403 research outputs found

    Structure-guided SCHEMA recombination generates diverse chimeric channelrhodopsins

    Get PDF
    Integral membrane proteins (MPs) are key engineering targets due to their critical roles in regulating cell function. In engineering MPs, it can be extremely challenging to retain membrane localization capability while changing other desired properties. We have used structure-guided SCHEMA recombination to create a large set of functionally diverse chimeras from three sequence-diverse channelrhodopsins (ChRs). We chose 218 ChR chimeras from two SCHEMA libraries and assayed them for expression and plasma membrane localization in human embryonic kidney cells. The majority of the chimeras express, with 89% of the tested chimeras outperforming the lowest-expressing parent; 12% of the tested chimeras express at even higher levels than any of the parents. A significant fraction (23%) also localize to the membrane better than the lowest-performing parent ChR. Most (93%) of these well-localizing chimeras are also functional light-gated channels. Many chimeras have stronger light-activated inward currents than the three parents, and some have unique off-kinetics and spectral properties relative to the parents. An effective method for generating protein sequence and functional diversity, SCHEMA recombination can be used to gain insights into sequence–function relationships in MPs

    Weather in stellar atmosphere: the dynamics of mercury clouds in alpha Andromedae

    Full text link
    The formation of long-lasting structures at the surfaces of stars is commonly ascribed to the action of strong magnetic fields. This paradigm is supported by observations of evolving cool spots in the Sun and active late-type stars, and stationary chemical spots in the early-type magnetic stars. However, results of our seven-year monitoring of mercury spots in non-magnetic early-type star alpha Andromedae show that the picture of magnetically-driven structure formation is fundamentally incomplete. Using an indirect stellar surface mapping technique, we construct a series of 2-D images of starspots and discover a secular evolution of the mercury cloud cover in this star. This remarkable structure formation process, observed for the first time in any star, is plausibly attributed to a non-equilibrium, dynamical evolution of the heavy-element clouds created by atomic diffusion and may have the same underlying physics as the weather patterns on terrestrial and giant planets.Comment: 10 pages, 2 figures; to be published in Nature Physic

    Directed Evolution of a Bright Near-Infrared Fluorescent Rhodopsin Using a Synthetic Chromophore

    Get PDF
    By engineering a microbial rhodopsin, Archaerhodopsin-3 (Arch), to bind a synthetic chromophore, merocyanine retinal, in place of the natural chromophore all-trans-retinal (ATR), we generated a protein with exceptionally bright and unprecedentedly red-shifted near-infrared (NIR) fluorescence. We show that chromophore substitution generates a fluorescent Arch complex with a 200-nm bathochromic excitation shift relative to ATR-bound wild-type Arch and an emission maximum at 772 nm. Directed evolution of this complex produced variants with pH-sensitive NIR fluorescence and molecular brightness 8.5-fold greater than the brightest ATR-bound Arch variant. The resulting proteins are well suited to bacterial imaging; expression and stability have not been optimized for mammalian cell imaging. By targeting both the protein and its chromophore, we overcome inherent challenges associated with engineering bright NIR fluorescence into Archaerhodopsin. This work demonstrates an efficient strategy for engineering non-natural, tailored properties into microbial opsins, properties relevant for imaging and interrogating biological systems

    “One-Size-Fits-All”? Optimizing Treatment Duration for Bacterial Infections

    Get PDF
    Historically, antibiotic treatment guidelines have aimed to maximize treatment efficacy and minimize toxicity, but have not considered the evolution of antibiotic resistance. Optimizing the duration and dosing of treatment to minimize the duration of symptomatic infection and selection pressure for resistance simultaneously has the potential to extend the useful therapeutic life of these valuable life-saving drugs without compromising the interests of individual patients

    Hospital-level associations with 30-day patient mortality after cardiac surgery: a tutorial on the application and interpretation of marginal and multilevel logistic regression

    Get PDF
    Background: Marginal and multilevel logistic regression methods can estimate associations between hospital-level factors and patient-level 30-day mortality outcomes after cardiac surgery. However, it is not widely understood how the interpretation of hospital-level effects differs between these methods. Methods. The Australasian Society of Cardiac and Thoracic Surgeons (ASCTS) registry provided data on 32,354 patients undergoing cardiac surgery in 18 hospitals from 2001 to 2009. The logistic regression methods related 30-day mortality after surgery to hospital characteristics with concurrent adjustment for patient characteristics. Results: Hospital-level mortality rates varied from 1.0% to 4.1% of patients. Ordinary, marginal and multilevel regression methods differed with regard to point estimates and conclusions on statistical significance for hospital-level risk factors; ordinary logistic regression giving inappropriately narrow confidence intervals. The median odds ratio, MOR, from the multilevel model was 1.2 whereas ORs for most patient-level characteristics were of greater magnitude suggesting that unexplained between-hospital variation was not as relevant as patient-level characteristics for understanding mortality rates. For hospital-level characteristics in the multilevel model, 80% interval ORs, IOR-80%, supplemented the usual ORs from the logistic regression. The IOR-80% was (0.8 to 1.8) for academic affiliation and (0.6 to 1.3) for the median annual number of cardiac surgery procedures. The width of these intervals reflected the unexplained variation between hospitals in mortality rates; the inclusion of one in each interval suggested an inability to add meaningfully to explaining variation in mortality rates. Conclusions: Marginal and multilevel models take different approaches to account for correlation between patients within hospitals and they lead to different interpretations for hospital-level odds ratios. © 2012 Sanagou et al; licensee BioMed Central Ltd
    corecore