19 research outputs found

    The Importance of the Northeastern Gulf of Mexico to Foraging Loggerhead Sea Turtles

    Get PDF
    Identification of high-use foraging sites where imperiled sea turtles are resident remains a globally-recognized conservation priority. In the biodiverse Gulf of Mexico (GoM), recent telemetry studies highlighted post-nesting foraging sites for federally threatened loggerhead turtles (Caretta caretta). Our aim here was to discern loggerhead use of additional northern GoM regions that may serve as high-use foraging sites. Thus, we used satellite tracking and switching state-space modeling to show that the Big Bend region off the northwest Florida coast is a coastal foraging area that supports imperiled adult female loggerhead turtles tracked from different nesting subpopulations. From 2011 to 2016, we satellite-tagged 15 loggerheads that nested on four distinct beaches around the GoM: Dry Tortugas National Park, FL; Everglades National Park, FL; St. Joseph Peninsula, FL; and Gulf Shores, AL. Turtles arrived at their foraging ground in the Big Bend region between June and September and remained resident in their respective foraging sites for an average of 198 tracking days, where they established mean home ranges (95% kernel density estimate) 232.7 km2. Larger home ranges were in deeper water; 50% kernel density estimate centroid values were a mean 26.4 m deep and 52.7 km from shore. The Big Bend region provides a wide area of suitable year-round foraging habitat for loggerheads from at least 3 different nesting subpopulations. Understanding where and when threatened loggerheads forage and remain resident is key for designing both surveys of foraging resources and additional protection strategies that can impact population recovery trajectories for this imperiled species

    Marine Threats Overlap Key Foraging Habitat for Two Imperiled Sea Turtle Species in the Gulf of Mexico

    Get PDF
    Effective management of human activities affecting listed species requires understanding both threats and animal habitat-use patterns. However, the extent of spatial overlap between high-use foraging areas (where multiple marine species congregate) and anthropogenic threats is not well-known. Our modeling approach incorporates data on sea turtle spatial ecology and a suite of threats in the Gulf of Mexico to identify and map “hot spots” of threats to two imperiled turtle species. Of all 820 “high” threats grid cells, our tracked turtles foraged at least 1 day in 77% of them. Although threat data were not available outside the U.S. Exclusive Economic Zone, our map of turtle and threat “hot spots” can be incorporated in future more comprehensive threat analyses for the region. Knowledge of these shared foraging- and threat-areas can assist managers charged with designing effective conservation and population recovery strategies, in future habitat modeling efforts, and in designations of Gulf of Mexico habitat with high conservation value

    Winter GPS tagging reveals home ranges during the breeding season for a borealnesting migrant songbird, the Goldencrowned Sparrow

    Get PDF
    Determining space use for species is fundamental to understanding their ecology, and tracking animals can reveal insights into their spatial ecology on home ranges and territories. Recent technological advances have led to GPS-tracking devices light enough for birds as small as ~30 g, creating novel opportunities to remotely monitor fine-scale movements and space use for these smaller species. We tested whether miniaturized GPS tags can allow us to understand space use of migratory birds away from their capture sites and sought to understand both pre-breeding space use as well as territory and habitat use on the breeding grounds. We used GPS tags to characterize home ranges on the breeding grounds for a migratory songbird with limited available breeding information, the Golden-crowned Sparrow (Zonotrichia atricapilla). Using GPS points from 23 individuals across 26 tags (three birds tagged twice), we found home ranges in Alaska and British Columbia were on average 44.1 ha (95% kernel density estimate). In addition, estimates of territory sizes based on field observations (mean 2.1 ha, 95% minimum convex polygon [MCP]) were three times smaller than 95% MCPs created using GPS tags (mean 6.5 ha). Home ranges included a variety of land cover classes, with shrubland particularly dominant (64–100% of home range cover for all but one bird). Three birds tracked twice returned to the same breeding area each year, supporting high breeding site fidelity for this species. We found reverse spring migration for five birds that flew up to 154 km past breeding destinations before returning. GPS-tracking technology allowed for critical ecological insights into this migratory species that breeds in very remote locations

    Marine Threats Overlap Key Foraging Habitat for Two Imperiled Sea Turtle Species in the Gulf of Mexico

    Get PDF
    Effective management of human activities affecting listed species requires understanding both threats and animal habitat-use patterns. However, the extent of spatial overlap between high-use foraging areas (where multiple marine species congregate) and anthropogenic threats is not well-known. Our modeling approach incorporates data on sea turtle spatial ecology and a suite of threats in the Gulf of Mexico to identify and map “hot spots” of threats to two imperiled turtle species. Of all 820 “high” threats grid cells, our tracked turtles foraged at least 1 day in 77% of them. Although threat data were not available outside the U.S. Exclusive Economic Zone, our map of turtle and threat “hot spots” can be incorporated in future more comprehensive threat analyses for the region. Knowledge of these shared foraging- and threat-areas can assist managers charged with designing effective conservation and population recovery strategies, in future habitat modeling efforts, and in designations of Gulf of Mexico habitat with high conservation value

    Loggerhead sea turtle (Caretta caretta) diving changes with productivity, behavioral mode, and sea surface temperature.

    No full text
    The relationship between dive behavior and oceanographic conditions is not well understood for marine predators, especially sea turtles. We tagged loggerhead turtles (Caretta caretta) with satellite-linked depth loggers in the Gulf of Mexico, where there is a minimal amount of dive data for this species. We tested for associations between four measurements of dive behavior (total daily dive frequency, frequency of dives to the bottom, frequency of long dives and time-at-depth) and both oceanographic conditions (sea surface temperature [SST], net primary productivity [NPP]) and behavioral mode (inter-nesting, migration, or foraging). From 2011-2013 we obtained 26 tracks from 25 adult female loggerheads tagged after nesting in the Gulf of Mexico. All turtles remained in the Gulf of Mexico and spent about 10% of their time at the surface (10% during inter-nesting, 14% during migration, 9% during foraging). Mean total dive frequency was 41.9 times per day. Most dives were ≤ 25 m and between 30-40 min. During inter-nesting and foraging, turtles dived to the bottom 95% of days. SST was an important explanatory variable for all dive patterns; higher SST was associated with more dives per day, more long dives and more dives to the seafloor. Increases in NPP were associated with more long dives and more dives to the bottom, while lower NPP resulted in an increased frequency of overall diving. Longer dives occurred more frequently during migration and a higher proportion of dives reached the seafloor during foraging when SST and NPP were higher. Our study stresses the importance of the interplay between SST and foraging resources for influencing dive behavior

    Land cover and NDVI are important predictors in habitat selection along migration for the Golden-crowned Sparrow, a temperate-zone migrating songbird

    No full text
    Abstract Background Migrating passerines in North America have shown sharp declines. Understanding habitat selection and threats along migration paths are critical research needs, but details about migrations have been limited due to the difficulty of tracking small birds. Recent technological advances of tiny GPS-tags provide new opportunities to delineate fine-scale movements in small passerines during a life stage that has previously been inherently difficult to study. Methods We investigated habitat selection along migration routes for a temperate-zone migratory passerine, the Golden-crowned Sparrow (Zonotrichia atricapilla), given GPS tags on California wintering grounds. We used a resource selection function combined with conditional logistic regression to compare matched sets of known stopover locations and available but unused locations to determine how land cover class, vegetation greenness and climate variables influence habitat selection during migration. We also provide general migration descriptions for this understudied species including migration distance, duration, and elevation, and repeated use of stopover areas. Results We acquired 22 tracks across 19 individuals, with a total of 541 valid spring and fall migration locations. Birds traveled to breeding grounds in Alaska and British Columbia along coastal routes, selecting for shrubland and higher vegetation greenness in both migration seasons as well as grasslands during fall migration. However, model interactions showed they selected sites with lower levels of greenness when in forest (both seasons) and shrubland (fall only), which may reflect their preference for more open habitats or represent a trade-off in selection between habitat type and productivity. Birds also selected for locations with higher daily maximum temperature during spring migration. Routes during spring migration were lower in elevation on average, shorter in duration, and had fewer long stopovers than in fall migration. For two birds, we found repeated use of the same stopover areas in spring and fall migration. Conclusions Using miniaturized GPS, this study provides new insight into habitat selection along migration routes for a common temperate-zone migrating songbird, contributing to a better understanding of full annual cycle models, and informing conservation efforts. Golden-crowned Sparrows selected for specific habitats along migration routes, and we found previously unknown behaviors such as repeated use of the same stopover areas by individuals across different migratory seasons

    Marine Threats Overlap Key Foraging Habitat for Two Imperiled Sea Turtle Species in the Gulf of Mexico

    No full text
    Effective management of human activities affecting listed species requires understanding both threats and animal habitat-use patterns. However, the extent of spatial overlap between high-use foraging areas (where multiple marine species congregate) and anthropogenic threats is not well-known. Our modeling approach incorporates data on sea turtle spatial ecology and a suite of threats in the Gulf of Mexico to identify and map “hot spots” of threats to two imperiled turtle species. Of all 820 “high” threats grid cells, our tracked turtles foraged at least 1 day in 77% of them. Although threat data were not available outside the U.S. Exclusive Economic Zone, our map of turtle and threat “hot spots” can be incorporated in future more comprehensive threat analyses for the region. Knowledge of these shared foraging- and threat-areas can assist managers charged with designing effective conservation and population recovery strategies, in future habitat modeling efforts, and in designations of Gulf of Mexico habitat with high conservation value
    corecore