36 research outputs found

    Tidal modelling with Thetis: preliminary English Channel benchmarking

    Get PDF
    This report describes the application and benchmarking of the Thetis coastal ocean model for tidal modelling, and makes use of a test case based upon the English Channel. Comparisons are made between model predictions and tide gauge data at a number of locations across the English Channel. A preliminary investigation of the impact of mesh resolution and bathymetry data is given. A demonstration is also provided of Thetis’s ability to use adjoint technology to optimise model predictions through the assimilation of observational data. In the example presented here the bottom friction field is optimised to provide an improved match between the model results and tide gauge data. This adjoint based optimisation capability may also be used to optimise the location, size and design of tidal power generation schemes

    Shoreline and Bathymetry Approximation in Mesh Generation for Tidal Renewable Simulations

    Get PDF
    Due to the fractal nature of the domain geometry in geophysical flow simulations, a completely accurate description of the domain in terms of a computational mesh is frequently deemed infeasible. Shoreline and bathymetry simplification methods are used to remove small scale details in the geometry, particularly in areas away from the region of interest. To that end, a novel method for shoreline and bathymetry simplification is presented. Existing shoreline simplification methods typically remove points if the resultant geometry satisfies particular geometric criteria. Bathymetry is usually simplified using traditional filtering techniques, that remove unwanted Fourier modes. Principal Component Analysis (PCA) has been used in other fields to isolate small-scale structures from larger scale coherent features in a robust way, underpinned by a rigorous but simple mathematical framework. Here we present a method based on principal component analysis aimed towards simplification of shorelines and bathymetry. We present the algorithm in detail and show simplified shorelines and bathymetry in the wider region around the North Sea. Finally, the methods are used in the context of unstructured mesh generation aimed at tidal resource assessment simulations in the coastal regions around the UK

    Tidal dynamics and mangrove carbon sequestration during the Oligo–Miocene in the South China Sea

    Get PDF
    Modern mangroves are among the most carbon-rich biomes on Earth, but their long-term (≥106 yr) impact on the global carbon cycle is unknown. The extent, productivity and preservation of mangroves are controlled by the interplay of tectonics, global sea level and sedimentation, including tide, wave and fluvial processes. The impact of these processes on mangrove-bearing successions in the Oligo–Miocene of the South China Sea (SCS) is evaluated herein. Palaeogeographic reconstructions, palaeotidal modelling, and facies analysis suggest that elevated tidal range and bed shear stress optimised mangrove development along tide-influenced tropical coastlines. Preservation of mangrove organic carbon (OC) was promoted by high tectonic subsidence and fluvial sediment supply. Lithospheric storage of OC in peripheral SCS basins potentially exceeded 4000 Gt (equivalent to 2000 ppm of atmospheric CO2). These results highlight the crucial impact of tectonic and oceanographic processes on mangrove OC sequestration within the global carbon cycle on geological timescales

    Tidal dynamics and mangrove carbon sequestration during the Oligo-Miocene in the South China Sea

    Get PDF
    Modern mangroves are among the most carbon-rich biomes on Earth, but their long-term (≥10 6 years) impact on the global carbon cycle is unknown. The extent, productivity and preservation of mangroves are controlled by the interplay of tectonics, global sea level and sedimentation, including tide, wave and fluvial processes. The impact of these processes on mangrove-bearing successions in the Oligo-Miocene of the South China Sea (SCS) is evaluated herein. Palaeogeographic reconstructions, palaeotidal modelling and facies analysis suggest that elevated tidal range and bed shear stress optimized mangrove development along tide-influenced tropical coastlines. Preservation of mangrove organic carbon (OC) was promoted by high tectonic subsidence and fluvial sediment supply. Lithospheric storage of OC in peripheral SCS basins potentially exceeded 4,000 Gt (equivalent to 2,000 p.p.m. of atmospheric CO2). These results highlight the crucial impact of tectonic and oceanographic processes on mangrove OC sequestration within the global carbon cycle on geological timescales

    Tidal resource extraction in the Pentland Firth, UK : Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma

    Get PDF
    Large-scale extraction of power from tidal streams within the Pentland Firth is expected to be underway in the near future. The Inner Sound of Stroma in particular has attracted significant commercial interest. To understand potential environmental impacts of the installation of a tidal turbine array a case study based upon the Inner Sound is considered. A numerical computational fluid dynamics model, Fluidity, is used to conduct a series of depth-averaged simulations to investigate velocity and bed shear stress changes due to the presence of idealised tidal turbine arrays. The number of turbines is increased from zero to 400. It is found that arrays in excess of 85 turbines have the potential to affect bed shear stress distributions in such a way that the most favourable sites for sediment accumulation migrate from the edges of the Inner Sound towards its centre. Deposits of fine gravel and coarse sand are indicated to occur within arrays of greater than 240 turbines with removal of existing deposits in the shallower channel margins also possible. The effects of the turbine array may be seen several kilometres from the site which has implications not only on sediment accumulation, but also on the benthic fauna

    Unstructured triangular mesh around Orkney and Shetland Islands for hydrodynamic simulations.

    No full text
    Unstructured triangular mesh around Orkney and Shetland Islands for hydrodynamic simulations. Mesh constructed with qmesh (www.qmesh.org), using input files at 10.6084/m9.figshare.4519067.v1Unstructured triangular mesh around Orkney and Shetland Islands for hydrodynamic simulations. Mesh constructed with qmesh (www.qmesh.org), using input files at 10.6084/m9.figshare.4519067.v
    corecore