368 research outputs found

    Jejunum free flap in hypopharynx reconstruction: Case series

    Get PDF
    BACKGROUND: Surgical treatment of hypopharyngeal cancers with extension to the retrocricoid region generally requires a circumferential pharyngolaryngectomy followed by a reconstruction of the removed segment of the upper digestive tract. Historically, many techniques have been used in order to achieve a safe and functional reconstruction. Jejunum interposition is generally considered the best reconstructive technique. METHODS: This study examines the details of the surgical technique, the complications, the oncological and the functional results in a series of 29 consecutive patients submitted to circumferential pharyngoesophageal resection for advanced hypopharyngeal cancer followed by reconstruction with a free flap of jejunum. RESULTS: Three of the transplants failed because of venous thrombosis. The overall success rate was 90%. There were no general complications. A good swallowing has been preserved in all our patients. All our patients where a phonatory prosthesis was positioned (20/29) were able to achieve speech following speech therapy and all were satisfied with their own capacity to communicate. CONCLUSIONS: The prognosis of hypopharyngeal tumours (18–40% at 5 years) remains poor, but jejunum autografts are being shown to be an excellent choice for the reconstruction of the cervical hypopharyngo-oesophagus offering the patient fast rehabilitation and a reasonable quality of survival. Our experience confirm that this kind of reconstruction is safe with a good results in improving oncologic controls and restoring a good quality of life

    Magnetism and its microscopic origin in iron-based high-temperature superconductors

    Full text link
    High-temperature superconductivity in the iron-based materials emerges from, or sometimes coexists with, their metallic or insulating parent compound states. This is surprising since these undoped states display dramatically different antiferromagnetic (AF) spin arrangements and Neˊ\rm \acute{e}el temperatures. Although there is general consensus that magnetic interactions are important for superconductivity, much is still unknown concerning the microscopic origin of the magnetic states. In this review, progress in this area is summarized, focusing on recent experimental and theoretical results and discussing their microscopic implications. It is concluded that the parent compounds are in a state that is more complex than implied by a simple Fermi surface nesting scenario, and a dual description including both itinerant and localized degrees of freedom is needed to properly describe these fascinating materials.Comment: 14 pages, 4 figures, Review article, accepted for publication in Nature Physic

    Probing Specific Interaction Forces Between Human IgG and Rat Anti-Human IgG by Self-Assembled Monolayer and Atomic Force Microscopy

    Get PDF
    Interaction forces between biological molecules such as antigen and antibody play important roles in many biological processes, but probing these forces remains technically challenging. Here, we investigated the specific interaction and unbinding forces between human IgG and rat anti-human IgG using self assembled monolayer (SAM) method for sample preparation and atomic force microscopy (AFM) for interaction force measurement. The specific interaction force between human IgG and rat anti-human IgG was found to be 0.6–1.0 nN, and the force required for unbinding a single pair of human IgG and rat anti-human IgG was calculated to be 144 ± 11 pN. The results are consistent with those reported in the literatures. Therefore, SAM for sample preparation combined with AFM for interaction measurement is a relatively simple, sensitive and reliable technique to probe specific interactions between biological molecules such as antigen and antibody

    Antiferromagnetic spintronics

    Get PDF
    Antiferromagnetic materials are magnetic inside, however, the direction of their ordered microscopic moments alternates between individual atomic sites. The resulting zero net magnetic moment makes magnetism in antiferromagnets invisible on the outside. It also implies that if information was stored in antiferromagnetic moments it would be insensitive to disturbing external magnetic fields, and the antiferromagnetic element would not affect magnetically its neighbors no matter how densely the elements were arranged in a device. The intrinsic high frequencies of antiferromagnetic dynamics represent another property that makes antiferromagnets distinct from ferromagnets. The outstanding question is how to efficiently manipulate and detect the magnetic state of an antiferromagnet. In this article we give an overview of recent works addressing this question. We also review studies looking at merits of antiferromagnetic spintronics from a more general perspective of spin-ransport, magnetization dynamics, and materials research, and give a brief outlook of future research and applications of antiferromagnetic spintronics.Comment: 13 pages, 7 figure

    Gate-tunable giant nonreciprocal charge transport in noncentrosymmetric oxide interfaces

    Get PDF
    A polar conductor, where inversion symmetry is broken, may exhibit directional propagation of itinerant electrons, i.e., the rightward and leftward currents differ from each other, when time-reversal symmetry is also broken. This potential rectification effect was shown to be very weak due to the fact that the kinetic energy is much higher than the energies associated with symmetry breaking, producing weak perturbations. Here we demonstrate the appearance of giant nonreciprocal charge transport in the conductive oxide interface, LaAlO3/SrTiO3, where the electrons are confined to two-dimensions with low Fermi energy. In addition, the Rashba spin???orbit interaction correlated with the sub-band hierarchy of this system enables a strongly tunable nonreciprocal response by applying a gate voltage. The observed behavior of directional response in LaAlO3/SrTiO3 is associated with comparable energy scales among kinetic energy, spin???orbit interaction, and magnetic field, which inspires a promising route to enhance nonreciprocal response and its functionalities in spin orbitronics

    Future therapeutic targets in rheumatoid arthritis?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches

    Genetic diversity and host alternation of the egg parasitoid Oencyrtus pityocampae between the pine processionary moth and caper bug

    Get PDF
    Research ArticleThe increased use of molecular tools for species identification in recent decades revealed that each of many apparently generalist parasitoids are actually a complex of morphologically similar congeners, most of which have a rather narrow host range. Ooencyrtus pityocampae (OP), an important egg parasitoid of the pine processionary moth (PPM), is considered a generalist parasitoid. OP emerges from PPM eggs after winter hibernation, mainly in spring and early summer, long before the eggs of the next PPM generation occurs. The occurrence of OP in eggs of the variegated caper bug (CB) Stenozygum coloratum in spring and summer suggests that OP populations alternate seasonally between PPM and CB. However, the identity of OP population on CB eggs seemed uncertain; unlike OP-PPM populations, the former displayed apparently high male/female ratios and lack of attraction to the PPM sex pheromone. We studied the molecular identities of the two populations since the morphological identification of the genus Ooencyrtus, and OP in particular, is difficult. Sequencing of COI and ITS2 DNA fragments and AFLP analysis of individuals from both hosts revealed no apparent differences between the OP-PPM and the OP-CB populations for both the Israeli and the Turkish OPs, which therefore supported the possibility of host alternation. Sequencing data extended our knowledge of the genetic structure of OP populations in the Mediterranean area, and revealed clear separation between East and West Mediterranean populations. The overall level of genetic diversity was rather small, with the Israeli population much less diverse than all others; possible explanations for this finding are discussed. The findings support the possibility of utilizing the CB and other hosts for enhancing biological control of the PPMinfo:eu-repo/semantics/publishedVersio

    Use of complementary and alternative medicines by a sample of Turkish women for infertility enhancement: a descriptive study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infertility patients are a vulnerable group that often seeks a non-medical solution for their failure to conceive. World-wide, women use CAM for productive health, but only a limited number of studies report on CAM use to enhance fertility. Little is known about traditional and religious forms of therapies that are used in relation to conventional medicine in Turkey. We investigated the prevalence and types of complementary and alternative medicine (CAM) used by infertile Turkish women for fertility enhancement.</p> <p>Methods</p> <p>A face-to-face questionnaire inquiring demographic information and types of CAM used for fertility enhancement were completed by hundred infertility patients admitted to a primary care family planning centre in Van, Turkey between January and July 2009.</p> <p>Results</p> <p>The vast majority of infertile women had used CAM at least once for infertility. CAM use included religious interventions, herbal products and recommendations of traditional "hodja's" (faith healers). Of these women, 87.8% were abused in the last 12 months, 36.6% felt not being supported by her partner and 80.5% had never spoken with a physician about CAM.</p> <p>Conclusions</p> <p>Infertile Turkish women use complementary medicine frequently for fertility enhancement and are in need of information about CAM. Religious and traditional therapies are used as an adjunct to, rather than a substitute for, conventional medical therapy. Physicians need to approach fertility patients with sensitivity and should be able to council their patients about CAM accordingly.</p
    corecore