64 research outputs found

    Cosmological perturbations and the reionization epoch

    Get PDF
    We investigate the dependence of the epoch of reionization on the properties of cosmological perturbations, in the context of cosmologies permitted by WMAP. We compute the redshift of reionization using a simple model based on the Press-Schechter approximation. For a power-law initial spectrum we estimate that reionization is likely to occur at a redshift zreion=17−7+10z_{reion} = 17^{+10}_{-7}, consistent with the WMAP determination based on the temperature-polarization cross power spectrum. We estimate the delay in reionization if there is a negative running of the spectral index, as weakly indicated by WMAP. We then investigate the dependence of the reionization redshift on the nature of the initial perturbations. We consider chi-squared probability distribution functions with various degrees of freedom, motivated both by non-standard inflationary scenarios and by defect models. We find that in these models reionization is likely occur much earlier, and to be a slower process, than in the case of initial gaussian fluctuations. We also consider a hybrid model in which cosmic strings make an important contribution to the seed fluctuations on scales relevant for reionization. We find that in order for that model to agree with the latest WMAP results, the string contribution to the matter power spectrum on the standard 8h−1Mpc8 h^{-1} Mpc scale is likely to be at most at the level of one percent, which imposes tight constraints on the value of the string mass per unit length.Comment: 6 pages LaTeX file with 3 figures incorporate

    Cosmic reionization constraints on the nature of cosmological perturbations

    Get PDF
    We study the reionization history of the Universe in cosmological models with non-Gaussian density fluctuations, taking them to have a renormalized χ2\chi^2 probability distribution function parametrized by the number of degrees of freedom, ν\nu. We compute the ionization history using a simple semi-analytical model, considering various possibilities for the astrophysics of reionization. In all our models we require that reionization is completed prior to z=6z=6, as required by the measurement of the Gunn--Peterson optical depth from the spectra of high-redshift quasars. We confirm previous results demonstrating that such a non-Gaussian distribution leads to a slower reionization as compared to the Gaussian case. We further show that the recent WMAP three-year measurement of the optical depth due to electron scattering, τ=0.09±0.03\tau=0.09 \pm 0.03, weakly constrains the allowed deviations from Gaussianity on the small scales relevant to reionization if a constant spectral index is assumed. We also confirm the need for a significant suppression of star formation in mini-halos, which increases dramatically as we decrease ν\nu

    Cosmic strings, loops, and linear growth of matter perturbations

    Get PDF
    We describe the detailed study and results of high-resolution numerical simulations of string-induced structure formation in open universes and those with a non-zero cosmological constant. The effect from small loops generated from the string network has also been investigated. We provide a semi-analytical model which can reproduce these simulation results. A detailed study of cosmic string network properties regarding structure formation is also given, including the correlation time, the topological analysis of the source spectrum, the correlation between long strings and loops, and the evolution of long-string and loop energy densities. For models with Γ=Ωh=0.1−−0.2andacolddarkmatterbackground,weshowthatthelineardensityfluctuationpowerspectruminducedbycosmicstringshasbothanamplitudeat\Gamma=\Omega h=0.1--0.2 and a cold dark matter background, we show that the linear density fluctuation power spectrum induced by cosmic strings has both an amplitude at 8 h^{-1}Mpc,Mpc, \sigma_8$, and an overall shape which are consistent within uncertainties with those currently inferred from galaxy surveys. The cosmic string scenario with hot dark matter requires a strongly scale-dependent bias in order to agree with observations.Comment: 60 pages, 24 figure

    From Solar-like to Mira stars:a unifying description of stellar pulsators in the presence of stochastic noise

    Get PDF
    We discuss and characterise the power spectral density properties of a model aimed at describing pulsations in stars from the main-sequence to the asymptotic giant branch. We show that the predicted limit of the power spectral density for a pulsation mode in the presence of stochastic noise is always well approximated by a Lorentzian function. While in stars predominantly stochastically driven the width of the Lorentzian is defined by the mode lifetime, in stars where the driving is predominately coherent the width is defined by the amplitude of the stochastic perturbations. In stars where both drivings are comparable, the width is defined by both these parameters and is smaller than that expected from pure stochastic driving. We illustrate our model through numerical simulations and propose a well defined classification of stars into predominantly stochastic (solar-like) and predominately coherent (classic) pulsators. We apply the model to the study of the Mira variable U Per, and the semiregular variable L2 Pup and, following our classification, conclude that they are both classical pulsators. Our model provides a natural explanation for the change in behaviour of the pulsation amplitude-period relation noted in several earlier works. Moreover, our study of L2 Pup enables us to test the scaling relation between the mode line width and effective temperature, confirming that an exponential scaling reproduces well the data all the way from the main sequence to the asymptotic giant branch, down to temperatures about 1000 K below what has been tested in previous studies.Comment: 11 pages, 8 figures, accepted for publication in MNRA

    The influence of metallicity on stellar differential rotation and magnetic activity

    Get PDF
    Observations of Sun-like stars over the last half-century have improved our understanding of how magnetic dynamos, like that responsible for the 11-year solar cycle, change with rotation, mass and age. Here we show for the first time how metallicity can affect a stellar dynamo. Using the most complete set of observations of a stellar cycle ever obtained for a Sun-like star, we show how the solar analog HD 173701 exhibits solar-like differential rotation and a 7.4-year activity cycle. While the duration of the cycle is comparable to that generated by the solar dynamo, the amplitude of the brightness variability is substantially stronger. The only significant difference between HD 173701 and the Sun is its metallicity, which is twice the solar value. Therefore, this provides a unique opportunity to study the effect of the higher metallicity on the dynamo acting in this star and to obtain a comprehensive understanding of the physical mechanisms responsible for the observed photometric variability. The observations can be explained by the higher metallicity of the star, which is predicted to foster a deeper outer convection zone and a higher facular contrast, resulting in stronger variability.Comment: Submitted to Ap
    • …
    corecore