564 research outputs found

    Constraints on the evolution of Taranaki Fault from thermochronology and basin analysis: Implications for the Taranaki Fault play

    Get PDF
    Taranaki Fault is the major structure defining the eastern margin of Taranaki Basin and marks the juxtaposition of basement with the Late Cretaceous-Paleogene succession in the basin. Although the timing of the basement over-thrusting on Taranaki Fault and subsequent marine onlap on to the basement block are well constrained as having occurred during the Early Miocene, the age of formation of this major structure, its character, displacement history and associated regional vertical movement during the Late Cretaceous- Recent are otherwise poorly known. Here we have applied (i) apatite fission track thermochronology to Mesozoic basement encountered in exploration holes and in outcrop to constrain the amount and timing of Late Cretaceous-Eocene exhumation of the eastern side of the fault, (ii) basin analysis of the Oligocene and Miocene succession east of the fault to establish the late-Early Miocene - Early Pliocene subsidence history, and (iii), regional porosity-bulk density trends in Neogene mudstone to establish the late uplift and tilting of eastern Taranaki Basin margin, which may have been associated with the main period of charge of the underlying Taranaki Fault play. We make the following conclusions that may be useful in assessing the viability of the Taranaki Fault play. (1) Mid-Cretaceous Taniwha Formation, intersected in Te Ranga-1 was formerly extensive across the western half of the Kawhia Syncline between Port Waikato and Awakino. (2) Taranaki Fault first formed as a normalfault during the Late Cretaceous around 85±10 Ma, and formed the eastern boundary of the Taranaki Rift-Transform basin. (3) Manganui Fault, located onshore north of Awakino, formed as a steeply east dipping reverse fault and accommodated about four km of displacement during the mid-Cretaceous. (4) Uplift and erosion, involving inversion of Early Oligocene deposits, occurred along the Herangi High during the Late Oligocene. This may have been associated with initial reverse movement on Taranaki Fault. (5) During the Early Miocene (Otaian Stage) the Taranaki and Manganui Faults accommodated the westward transport of Murihiku basement into the eastern margin of Taranaki Basin, but the amount of topography generated over the Herangi High can only have been a few hundred metres in elevation. (6) The Altonian (19-16 Ma) marked the start of the collapse of the eastern margin of Taranaki Basin that lead during the Middle Miocene to the eastward retrogradation of the continental margin wedge into the King Country region. During the Late Miocene, from about 11 Ma, a thick shelf-slope continental margin wedge prograded northward into the King Country region and infilled it (Mt Messenger, Urenui, Kiore and Matemateaonga Formations). (7) During the Pliocene and Pleistocene the whole of central New Zealand, including the eastern margin of Taranaki Basin, became involved in long wavelength up-doming with 1-2 km erosion of much of the Neogene succession in the King Country region. This regionally elevated the Taranaki Fault play into which hydrocarbons may have migrated from the Northern Graben region

    Megasequence architecture of Taranaki, Wanganui, and King Country basins and Neogene progradation of two continental margin wedges across western New Zealand.

    Get PDF
    Taranaki, Wanganui and King Country basins (formerly North Wanganui Basin) have been regarded as discrete basins, but they contain a very similar Neogene sedimentary succession and much of their geological history is held in common. Analysis of the stratigraphic architecture of the fill of each basin reveals the occurrence of four 2nd order megasequences of tectonic origin. The oldest is the early-early Miocene (Otaian Stage) Mahoenui Group/megasequence, followed by the late-early Miocene (Altonian Stage) Mokau Group/megasequence (King Country Basin), both of which correspond to the lower part of the Manganui Formation in Taranaki Basin. The third is the middle to late Miocene Whangamomona Group/megasequence, and the fourth is the latest Miocene-Pleistocene Rangitikei Supergroup/megasequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th), having a eustatic origin, are evident in the Whangamomona and Rangitikei megasequences, particularly those of 5th order with 41 ka periodicity. The distribution of the megasequences are shown in a series of cross-section panels built-up from well -to-well correlations, complemented by time-stratigraphic cross-sections. The base of each megasequence is marked by marine flooding and represents a discrete phase in basin development. For the first megasequence this corresponded to rapid subsidence of the King Country Basin in a compressional setting and basement overthrusting on the Taranaki Fault, with the rapid introduction of terrigenous sediment during transgression. The Mahoenui megasequence accumulated mostly at bathyal depths; no regressive deposits are evident, having been eroded during subsequent uplift. The second (Mokau) megasequence accumulated during reverse movement on the Ohura Fault, formation of the Tarata Thrust Zone, and onlap of the basement block between the Taranaki Fault and the Patea-Tongaporutu-Herangi High (PTH). The Whangamomona megasequence accumulated during extensive reflooding of King Country Basin, onlap of the PTH High and of basement in the Wanganui Basin. This is an assymetrical sequence with a thin transgressive part (Otunui Formation) and a thick regressive part (Mount Messenger to Matemateaonga Formations). It represents the northward progradation of a continental margin wedge with bottom-set, slope-set and top-set components through Wanganui and King Country basins, with minor progradation over the PTH High and into Taranaki Basin. The Rangitikei megasequence is marked by extensive flooding at its base (Tangahoe Mudstone) and reflects the pull-down of the main Wanganui Basin depocentre. This megasequence comprises a second progradational margin wedge, which migrated on two fronts, one northward through Wanganui Basin and into King Country Basin, and a second west of the PTH High, through the Toru Trough and into the Central and Northern Grabens of Taranaki Basin and on to the Western Platform as the Giant Foresets Formation, thereby building up the modern shelf and slope. Fifth and 6th order sequences are well expressed in the shelf deposits (top-sets) of the upper parts of the Whangamomona and Rangitikei megasequences. They typically have a distinctive sequence architecture comprising shellbed (TST), siltstone (HST) and sandstone (RST) beds. Manutahi-1, which was continuously cored, provides calibration of this sequence architecture to wireline log character, thereby enabling shelf deposits to be mapped widely in the subsurface via the wireline data for hydrocarbon exploration holes. Similar characterization of slope-sets and bottom-sets is work ongoing. The higher order (eustatic) sequences profoundly influenced the local reservoir architecture and seal properties of formations, whereas the megasequence progradation has been responsible for the regional hydrocarbon maturation and migration. Major late tilting, uplift and erosion affected all three basins and created a regional high along the eastern Margin of Taranaki Basin, thereby influencing the migration paths of hydrocarbons sourced deeper in the basin and allowing late charge of structural and possibly stratigraphic traps

    Megasequence architecture of Taranaki, Wanganui, and King Country basins and Neogene progradation of two continental margin wedges across western New Zealand.

    Get PDF
    Taranaki, Wanganui and King Country basins (formerly North Wanganui Basin) have been regarded as discrete basins, but they contain a very similar Neogene sedimentary succession and much of their geological history is held in common. Analysis of the stratigraphic architecture of the fill of each basin reveals the occurrence of four 2nd order megasequences of tectonic origin. The oldest is the early-early Miocene (Otaian Stage) Mahoenui Group/megasequence, followed by the late-early Miocene (Altonian Stage) Mokau Group/megasequence (King Country Basin), both of which correspond to the lower part of the Manganui Formation in Taranaki Basin. The third is the middle to late Miocene Whangamomona Group/megasequence, and the fourth is the latest Miocene-Pleistocene Rangitikei Supergroup/megasequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th), having a eustatic origin, are evident in the Whangamomona and Rangitikei megasequences, particularly those of 5th order with 41 ka periodicity. The distribution of the megasequences are shown in a series of cross-section panels built-up from well -to-well correlations, complemented by time-stratigraphic cross-sections. The base of each megasequence is marked by marine flooding and represents a discrete phase in basin development. For the first megasequence this corresponded to rapid subsidence of the King Country Basin in a compressional setting and basement overthrusting on the Taranaki Fault, with the rapid introduction of terrigenous sediment during transgression. The Mahoenui megasequence accumulated mostly at bathyal depths; no regressive deposits are evident, having been eroded during subsequent uplift. The second (Mokau) megasequence accumulated during reverse movement on the Ohura Fault, formation of the Tarata Thrust Zone, and onlap of the basement block between the Taranaki Fault and the Patea-Tongaporutu-Herangi High (PTH). The Whangamomona megasequence accumulated during extensive reflooding of King Country Basin, onlap of the PTH High and of basement in the Wanganui Basin. This is an assymetrical sequence with a thin transgressive part (Otunui Formation) and a thick regressive part (Mount Messenger to Matemateaonga Formations). It represents the northward progradation of a continental margin wedge with bottom-set, slope-set and top-set components through Wanganui and King Country basins, with minor progradation over the PTH High and into Taranaki Basin. The Rangitikei megasequence is marked by extensive flooding at its base (Tangahoe Mudstone) and reflects the pull-down of the main Wanganui Basin depocentre. This megasequence comprises a second progradational margin wedge, which migrated on two fronts, one northward through Wanganui Basin and into King Country Basin, and a second west of the PTH High, through the Toru Trough and into the Central and Northern Grabens of Taranaki Basin and on to the Western Platform as the Giant Foresets Formation, thereby building up the modern shelf and slope. Fifth and 6th order sequences are well expressed in the shelf deposits (top-sets) of the upper parts of the Whangamomona and Rangitikei megasequences. They typically have a distinctive sequence architecture comprising shellbed (TST), siltstone (HST) and sandstone (RST) beds. Manutahi-1, which was continuously cored, provides calibration of this sequence architecture to wireline log character, thereby enabling shelf deposits to be mapped widely in the subsurface via the wireline data for hydrocarbon exploration holes. Similar characterization of slope-sets and bottom-sets is work ongoing. The higher order (eustatic) sequences profoundly influenced the local reservoir architecture and seal properties of formations, whereas the megasequence progradation has been responsible for the regional hydrocarbon maturation and migration. Major late tilting, uplift and erosion affected all three basins and created a regional high along the eastern Margin of Taranaki Basin, thereby influencing the migration paths of hydrocarbons sourced deeper in the basin and allowing late charge of structural and possibly stratigraphic traps

    Neogene stratigraphic architecture and tectonic evolution of Wanganui, King Country, and eastern Taranaki Basins, New Zealand

    Get PDF
    Analysis of the stratigraphic architecture of the fills of Wanganui, King Country, and eastern Taranaki Basins reveals the occurrence of five 2nd order Late Paleocene and Neogene sequences of tectonic origin. The oldest is the late Eocene-Oligocene Te Kuiti Sequence, followed by the early-early Miocene (Otaian) Mahoenui Sequence, followed by the late-early Miocene (Altonian) Mokau Sequence, all three in King Country Basin. The fourth is the middle Miocene to early Pliocene Whangamomona Sequence, and the fifth is the middle Pliocene-Pleistocene Rangitikei Sequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th) with a eustatic origin occur particularly within the Whangamomona and Rangitikei Sequences, particularly those of 6th order with 41 000 yr periodicity

    Measurements of Gamow-Teller Strength for Double-Beta Decaying Nuclei Via the (p,n) Reaction at 134 MeV

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit

    Combining Cardiac Monitoring with Actigraphy Aids Nocturnal Arousal Detection during Ambulatory Sleep Assessment in Insomnia

    Get PDF
    Study Objectives: The objective assessment of insomnia has remained difficult. Multisensory devices collecting heart rate (HR) and motion are regarded as the future of ambulatory sleep monitoring. Unfortunately, reports on altered average HR or heart rate variability (HRV) during sleep in insomnia are equivocal. Here, we evaluated whether the objective quantification of insomnia improves by assessing state-related changes in cardiac measures. Methods: We recorded electrocardiography, posture, and actigraphy in 33 people without sleep complaints and 158 patients with mild to severe insomnia over 4 d in their home environment. At the microscale, we investigated whether HR changed with proximity to gross (body) and small (wrist) movements at nighttime. At the macroscale, we calculated day-night differences in HR and HRV measures. For both timescales, we tested whether outcome measures were related to insomnia diagnosis and severity. Results: At the microscale, an increase in HR was often detectable already 60 s prior to as well as following a nocturnal chest, but not wrist, movement. This increase was slightly steeper in insomnia and was associated with insomnia severity, but future EEG recordings are necessary to elucidate whether these changes occur prior to or simultaneously with PSG-indicators of wakefulness. At the macroscale, we found an attenuated cardiac response to sleep in insomnia: patients consistently showed smaller day-night differences in HR and HRV. Conclusions: Incorporating state-related changes in cardiac features in the ambulatory monitoring of sleep might provide a more sensitive biomarker of insomnia than the use of cardiac activity averages or actigraphy alone

    Biostratigraphy, Sr isotope chronology and chronostratigraphy of the Late Eocene – earliest Miocene Te Kuiti Group, Waikato – King Country Basin, New Zealand

    Get PDF
    This report reviews and synthesises the biostratigraphy of the Te Kuiti Group based on existing sample data archived in the Fossil Record Electronic Database (FRED). Based on these faunal and floral data, New Zealand biostratigraphic stages for the Late Eocene to Early Miocene are assigned to the formations and members within the group. Analytical strontium (Sr) data and resulting numerical ages are reported here for 26 new macrofossil samples from the Te Kuiti Group, but they do not improve the accuracy of the biostratigraphy and the age information that can be derived from it. The identification of unconformity-bound sequences, the boundaries of which align with the formation contacts within the group, provide an important set of time planes within the group. The integration of the biostratigraphy and sequence stratigraphy produces a robust chronostratigraphy for the Te Kuiti Group

    Elemental signatures of Australopithecus africanus teeth reveal seasonal dietary stress

    Get PDF
    Reconstructing the detailed dietary behaviour of extinct hominins is challenging1\u2014particularly for a species such as Australopithecus africanus, which has a highly variable dental morphology that suggests a broad diet2,3. The dietary responses of extinct hominins to seasonal fluctuations in food availability are poorly understood, and nursing behaviours even less so; most of the direct information currently available has been obtained from high-resolution trace-element geochemical analysis of Homo sapiens (both modern and fossil), Homo neanderthalensis4 and living apes5. Here we apply high-resolution trace-element analysis to two A. africanus specimens from Sterkfontein Member 4 (South Africa), dated to 2.6\u20132.1 million years ago. Elemental signals indicate that A. africanus infants predominantly consumed breast milk for the first year after birth. A cyclical elemental pattern observed following the nursing sequence\u2014comparable to the seasonal dietary signal that is seen in contemporary wild primates and other mammals\u2014indicates irregular food availability. These results are supported by isotopic evidence for a geographical range that was dominated by nutritionally depauperate areas. Cyclical accumulation of lithium in A. africanus teeth also corroborates the idea that their range was characterized by fluctuating resources, and that they possessed physiological adaptations to this instability. This study provides insights into the dietary cycles and ecological behaviours of A. africanus in response to food availability, including the potential cyclical resurgence of milk intake during times of nutritional challenge (as observed in modern wild orangutans5). The geochemical findings for these teeth reinforce the unique place of A. africanus in the fossil record, and indicate dietary stress in specimens that date to shortly before the extinction of Australopithecus in South Africa about two million years ago

    Adhesion of Listeria monocytogenes to materials commonly found in domestic kitchens

    Get PDF
    The aim of this work was to investigate the adhesion of Listeria monocytogenes ATCC 15313 to glass, granite, marble, polypropylene from a bowl (PPb), polypropylene from a cutting board (PPcb) and stainless steel (SS), which are materials commonly used in kitchens. Marble and granite were chosen because they are applied as kitchen bench covers and pavements in many countries and there are no literature reports on their behaviour in terms of microbial adhesion. The effect of surface hydrophobicity and roughness on the adhesion process was also analysed. The results showed that the highest extent of adhesion of L. monocytogenes occurred to stainless steel, followed by glass and in less extent to the other materials studied. However, it was not possible to establish a correlation between surface hydrophobicity or roughness and the extent of adhesion of L. monocytogenes. The adherence of L. monocytogenes should be dependent on other factors, like the presence of exopolymers and surface charge.Fundação para a Ciência e a Tecnologia (FCT
    corecore