27 research outputs found

    Unifying CP violations of quark and lepton sectors

    Full text link
    A preliminary determination of the Dirac phase in the PMNS matrix is \dell\approx -\frac{\pi}{2}. A rather accurately determined Jarlskog invariant JJ in the CKM matrix is close to the maximum. Since the phases in the CKM and PMNS matrices will be accurately determined in the future, it is an interesting problem to relate these two phases. This can be achieved in a families-unified grand unification if the weak CP violation is introduced spontaneously {\it \`a la} Froggatt and Nielsen at a high energy scale, where only one meaningful Dirac CP phase appears.Comment: 10 pages with 3 figure

    Data-adaptive harmonic spectra and multilayer Stuart-Landau models

    Full text link
    Harmonic decompositions of multivariate time series are considered for which we adopt an integral operator approach with periodic semigroup kernels. Spectral decomposition theorems are derived that cover the important cases of two-time statistics drawn from a mixing invariant measure. The corresponding eigenvalues can be grouped per Fourier frequency, and are actually given, at each frequency, as the singular values of a cross-spectral matrix depending on the data. These eigenvalues obey furthermore a variational principle that allows us to define naturally a multidimensional power spectrum. The eigenmodes, as far as they are concerned, exhibit a data-adaptive character manifested in their phase which allows us in turn to define a multidimensional phase spectrum. The resulting data-adaptive harmonic (DAH) modes allow for reducing the data-driven modeling effort to elemental models stacked per frequency, only coupled at different frequencies by the same noise realization. In particular, the DAH decomposition extracts time-dependent coefficients stacked by Fourier frequency which can be efficiently modeled---provided the decay of temporal correlations is sufficiently well-resolved---within a class of multilayer stochastic models (MSMs) tailored here on stochastic Stuart-Landau oscillators. Applications to the Lorenz 96 model and to a stochastic heat equation driven by a space-time white noise, are considered. In both cases, the DAH decomposition allows for an extraction of spatio-temporal modes revealing key features of the dynamics in the embedded phase space. The multilayer Stuart-Landau models (MSLMs) are shown to successfully model the typical patterns of the corresponding time-evolving fields, as well as their statistics of occurrence.Comment: 26 pages, double columns; 15 figure

    Interacting Preformed Cooper Pairs in Resonant Fermi Gases

    Get PDF
    We consider the normal phase of a strongly interacting Fermi gas, which can have either an equal or an unequal number of atoms in its two accessible spin states. Due to the unitarity-limited attractive interaction between particles with different spin, noncondensed Cooper pairs are formed. The starting point in treating preformed pairs is the Nozi\`{e}res-Schmitt-Rink (NSR) theory, which approximates the pairs as being noninteracting. Here, we consider the effects of the interactions between the Cooper pairs in a Wilsonian renormalization-group scheme. Starting from the exact bosonic action for the pairs, we calculate the Cooper-pair self-energy by combining the NSR formalism with the Wilsonian approach. We compare our findings with the recent experiments by Harikoshi {\it et al.} [Science {\bf 327}, 442 (2010)] and Nascimb\`{e}ne {\it et al.} [Nature {\bf 463}, 1057 (2010)], and find very good agreement. We also make predictions for the population-imbalanced case, that can be tested in experiments.Comment: 10 pages, 6 figures, accepted version for PRA, discussion of the imbalanced Fermi gas added, new figure and references adde

    Sur l'hypohermitien

    Get PDF
    corecore