo-Bridged Dititanium Complex: From Alkyl to μ‑Alkylidene Functionalities

    No full text
    Thermal treatment of the dinuclear compound [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>}<sub>2</sub>­(μ-O)] (<b>1</b>) provides the formation of the metallacycle derivatives [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)­(CH<sub>2</sub>­SiMe<sub>3</sub>)<sub>2</sub>­(μ-O)] (<b>2</b>) and [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>­(μ-O)] (<b>3</b>) and the μ-alkylidene complex [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)­(μ-CHSiMe<sub>3</sub>)­(μ-O)] (<b>4</b>) by sequential carbon–hydrogen activation processes. The reaction of <b>3</b> with <i>tert</i>-butylisocyanide, in 1:1 and 1:2 ratios, leads to the η<sup>2</sup>-iminoacyl complexes [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-<i>t</i>BuNC­CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)­(μ-CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)­(μ-O)] (<b>5</b>) and [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-<i>t</i>BuNC­CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>­(μ-O)] (<b>6</b>), respectively. The molecular structures of complexes <b>3</b>, <b>4</b>, <b>5</b>, and <b>6</b> have been determined by single-crystal X-ray diffraction analyses

    C–H Activation on an Oxo-Bridged Dititanium Complex: From Alkyl to μ‑Alkylidene Functionalities

    No full text
    Thermal treatment of the dinuclear compound [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>}<sub>2</sub>­(μ-O)] (<b>1</b>) provides the formation of the metallacycle derivatives [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)­(CH<sub>2</sub>­SiMe<sub>3</sub>)<sub>2</sub>­(μ-O)] (<b>2</b>) and [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>­(μ-O)] (<b>3</b>) and the μ-alkylidene complex [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)­(μ-CHSiMe<sub>3</sub>)­(μ-O)] (<b>4</b>) by sequential carbon–hydrogen activation processes. The reaction of <b>3</b> with <i>tert</i>-butylisocyanide, in 1:1 and 1:2 ratios, leads to the η<sup>2</sup>-iminoacyl complexes [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-<i>t</i>BuNC­CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)­(μ-CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)­(μ-O)] (<b>5</b>) and [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-<i>t</i>BuNC­CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>­(μ-O)] (<b>6</b>), respectively. The molecular structures of complexes <b>3</b>, <b>4</b>, <b>5</b>, and <b>6</b> have been determined by single-crystal X-ray diffraction analyses

    An Effective Route to Dinuclear Niobium and Tantalum Imido Complexes

    No full text
    Thermal treatment of the trichloro complexes [MCl<sub>3</sub>(NR)­py<sub>2</sub>] (R = <i>t</i>Bu, Xyl; M = Nb, Ta) (Xyl = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) under vacuum affords the dinuclear imido species [MCl<sub>2</sub>(μ-Cl)­(NR)­py]<sub>2</sub> (R = <i>t</i>Bu, Xyl; M = Nb <b>1</b>, <b>3</b>; Ta <b>2</b>, <b>4</b>) with loss of pyridine. Complexes <b>1</b>–<b>4</b> can be easily transformed to the mononuclear starting materials [MCl<sub>3</sub>(NR)­py<sub>2</sub>] (R = <i>t</i>Bu, Xyl; M = Nb, Ta) upon reaction with pyridine. While reactions of compounds <b>1</b> and <b>2</b> with a series of alkylating reagents render the mononuclear peralkylated imido complexes [MR<sub>3</sub>(N<i>t</i>Bu)] (R = Me, CH<sub>2</sub>Ph, CH<sub>2</sub>CMe<sub>3</sub>, CH<sub>2</sub>CMePh, CH<sub>2</sub>SiMe<sub>3</sub>), the analogous treatment with allylmagnesium chloride results in the formation of the dinuclear niobium­(IV) derivative [(N<i>t</i>Bu)­(η<sup>3</sup>-C<sub>3</sub>H<sub>5</sub>)­M­(μ-C<sub>3</sub>H<sub>5</sub>)­(μ-Cl)<sub>2</sub>M­(N<i>t</i>Bu)­py<sub>2</sub>] (<b>5</b>). Additionally, the treatment of the starting materials <b>1</b> and <b>2</b> with the organosilicon reductant 1,4-bis­(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene yields the pyridyl-bridged dinuclear derivatives [M<sub>2</sub>Cl<sub>2</sub>(μ-Cl)<sub>2</sub>(N<i>t</i>Bu)<sub>2</sub>py<sub>2</sub>]<sub>2</sub>(μ-NC<sub>4</sub>H<sub>4</sub>N)<sub>2</sub> (M = Nb <b>6</b>, Ta <b>7</b>). Controlled hydrolysis reaction of <b>1</b> and <b>2</b> affords the oxo chlorido-bridged products [MCl­(μ-Cl)­(N<i>t</i>Bu)­py]<sub>2</sub>(μ-O) (M = Nb <b>8</b>, Ta <b>9</b>) in a quantitative way, while the treatment of these latter with one more equivalent of pyridine led to complexes [MCl<sub>2</sub>(N<i>t</i>Bu)­py<sub>2</sub>]<sub>2</sub>(μ-O) (M = Nb <b>10</b>, Ta <b>11</b>). Structural study of these dinuclear imido derivatives has been also performed by X-ray crystallography

    Systematic Approach for the Construction of Niobium and Tantalum Sulfide Clusters

    No full text
    Treatment of the imido complexes [MCl<sub>3</sub>(NR)­py<sub>2</sub>] (R = <sup><i>t</i></sup>Bu, 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>; M = Nb <b>1</b>, <b>3</b>; Ta <b>2</b>, <b>4</b>) (Xyl = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) with (Me<sub>3</sub>Si)<sub>2</sub>S in a 1:1 ratio afforded the new cube-type sulfide clusters [MCl­(NR)­py­(μ<sub>3</sub>-S)]<sub>4</sub> (R = <sup><i>t</i></sup>Bu, 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>; M = Nb <b>5</b>, <b>7</b>; Ta <b>6</b>, <b>8</b>) with loss of Me<sub>3</sub>SiCl. Reactions of <b>5</b> and <b>6</b> with cyclopentadienyllithium in 1:4 ratio resulted in the rupture of the coordinative M–S bonds and the replacement of a pyridine molecule and a chlorine atom by an η<sup>5</sup>-cyclopentadienyl group in each metal center, affording the compounds [M­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(N<sup><i>t</i></sup>Bu)­(μ-S)]<sub>4</sub> (M = Nb <b>9</b>, Ta <b>10</b>). These processes may develop through formation of the complexes [M<sub>4</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>(μ-Cl)­(N<sup><i>t</i></sup>Bu)<sub>4</sub>py<sub>2</sub>(μ<sub>3</sub>-S)<sub>2</sub>­(μ-S)<sub>2</sub>]­(C<sub>5</sub>H<sub>5</sub>) (M = Nb <b>11</b>, Ta <b>12</b>), also obtained by reaction of <b>5</b> and <b>6</b> with cyclopentadienyllithium in 1:3 ratio. As further evidence, <b>11</b> and <b>12</b> led to complexes <b>9</b> and <b>10</b> by treatment with one more equivalent of the lithium reagent. The structural study of these metal sulfide clusters has been also performed by X-ray crystallography

    Reactivity of Tuck-over Titanium Oxo Complexes with Isocyanides

    Get PDF
    The reactivity of the “tuck-over” species [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(CH<sub>2</sub>Ph)<sub>3</sub>­(μ-η<sup>5</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>-κ<i>C</i>)­(μ-O)] (<b>1</b>) and [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(CH<sub>2</sub>CMe<sub>3</sub>)­(μ-η<sup>5</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>-κ<i>C</i>)­(μ-CH<sub>2</sub>CMe<sub>2</sub>CH<sub>2</sub>)­(μ-O)] (<b>2</b>) toward isocyanides has been examined both synthetically and theoretically. Treatment of <b>1</b> with the isocyanides RNC, R = Me<sub>3</sub>SiCH<sub>2</sub>, 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>, <i>t</i>Bu, <i>i</i>Pr, leads to a series of η<sup>2</sup>-iminoacyl species (<b>3</b>–<b>6</b>) where the molecule of isocyanide inserts into one of the terminal metal–alkyl bonds. The analogous reaction of the “tuck-over” metallacycle species <b>2</b> with 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NC and <i>t</i>BuNC results in the initial insertion of one isocyanide into the terminal Ti–alkyl bond to form the iminoacyl complexes <b>7</b> and <b>8</b>, followed by a second insertion into the metallacycle moiety to generate <b>9</b>, in the case of <i>tert</i>-butylisocyanide. DFT calculations support the selective reactivity observed experimentally with a kinetic and thermodynamic preference for RNC insertion on the terminal alkyl groups bound to both metallic centers over the alternative insertion on the “tuck-over” ligand

    Co-complexation of Lithium Gallates on the Titanium Molecular Oxide {[Ti(η<sup>5</sup>‑C<sub>5</sub>Me<sub>5</sub>)(μ-O)}<sub>3</sub>(μ<sub>3</sub>‑CH)]

    No full text
    Amide and lithium aryloxide gallates [Li<sup>+</sup>{RGaPh<sub>3</sub>}<sup>−</sup>] (R = NMe<sub>2</sub>, O-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) react with the μ<sub>3</sub>-alkylidyne oxoderivative ligand [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(μ-O)}<sub>3</sub>(μ<sub>3</sub>-CH)] (<b>1</b>) to afford the gallium–lithium–titanium cubane complexes [{Ph<sub>3</sub>Ga­(μ-R)­Li}­{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(μ-O)}<sub>3</sub>(μ<sub>3</sub>-CH)] [R = NMe<sub>2</sub> (<b>3</b>), O-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>4</b>)]. The same complexes can be obtained by treatment of the [Ph<sub>3</sub>Ga­(μ<sub>3</sub>-O)<sub>3</sub>{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)}<sub>3</sub>(μ<sub>3</sub>-CH)] (<b>2</b>) adduct with the corresponding lithium amide or aryloxide, respectively. Complex <b>3</b> evolves with formation of <b>5</b> as a solvent-separated ion pair constituted by the lithium dicubane cationic species [Li­{(μ<sub>3</sub>-O)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-CH)}<sub>2</sub>]<sup>+</sup> together with the anionic [(GaPh<sub>3</sub>)<sub>2</sub>(μ-NMe<sub>2</sub>)]<sup>−</sup> unit. On the other hand, the reaction of <b>1</b> with Li­(<i>p</i>-MeC<sub>6</sub>H<sub>4</sub>) and GaPh<sub>3</sub> leads to the complex [Li­{(μ<sub>3</sub>-O)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-CH)}<sub>2</sub>]­[GaLi­(<i>p</i>-MeC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>Ph<sub>3</sub>] (<b>6</b>). X-ray diffraction studies were performed on <b>1</b>, <b>2</b>, <b>4</b>, and <b>5</b>, while trials to obtain crystals of <b>6</b> led to characterization of [Li­{(μ<sub>3</sub>-O)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-CH)}<sub>2</sub>]­[PhLi­(μ-C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>Ga­(<i>p</i>-MeC<sub>6</sub>H<sub>4</sub>)­Ph] <b>6a</b>

    Reactivity of Tuck-over Titanium Oxo Complexes with Isocyanides

    No full text
    The reactivity of the “tuck-over” species [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(CH<sub>2</sub>Ph)<sub>3</sub>­(μ-η<sup>5</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>-κ<i>C</i>)­(μ-O)] (<b>1</b>) and [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(CH<sub>2</sub>CMe<sub>3</sub>)­(μ-η<sup>5</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>-κ<i>C</i>)­(μ-CH<sub>2</sub>CMe<sub>2</sub>CH<sub>2</sub>)­(μ-O)] (<b>2</b>) toward isocyanides has been examined both synthetically and theoretically. Treatment of <b>1</b> with the isocyanides RNC, R = Me<sub>3</sub>SiCH<sub>2</sub>, 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>, <i>t</i>Bu, <i>i</i>Pr, leads to a series of η<sup>2</sup>-iminoacyl species (<b>3</b>–<b>6</b>) where the molecule of isocyanide inserts into one of the terminal metal–alkyl bonds. The analogous reaction of the “tuck-over” metallacycle species <b>2</b> with 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NC and <i>t</i>BuNC results in the initial insertion of one isocyanide into the terminal Ti–alkyl bond to form the iminoacyl complexes <b>7</b> and <b>8</b>, followed by a second insertion into the metallacycle moiety to generate <b>9</b>, in the case of <i>tert</i>-butylisocyanide. DFT calculations support the selective reactivity observed experimentally with a kinetic and thermodynamic preference for RNC insertion on the terminal alkyl groups bound to both metallic centers over the alternative insertion on the “tuck-over” ligand

    Carbon–Nitrogen Bond Construction and Carbon–Oxygen Double Bond Cleavage on a Molecular Titanium Oxonitride: A Combined Experimental and Computational Study

    No full text
    New carbon–nitrogen bonds were formed on addition of isocyanide and ketone reagents to the oxonitride species [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(μ-O)}<sub>3</sub>(μ<sub>3</sub>-N)] (<b>1</b>). Reaction of <b>1</b> with XylNC (Xyl = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) in a 1:3 molar ratio at room temperature leads to compound [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(μ-O)}<sub>3</sub>­(μ-XylNCCNXyl)­(NCNXyl)] (<b>2</b>), after the addition of the nitrido group to one coordinated isocyanide and the carbon–carbon coupling of the other two isocyanide molecules have taken place. Thermolysis of <b>2</b> gives [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(μ-O)}<sub>3</sub>­(XylNCNXyl)­(CN)] (<b>3</b>) where the heterocumulene [XylNCCNXyl] moiety and the carbodiimido [NCNXyl] fragment in <b>2</b> have undergone net transformations. Similarly, <i>tert</i>-butyl isocyanide (<i>t</i>BuNC) reacts with the starting material <b>1</b> under mild conditions to give the paramagnetic derivative [{Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>­(μ-O)<sub>3</sub>­(NCN<i>t</i>Bu)}<sub>2</sub>­(μ-CN)<sub>2</sub>] (<b>4</b>). However, compound <b>1</b> provides the oxo ketimide derivatives [{Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>­(μ-O)<sub>4</sub>}­(NCRPh)] [R = Ph (<b>5</b>), <i>p</i>-Me­(C<sub>6</sub>H<sub>4</sub>) (<b>6</b>), <i>o</i>-Me­(C<sub>6</sub>H<sub>4</sub>) (<b>7</b>)] upon reaction with benzophenone, <i>p</i>-methylbenzophenone, and <i>o</i>-methylbenzophenone, respectively. In these reactions, the carbon–oxygen double bond is completely ruptured, leading to the formation of a carbon–nitrogen and two metal–oxygen bonds. The molecular structures of complexes <b>2</b>–<b>4</b>, <b>6</b>, and <b>7</b> were determined by single-crystal X-ray diffraction analyses. Density functional theory calculations were performed on the incorporation of isocyanides and ketones to the model complex [{Ti­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(μ-O)}<sub>3</sub>­(μ<sub>3</sub>-N)] (<b>1H</b>). The mechanism involves the coordination of the substrates to one of the titanium metal centers, followed by an isomerization to place those substrates cis with respect to the apical nitrogen of <b>1H</b>, where carbon–nitrogen bond formation occurs with a low-energy barrier. In the case of aryl isocyanides, the resulting complex incorporates additional isocyanide molecules leading to a carbon–carbon coupling. With ketones, the high oxophilicity of titanium promotes the unusual total cleavage of the carbon–oxygen double bond

    Ultrafast Dynamics of Nile Red Interacting with Metal Doped Mesoporous Materials

    No full text
    We report on ultrafast studies of Nile Red (NR) interacting with MCM41 mesoporous materials doped by Al, Ga, Zr, and Ti in dichloromethane suspensions. The steady-state results showed a significant red shift and broadening of the diffuse transmittance and the emission spectra upon interaction with the MCM41-based materials. These findings are explained in terms of H-bonds with the host, different Brønsted/Lewis interactions with the matrix and formation of H- and J-aggregates, in addition to weakly and strongly adsorbed monomers. The pico- to nanosecond time-resolved data support this explanation, showing a significant shortening in the emission lifetimes where NR is interacting with metal-doped MCM41. The femtosecond dynamics of NR loaded into X-MCM41 (X = Si, Al, Ga) indicate that the charge-separated state (CS) is formed at the S<sub>1</sub> state in ∼350 fs. For Zr- and Ti- MCM41 hosts the intramolecular charge transfer (ICT) occurs in less than 200 fs, and a subsequent electron injection to Ti or Zr trap states happens in ∼250 fs. Our studies reveal a strong interaction between the NR species and the framework of MCM41 materials at both the S<sub>0</sub> and S<sub>1</sub> states
    corecore