653 research outputs found

    Dairy Ingredients for the Baking Industry.

    Get PDF
    End of Project ReportShortenings (baking fats), microencapsulated using dairy ingredients and milk protein hydrolysates, were produced for testing in a variety of baked products. The powders were evaluated for their functionality as powdered baking fats, as potential replacers of synthetic emulsifiers, as ingredients capable of improving baking performance or as potential health-enhancing ingredients. These studies provide the technology for the dairy industry to enter the specialised food ingredients sector with a siftable, non-greasy, free-flowing powdered fat for the baking industry.Department of Agriculture, Food and the Marin

    Dairy Ingredients for Chocolate and Confectionery Products.

    Get PDF
    End of Project ReportHigh free-fat, spray-dried powders were successfully produced at a lower fat content (40% rather than 56%) using ultrafiltration. Chocolates made from these powders had improved flow properties and superior quality. The stability, viscosity and firmness of toffees were improved by optimising the casein, whey protein and lactose levels of skim milk powders used in their manufacture.Department of Agriculture, Food and the Marin

    Bringing together emerging and endemic zoonoses surveillance: shared challenges and a common solution

    Get PDF
    Early detection of disease outbreaks in human and animal populations is crucial to the effective surveillance of emerging infectious diseases. However, there are marked geographical disparities in capacity for early detection of outbreaks, which limit the effectiveness of global surveillance strategies. Linking surveillance approaches for emerging and neglected endemic zoonoses, with a renewed focus on existing disease problems in developing countries, has the potential to overcome several limitations and to achieve additional health benefits. Poor reporting is a major constraint to the surveillance of both emerging and endemic zoonoses, and several important barriers to reporting can be identified: (i) a lack of tangible benefits when reports are made; (ii) a lack of capacity to enforce regulations; (iii) poor communication among communities, institutions and sectors; and (iv) complexities of the international regulatory environment. Redirecting surveillance efforts to focus on endemic zoonoses in developing countries offers a pragmatic approach that overcomes some of these barriers and provides support in regions where surveillance capacity is currently weakest. In addition, this approach addresses immediate health and development problems, and provides an equitable and sustainable mechanism for building the culture of surveillance and the core capacities that are needed for all zoonotic pathogens, including emerging disease threats

    Geostatistical models using remotely-sensed data predict savanna tsetse decline across the interface between protected and unprotected areas in Serengeti, Tanzania.

    Get PDF
    Monitoring abundance is essential for vector management, but it is often only possible in a fraction of managed areas. For vector control programs, sampling to estimate abundance is usually carried out at a local-scale (10s km2), while interventions often extend across 100s km2. Geostatistical models have been used to interpolate between points where data are available, but this still requires costly sampling across the entire area of interest. Instead, we used geostatistical models to predict local-scale spatial variation in the abundance of tsetse – vectors of human and animal African trypanosomes - beyond the spatial extent of data to which models were fitted, in Serengeti, Tanzania. 2. We sampled Glossina swynnertoni and G. pallidipes >10 km inside the Serengeti National Park (SNP) and along four transects extending into areas where humans and livestock live. We fitted geostatistical models to data >10 km inside the SNP to produce maps of abundance for the entire region, including unprotected areas. 3. Inside the SNP, the mean number of G. pallidipes caught per trap per day in dense woodland was 166 (± 24 SE), compared to 3 (± 1) in grassland. G. swynnertoni was more homogenous with respective means of 15 (± 3) and 15 (± 8). In general, models predicted a decline in abundance from protected to unprotected areas, related to anthropogenic changes to vegetation, which was confirmed during field survey. 5. Synthesis and applications. Our approach allows vector control managers to identify sites predicted to have relatively high tsetse abundance, and therefore to design and implement improved surveillance strategies. In East and Southern Africa, trypanosomiasis is associated with wilderness areas. Our study identified pockets of vegetation which could sustain tsetse populations in farming areas outside the Serengeti National Park. Our method will assist countries in identifying, monitoring and, if necessary, controlling tsetse in trypanosomiasis foci. This has specific application to tsetse, but the approach could also be developed for vectors of other pathogens. Accepted Article This article is protected by copyright. All rights reserved

    Application of Probiotic Bacteria to Functional Foods

    Get PDF
    End of Project ReportProbiotic cultures are described as live microbial feed supplements that improve intestinal microbial balance and are intended for maintenance of health or prevention, rather than the curing of disease. The demand for probiotic foods is increasing in Europe, Japan and the U.S. reflecting the heightened awareness among the public of the relationship between diet and health. Traditionally, the most popular food delivery systems for these cultures have been freshly fermented dairy foods, such as yogurts and fermented milks, as well as unfermented milks with cultures added. However, in the development of functional foods, the technological suitability of probiotic strains poses a serious challenge since their survival and viability may be adversely affected by processing conditions as well as by the product environment and storage conditions. This is a particular concern, given that high levels (at least 107 per gram or ml) of live micro-organisms are recommended for probiotic products. In previous studies (see DPRC No. 29) the successful manufacture of probiotic Cheddar cheese harbouring high levels (>108 cfu/g) of the probiotic Lactobacillus paracasei NFBC 338 strain was reported. Hence, the overall objective of these studies was to continue the development and evaluation of Functional Foods containing high levels of viable probiotic bacteria, with particular emphasis on overcoming the technological barriers and the identification of strains suited to particular applications, such as incorporation into Cheddar cheese and spray-dried powders.Department of Agriculture, Food and the Marin
    corecore