12 research outputs found
New methods for fully automated isotope ratio determination from hydrogen at the natural abundance level
Abstract A variety of methods for measurement of (2)H/(1)H from H(2) are evaluated for their ability to be fully automated and for applicability to automated isotopic analysis of water and organic compounds. Equilibration of water with H(2) gas with the aid of a platinum catalyst has been commercialized into a fully automated sample preparation device. A second and newer technique, involving injecting water, methane, or other volatile organic compounds onto hot chromium in a reactor attached to the dual inlet system of a gas isotope ratio mass spectrometer, can be integrated with a conventional GC-autosampler to allow automated analysis of a variety of substrates. Both techniques result in precisions around 1â° (ÎŽ notation) on the VSMOW scale, and are fast and accurate, and with appropriate mass spectrometers require only negligible scaling for the SLAP/VSMOW difference. Several experimental methods which show considerable promise employ "isotope ratio monitoring" (irm) inlet systems, in which a carrier gas is used for transport of H(2) to the mass spectrometer. Any such method has to address the problem of He ions corrupting the measurement of the H(2) ions. One such approach uses a heated palladium membrane for selective introduction of H(2) into the mass spectrometer, and a second involves modifications to the ion optics to control the stray helium ions. Both approaches have significant limitations that must be overcome before irm techniques can be used in routine applications, in particular for measuring hydrogen isotopes from GC effluents (irm-GCMS)
Synthesis and styrene copolymerization of novel octyl 2-cyano-3-phenyl-2- propenoates
Novel octyl 2-cyano-3-phenyl-2-propenoates, RPhCH=C(CN)CO2CH2(CH2)6CH3 (where R is 2-acetyl, 2,3,4-trimethoxy, 2,4,5-trimethoxy, 2,4,6-trifluoro, 3,4,5-trifluoro, 2,3,5,6-tetrafluoro, 2,3,4,5,6-pentafluoro, 3-bromo-4,5-dimethoxy, 5-bromo-2,3-dimethoxy, 3-chloro-2,6-difluoro) were prepared and copolymerized with styrene. The propenoates were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and octyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C NMR. The propenoates were copolymerized with styrene in solution with radical initiation (ABCN) at 70C. The compositions of the copolymers were calculated from nitrogen analysis
Synthesis and styrene copolymerization of novel trisubstituted ethylenes: 11. Acetyl, methoxy, and halogen ring-substituted octyl phenylcyanoacrylates
Novel trisubstituted ethylenes, acetyl, methoxy, and halogen ring-substituted octyl phenylcyanoacrylates, RPhCH=C(CN)CO2CH2(CH2)6CH3 (where R is 2-acetyl, 2,3,4-trimethoxy, 2,4,5-trimethoxy, 2,4,6-trifluoro, 3,4,5-trifluoro, 2,3,5,6-tetrafluoro, 2,3,4,5,6-pentafluoro, 3-bromo-4,5-dimethoxy, 5-bromo-2,3-dimethoxy, 3-chloro-2,6-difluoro) were prepared and copolymerized with styrene. The ethylenes were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and octyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C NMR. All the ethylenes were copolymerized with styrene in solution with radical initiation (ABCN) at 70C. The compositions of the copolymers were calculated from nitrogen analysis
Poly(A) binding protein (PABP) homeostasis is mediated by the stability of its inhibitor, Paip2
The poly(A)-binding protein (PABP) is a unique translation initiation factor in that it binds to the mRNA 3âČ poly(A) tail and stimulates recruitment of the ribosome to the mRNA at the 5âČ end. PABP activity is tightly controlled by the PABP-interacting protein 2 (Paip2), which inhibits translation by displacing PABP from the mRNA. Here, we describe a close interplay between PABP and Paip2 protein levels in the cell. We demonstrate a mechanism for this co-regulation that involves an E3 ubiquitin ligase, EDD, which targets Paip2 for degradation. PABP depletion by RNA interference (RNAi) causes co-depletion of Paip2 protein without affecting Paip2 mRNA levels. Upon PABP knockdown, Paip2 interacts with EDD, which leads to Paip2 ubiquitination. Supporting a critical role for EDD in Paip2 degradation, knockdown of EDD expression by siRNA leads to an increase in Paip2 protein stability. Thus, we demonstrate that the turnover of Paip2 in the cell is mediated by EDD and is regulated by PABP. This mechanism serves as a homeostatic feedback to control the activity of PABP in cells
Environmental Forcing of Nitrogen Fixation in the Eastern Tropical and Sub-Tropical North Atlantic Ocean
During the winter of 2006 we measured nifH gene abundances, dinitrogen (N2) fixation rates and carbon fixation rates in the eastern tropical and sub-tropical North Atlantic Ocean. The dominant diazotrophic phylotypes were filamentous cyanobacteria, which may include Trichodesmium and Katagnymene, with up to 106 L?1 nifH gene copies, unicellular group A cyanobacteria with up to 105 L?1 nifH gene copies and gamma A proteobacteria with up to 104 L?1 nifH gene copies. N2 fixation rates were low and ranged between 0.032â1.28 nmol N L?1 d?1 with a mean of 0.30±0.29 nmol N L?1 d?1 (1?, n = 65). CO2-fixation rates, representing primary production, appeared to be nitrogen limited as suggested by low dissolved inorganic nitrogen to phosphate ratios (DIN:DIP) of about 2±3.2 in surface waters. Nevertheless, N2 fixation rates contributed only 0.55±0.87% (range 0.03â5.24%) of the N required for primary production. Boosted regression trees analysis (BRT) showed that the distribution of the gamma A proteobacteria and filamentous cyanobacteria nifH genes was mainly predicted by the distribution of Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. In addition, BRT indicated that multiple a-biotic environmental variables including nutrients DIN, dissolved organic nitrogen (DON) and DIP, trace metals like dissolved aluminum (DAl), as a proxy of dust inputs, dissolved iron (DFe) and Fe-binding ligands as well as oxygen and temperature influenced N2 fixation rates and the distribution of the dominant diazotrophic phylotypes. Our results suggest that lower predicted oxygen concentrations and higher temperatures due to climate warming may increase N2 fixation rates. However, the balance between a decreased supply of DIP and DFe from deep waters as a result of more pronounced stratification and an enhanced supply of these nutrients with a predicted increase in deposition of Saharan dust may ultimately determine the consequences of climate warming for N2 fixation in the North Atlantic