8 research outputs found

    The Hydrogenation Dynamics Of H-bn Sheets

    No full text
    Hexagonal boron nitride (h-BN), also known as white graphite, is the inorganic analogue of graphite. Single layers of both structures have been already experimentally realized. In this work we have investigated, through fully atomistic reactive molecular dynamics simulations, the dynamics of hydrogenation of h-BN single-layers membranes. Our results show that the rate of hydrogenation atoms bonded to the membrane is highly dependent on the temperature and that only at low temperatures there is a preferential bond to boron atoms. Unlike graphanes (hydrogenated graphene), hydrogenated h-BN membranes do not exhibit the formation of correlated domains. Also, the out-of-plane deformations are more pronounced in comparison with the graphene case. After a critical number of incorporated hydrogen atoms the membrane become increasingly defective, lost its two-dimensional character and collapses. The hydrogen radial pair distribution and second-nearest neighbor correlations were also analyzed. © 2013 Materials Research Society.15499198Novoselov, K.S., (2004) Science, 306, p. 666Cheng, S.H., (2010) Phys. Rev. B, 81, p. 205435Withers, F., Duboist, M., Savchenko, A.K., (2010) Phys. Rev. B, 82, p. 073403Sofo, J.O., Chaudari, A.S., Barber, G.D., (2007) Phys. Rev. B, 75, p. 153401Elias, D.C., (2009) Science, 323, p. 610Flores, M.Z.S., Autreto, P.A.S., Legoas, S.B., Galvao, D.S., (2009) Nanotechnology, 20, p. 465704Nair, R.R., (2010) Small, 6, p. 2773Paupitz, R., Autreto, P.A.S., Legoas, S.B., Srinivasan, S.G., Van Duin, A.C.T., Galvao, D.S., (2013) Nanotechnology, 24, p. 035706Jin, C., Lin, F., Suenaga, K., Lijima, S., (2009) Phys. Rev. Lett., 102, p. 19Meyer, J.C., Chuvulin, A., Algara-Siller, G., Biskupek, J., Kaiser, U., (2009) Nano Lett., 9, p. 2683Song, L., (2010) Nano Lett., 10, p. 5049Van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard III, W.A., (2001) J. Phys. Chem. A, 105, p. 9396Van Duin, A.C.T., Damste, J.S.S., (2003) Org. Geochem., 34, p. 515Han, S.S., Kang, J.K., Lee, H.M., Van Duin, A.C.T., Goddard III, W.A., (2005) J. Chem. Phys., 123, p. 114703Plimpton, S., (1995) J. Comp. Phys., 117, p. 1. , http://lammps.sandia.gov/Dos Santos, R.P.B., Perim, E., Autreto, P.A.S., Brunetto, G., Galvao, D.S., (2012) Nanotechnology, 23, p. 46570

    Correlation Between Quantum Conductance And Atomic Arrangement Of Atomic-size Silver Nanowires

    No full text
    We have studied the effect of thermal effects on the structural and transport response of Ag atomic-size nanowires (NWs) generated by mechanical elongation. Our study involves both time-resolved atomic resolution transmission electron microscopy imaging and quantum conductance measurement using an ultra-high-vacuum mechanically controllable break junction. We have observed drastic changes in conductance and structural properties of Ag nanowires generated at different temperatures (150 and 300 K). By combining electron microscopy images, electronic transport measurements, and quantum transport calculations, we have been able to obtain a consistent correlation between the conductance and structural properties of Ag NWs. In particular, our study has revealed the formation of metastable rectangular rod-like Ag wire (3/3) along the [001] crystallographic direction, whose formation is enhanced. These results illustrate the high complexity of analyzing structural and quantum conductance behaviour of metal atomic-size wires; also, they reveal that it is extremely difficult to compare NW conductance experiments performed at different temperatures due to the fundamental modifications of the mechanical behavior. © 2012 American Institute of Physics.11112Reed, M., Zhou, C., Muller, C., Burgin, T., Tour, J., (1997) Science, 278, p. 252. , 10.1126/science.278.5336.252Agrait, N., Yeyati, A., Van Ruitenbeek, J., (2003) Phys. Rep., 377, p. 81. , 10.1016/S0370-1573(02)00633-6Callister, W., (1999) Materials Science and Engineering: An Introduction, , (Wiley)Rego, L., Rocha, A., Rodrigues, V., Ugarte, D., (2003) Phys. Rev. B, 67, p. 045412. , 10.1103/PhysRevB.67.045412Bettini, J., Rodrigues, V., Gonzlez, J., Ugarte, D., (2005) Appl. Phys. A, 81, p. 1513. , 10.1007/s00339-005-3388-9Costa-Krmer, J., Garcia, N., Garcia-Mochales, P., Serena, P., (1995) Surf. Sci., 342, p. 1144. , 10.1016/0039-6028(95)00967-1Brandbyge, M., Schio, J., So, M., Stoltze, P., Jacobsen, K., No, J., Olesen, L., Besenbacher, F., (1995) Phys. Rev. B, 52, p. 8499. , 10.1103/PhysRevB.52.8499Muller, C., Van Ruitenbeek, J., De Jongh, L., (1992) Phys. Rev. Lett., 69, p. 140. , 10.1103/PhysRevLett.69.140Sirvent, C., Rodrigo, J., Agrait, N., Vieira, S., (1996) Physica B, 218, p. 238. , 10.1016/0921-4526(95)00603-6Rodrigues, V., Fuhrer, T., Ugarte, D., (2000) Phys. Rev. Lett., 85, p. 4124. , 10.1103/PhysRevLett.85.4124Scheer, E., Agrat, N., Cuevas, J., Yeyati, A., Ludoph, B., Martn-Rodero, A., Bollinger, G., Urbina, C., (1998) Nature, 394, p. 154. , 10.1038/28112Ludoph, B., Van Ruitenbeek, J., (2000) Phys. Rev. B, 61, p. 2273. , 10.1103/PhysRevB.61.2273Gonzlez, J., Rodrigues, V., Bettini, J., Rego, L., Rocha, A., Coura, P., Dantas, S., Ugarte, D., (2004) Phys. Rev. Lett., 93, p. 126103. , 10.1103/PhysRevLett.93.126103Rodrigues, V., Bettini, J., Silva, P., Ugarte, D., (2003) Phys. Rev. Lett., 91, p. 96801. , 10.1103/PhysRevLett.91.096801Rodrigues, V., Sato, F., Galvo, D., Ugarte, D., (2007) Phys. Rev. Lett., 99, p. 255501. , 10.1103/PhysRevLett.99.255501Yanson, A., Yanson, I., Van Ruitenbeek, J., (2000) Phys. Rev. Lett., 84, p. 5832. , 10.1103/PhysRevLett.84.5832Enomoto, A., Kurokawa, S., Sakai, A., (2002) Phys. Rev. B, 65, p. 125410. , 10.1103/PhysRevB.65.125410Fujii, A., Ochi, R., Kurokawa, S., Sakai, A., (2004) Appl. Surf. Sci., 228, p. 207. , 10.1016/j.apsusc.2004.01.019Kondo, Y., Takayanagi, K., (2000) Science, 289, p. 606. , 10.1126/science.289.5479.606Lagos, M., Sato, F., Bettini, J., Rodrigues, V., Galvao, D., Ugarte, D., (2009) Nat. Nanotechnol., 4, p. 149. , 10.1038/nnano.2008.414Kizuka, T., Yamada, K., Deguchi, S., Naruse, M., Tanaka, N., (1997) Phys. Rev. B, 55, p. 7398. , 10.1103/PhysRevB.55.R7398Ohnishi, H., Kondo, Y., Takayanagi, K., (1998) Nature, 395, p. 780. , 10.1038/27399Kizuka, T., (2008) Phys. Rev. B, 77, p. 155401. , 10.1103/PhysRevB.77.155401Kurui, Y., Oshima, Y., Okamoto, M., Takayanagi, K., (2009) Phys. Rev. B, 79, p. 165414. , 10.1103/PhysRevB.79.165414Lagos, M., Sato, F., Autreto, P., Galvo, D., Rodrigues, V., Ugarte, D., (2010) Nanotechnology, 21, p. 485702. , 10.1088/0957-4484/21/48/485702Lagos, M., Autreto, P., Legoas, S., Sato, F., Rodrigues, V., Galvao, D., Ugarte, D., (2011) Nanotechnology, 22, p. 095705. , 10.1088/0957-4484/22/9/095705Lagos, M., Sato, F., Galvao, D., Ugarte, D., (2011) Phys. Rev. Lett., 106, p. 55501. , 10.1103/PhysRevLett.106.055501Bratkovsky, A., Sutton, A., Todorov, T., (1995) Phys. Rev. B, 52, p. 5036. , 10.1103/PhysRevB.52.5036Foiles, S., Baskes, M., Daw, M., (1986) Phys. Rev. B, 33, p. 7983. , 10.1103/PhysRevB.33.7983Rodrigues, V., Lagos, M., Ugarte, D., (2008) J. Phys.: Conf. Ser., 100, p. 052001. , 10.1088/1742-6596/100/5/052001Oshima, Y., Onga, A., Takayanagi, K., (2003) Phys. Rev. Lett., 91, p. 205503. , 10.1103/PhysRevLett.91.205503Kondo, Y., Takayanagi, K., (1997) Phys. Rev. Lett., 79, p. 3455. , 10.1103/PhysRevLett.79.3455Emberly, E., Kirczenow, G., (1999) Phys. Rev. B, 60, p. 6028. , 10.1103/PhysRevB.60.6028Rodrigues, V., Bettini, J., Rocha, A., Rego, L., Ugarte, D., (2002) Phys. Rev. B, 65, p. 153402. , 10.1103/PhysRevB.65.153402Autreto, P., Lagos, M., Sato, F., Bettini, J., Rocha, A., Rodrigues, V., Ugarte, D., Galvao, D., (2011) Phys. Rev. Lett., 106, p. 65501. , 10.1103/PhysRevLett.106.065501Lagos, M., Rodrigues, V., Ugarte, D., (2007) J. Electron Spectrosc. Relat. Phenom., 156, p. 20. , 10.1016/j.elspec.2006.12.063Rodrigues, V., Ugarte, D., (2005) Nanowires and Nanobelts: Materials, Properties and Devices: Metal and Semiconductor Nanowires, 1, p. 177. , (Kluwer Academic)Landman, U., Luedtke, W., Burnham, N., Colton, R., (1990) Science, 248, p. 454. , 10.1126/science.248.4954.454Brinckmann, S., Kim, J.-Y., Greer, J.R., (2008) Phys. Rev. Lett., 100, p. 155502. , 10.1103/PhysRevLett.100.155502Kim, J.-Y., Greer, J.R., (2009) Acta Mater., 57, p. 5245. , 10.1016/j.actamat.2009.07.02

    A Fully Atomistic Reactive Molecular Dynamics Study On The Formation Of Graphane From Graphene Hydrogenated Membranes

    No full text
    Recently, Elias et al. (Science 323, 610 (2009).) reported the experimental realization of the formation of graphane from hydrogenation of graphene membranes under cold plasma exposure. In graphane, the carbon-carbon bonds are in sp 3 configuration, as opposed to the sp 2 hybridization of graphene, and the C-H bonds exhibit an alternating pattern (up and down with relation to the plane defined by the carbon atoms). In this work we have investigated, using reactive molecular dynamics simulations, the role of H frustration (breaking the H atoms up and down alternating pattern) in graphane-like structures. Our results show that a significant percentage of uncorrelated H frustrated domains are formed in the early stages of the hydrogenation process, leading to membrane shrinkage and extensive membrane corrugations. This might explain the significant broad distribution of values of lattice parameter experimentally observed. For comparison purposes we have also analyzed fluorinated graphane-like structures. Our results show that similarly to H, F atoms also create significant uncorrelated frustrated domains on graphene membranes. © 2011 Materials Research Society.12843136Peng, H., (2008) Phys. Rev. Lett., 101, p. 145501Novoselov, K.S., (2004) Science, 306, p. 666Cheng, S.H., (2010) Phys. Rev. B, 81, p. 205435F. Withers, M. Duboist, and A.K. Savchenko, arxiv:1005.3474v1 (2010)Sofo, J., Chaudhari, A., Barber, G., (2007) Phys. Rev. B, 75, p. 153401Ryu, S., (2008) Nano Lett., 8, p. 4597Elias, D., (2009) Science, 323, p. 610Sofo, J.O., Chaudhari, A.S., Barber, G.D., (2007) Phys. Rev. B, 75, p. 153401Lueking, D., (2006) J. Am. Chem. Soc., 128, p. 7758N. R. Ray, A. K. Srivastava, and, R. Grotzsche, arXiv:0802.3998v1 (2008)O. Leenaerts, H. Peelaers,A. D. Hernandez-Nieves, B. Partoens,and F. M. Peeters, arxiv:1009.3847v1 (2010)Cheng, S.-H., Zou, K., Okino, F., Gutierrez, H.R., Gupta, A., Shen, N., Eklund, P.C., Zhu, J., (2010) Phys. Rev. B, 81, p. 205435Nair, R.R., Small, , in press, DOI: 10.1002/smll.201001555Robinson, J.T., Nano Lett., , in press, DOI: 10.1021/n1101437pVan Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard III, W.A., (2001) J. Phys. Chem. A, 105, p. 9396Van Duin, A.C.T., Damste, J.S.S., (2003) Org. Geochem., 34, p. 515Chenoweth, K., Van Duin, A.C.T., Goddard III, W.A., (2008) J. Phys. Chem. A, 112, p. 1040http://lammps.sandia.gov/Flores, M.Z.S., Autreto, P.A.S., Legoas, S.B., Galvao, D.S., (2009) Nanotechnology, 20, p. 465704Santos, R.B.P., Autreto, P.A.S., Legoas, S.B., Galvão, D.S., to be publishe

    Mechanical Properties And Fracture Dynamics Of Silicene Membranes

    No full text
    The advent of graphene created a new era in materials science. Graphene is a two-dimensional planar honeycomb array of carbon atoms in sp2-hybridized states. A natural question is whether other elements of the IV-group of the periodic table (such as silicon and germanium), could also form graphene-like structures. Structurally, the silicon equivalent to graphene is called silicene. Silicene was theoretically predicted in 1994 and recently experimentally realized by different groups. Similarly to graphene, silicene exhibits electronic and mechanical properties that can be exploited to nanoelectronics applications. In this work we have investigated, through fully atomistic molecular dynamics (MD) simulations, the mechanical properties of single-layer silicene under mechanical strain. These simulations were carried out using a reactive force field (ReaxFF), as implemented in the LAMMPS code. We have calculated the elastic properties and the fracture patterns. Our results show that the dynamics of the whole fracturing processes of silicene present some similarities with that of graphene as well as some unique features.1549299107Harris, P.J.F., (2009) Carbon Nanotube Science, , Cambridge University Press, CambridgeBaughman, R., Eckhardt, H., Kertesz, M., (1987) J. Chem. Phys., 87, p. 6687Coluci, V.R., Braga, S.F., Legoas, S.B., Galvao, D.S., Baughman, R.H., (2003) Phys. Rev. B, 68, p. 035430Coluci, V.R., Braga, S.F., Legoas, S.B., Galvao, D.S., Baughman, R.H., (2004) Nanotechnology, 15, p. S142Novoselov, K.S., (2004) Science, 306, p. 666Cheng, S.H., (2010) Phys. Rev. B, 81, p. 205435Withers, F., Duboist, M., Savchenko, A.K., (2010) Phys. Rev. B, 82, p. 073403Takeda, K., Shiraishi, K., (1994) Phys. Rev. B, 50, p. 14916Cahangirov, S., Topsakal, M., Akturk, E., Sahin, H., Ciraci, S., (2009) Phys. Rev. Lett., 102, p. 236804Nakano, H., (2006) Angew. Chem., 118, p. 6451Lalmi, B., (2010) Appl. Phys. Lett., 97, p. 223109Psofogiannakis, G.M., Froudakis, G.E., (2012) J. Phys. Chem. C, 116, p. 19211Aufray, B., (2010) Appl. Phys. Lett., 96, p. 183101De Padova, P., (2010) Appl. Phys. Lett., 96, p. 261905Vogt, P., (2012) Phys. Rev. Lett., 108, p. 155201Bianco, E., (2013) Nano Lett., 7, p. 4414Friedlein, R., Fleurence, A., Ozaki, T., Yamada-Takamura, Y., SPIE Newsroom, , in pressVan Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A., III, (2001) J. Phys. Chem. A, 105, p. 9396Plimpton, S., (1995) J. Comp. Phys., 117, p. 1. , http://lammps.sandia.govPaupitz, R., (2013) Nanotechnology, 24, p. 035706Yang, Y., Xu, X., (2012) Comp. Mater. Sci., 61, p. 83Pei, Q.X., Zhang, Y.W., Shenoy, V.B., (2010) Carbon, 48, p. 898Kim, K., (2011) Nano Lett., 12, p. 293Koskinen, (2008) Phys. Rev. Lett., 101, p. 115502Koskinen, (2009) Phys. Rev. B, 80, p. 07340

    A Nonzero Gap Two-dimensional Carbon Allotrope From Porous Graphene

    No full text
    Graphene has been one of the hottest topics in materials science in the last years. Because of its special electronic properties graphene is considered one of the most promising materials for future electronics. However, in its pristine form graphene is a gapless semiconductor, which poses some limitations to its use in some transistor electronics. Many approaches have been tried to create, in a controlled way, a gap in graphene. These approaches have obtained limited successes. Recently, hydrogenated graphene-like structures, the so-called porous graphene, have been synthesized. In this work we show, based on ab initio quantum molecular dynamics calculations, that porous graphene dehydrogenation can lead to a spontaneous formation of a nonzero gap two-dimensional carbon allotrope, called biphenylene carbon (BC). Besides exhibiting an intrinsic nonzero gap value, BC also presents well delocalized frontier orbitals, suggestive of a structure with high electronic mobility. Possible synthetic routes to obtain BC from porous graphene are addressed. © 2012 Materials Research Society.14077984The Multi-Scale Technologies Institute (MuSTI),Technological University,Int. Cent. Young Sci. (ICYS) Natl. Inst. Mater. Sci.,Angstrom Engineering Inc.Peng, H., Chen, D., Huang, J., Chikkannanavar, S., Hanisch, J., Jain, M., Peterson, D., Zhu, Y., (2008) Phys. Rev. Lett., 101, p. 145501Novoselov, Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I., Firsov, A., (2004) Science, 306, p. 666Flores, M., Autreto, P., Legoas, S., Galvao, D., (2009) Nanotechnology, 20, p. 465704Cheng, S., Zou, K., Okino, F., Gutierrez, H., Gupta, A., Shen, N., Eklund, P., Zhu, J., (2010) Phys. Rev. B, 81, p. 205435Withers, F., Dubois, M., Savchenko, A., (2010) Phys. Rev. B, 82, p. 73403Stankovich, S., Dikin, D., Piner, R., Kohlhaas, K., Kleinhammes, A., Jia, Y., Wu, Y., Ruoff, R., (2007) Carbon, 45, p. 1558Gilje, S., Han, S., Wang, M., Wang, K., Kaner, R., (2007) Nano Lett., 7, p. 3394Gomez-Navarro, C., Weitz, R., Bittner, A., Scolari, M., Mews, A., Burghard, M., Kern, K., (2007) Nano Lett., 7, p. 3499Ruoff, R., (2008) Nature Nanotechnology, 3, p. 10Wu, X., Sprinkle, M., Li, X., Ming, F., Berger, C., De Heer, W., (2008) Phys. Rev. Lett., 101, p. 26801Kaiser, A., Gómez-Navarro, C., Sundaram, R., Burghard, M., Kern, K., (2009) Nano Lett., 9, p. 1787Sofo, J., Chaudhari, A., Barber, G., (2007) Phys. Rev. B, 75, p. 153401Ryu, S., Han, M., Maultzsch, J., Heinz, T., Kim, P., Steigerwald, M., Brus, L., (2008) Nano Lett., 8, p. 4597Elias, D., Nair, R., Mohiuddin, T., Morozov, S., Blake, P., Halsall, M., Ferrari, A., Geim, A., (2009) Science, 323, p. 610Leenaerts, O., Peelaers, H., Hernandez-Nieves, A., Partoens, B., Peeters, F., (2010), Arxiv preprint arXiv: 1009.3847Blankenburg, S., Bieri, M., Fasel, R., Mullen, K., Pignedoli, C.A., Passerone, D., (2010) Small, 6, p. 2266Du, A.J., Zhu, Z.H., Smith, S.C., (2010) J. Am. Chem. Soc., 132, p. 2876Jiang, D.E., Cooper, V.R., Dai, S., (2009) Nano Lett., 9, p. 4019Li, Y.F., Zhou, Z., Shen, P.W., Chen, Z.F., (2010) Chem. Comm., 46, p. 3672Baughman, R., Eckhardt, H., Kertesz, M., (1987) J. Chem. Phys., 87, p. 6687Baughman, R.H., Galvao, D.S., Cui, C., Wang, Y., Tománek, D., (1993) Chem. Phys. Lett., 204, p. 8Enyashin, A., Ivanovskii, A., (2011) Phys. St. Solid (B), 248, p. 1879Schulman, J.M., Disch, R.L., (2007) J. Phys Chem. A, 111, p. 10010Treier, M., Pignedoli, C., Laino, T., Rieger, R., Mullen, K., Passerone, D., Fasel, R., (2010) Nature Chem., 3, p. 61Otero, G., Biddau, G., Sanchez-Sanchez, C., Caillard, R., Lopez, M.F., Rogero, C., Palomares, F.J., Martin-Gago, J.A., (2008) Nature, 454, p. 865Hatanaka, M., (2010) Chem. Phys. Lett., 488, p. 187Bieri, M., Treier, M., Cai, J., Ait Mansour, K., Ruffieux, P., Groning, O., Groning, P., Feng, X., (2009) Chem. Commun., 45, p. 6919Schrier, J., (2010) J. Phys. Chem. Lett., 1, p. 2284Delley, B., (1988) J. Chem. Phys., 88, p. 2547Delley, B., (2000) J. Chem. Phys., 113, p. 7756. , http://www.accelrys.com, DMol3 is available from Accelrys, Inc., as part of Materials Studio and the Cerius2 program suitesPorezag, D., Frauenheim, T., Ohler, T.K., Seifert, G., Kaschner, R., (1995) Phys. Rev. B, 51, p. 12947Aradi, B., Hourahine, B., Frauenheim, T., (2007) J. Phys. Chem. A, 111, p. 5678Gutzleretal, R., (2009) Chem. Commun., 445

    Structural Study Of The Formation Of Suspended Linear Atomic Chains From Platinum Nanowires Stretching

    No full text
    In this work we report results from the study of the atomistic aspects of the elongation and rupture of Pt NWs using real-time atomic-resolution transmission electron microscopy (dynamical HRTEM) and molecular dynamics (MD) simulations. We have observed the formation of suspended linear atomic chains (LACs) for all crystallographic directions investigated with the probability of LAC occurrence following the sequence [110], [100], and [111]. © 2009 Materials Research Society.1137168173Agrait, N., Yeyati, A., Ruitenbeek, J., (2003) Phys. Rep., 81, p. 377. , and references therein citedKrans, J.M., Van Ruitenbeek, J.M., Fisun, V.V., Yanson, I.K., De Jongh, L.J., (1995) Nature (London), 375, p. 767Rodrigues, V., Fuhrer, T., Ugarte, D., (2000) Phys. Rev. Lett., 85, p. 4124Muller, C.J., Van Ruitenbeek, J.M., De Jongh, L.J., (1992) Physica (Amsterdam), 191 C, p. 485Ohnishi, H., Kondo, D.Y., Takayanagi, K., (1998) Nature (London), 395, p. 780González, J.C., Rodrigues, V., Bettini, J., Rego, L.G.C., Rocha, A.R., Coura, P.Z., Dantas, S.O., Ugarte, D., (2004) Phys. Rev. Lett., 93, p. 126103Bettini, J., Sato, F., Coura, P.Z., Dantas, S.O., Galvão, D.S., Ugarte, D., (2006) Nature Nanotechonology, 1, p. 182Cleri, F., Rosato, V., (1993) Phys. Rev. B, 48, p. 22Tománek, D., Aligia, A.A., Balsero, C.A., (1985) Phys. Rev. B, 32, p. 5051Coura, P.Z., Legoas, S.B., Moreira, A.S., Sato, F., Rodrigues, V., Dantas, S.O., Ugarte, D., Galvão, D.S., (2004) Nano Letters, 4, p. 1187Sato, F., Moreira, A.S., Coura, P.Z., Dantas, S.O., Legoas, S.B., Ugarte, D., Galvão, D.S., (2005) Appl. Phys., A81, p. 1527Sato, F., Moreira, A.S., Bettini, J., Coura, P.Z., Dantas, S.O., Ugarte, D., Galvão, D.S., (2006) Phys. Rev.B, 74, p. 193401Ducastelle, F., (1970) J. Phys., 31, p. 1055Allen, M.P., Tildesley, D.J., (1996) Computer Simulation of Liquids, , Oxford University Press, Oxfor
    corecore