8 research outputs found

    Behavioral Coping Phenotypes and Associated Psychosocial Outcomes of Pregnant and Postpartum Women During the COVID-19 Pandemic

    Get PDF
    The impact of COVID-19-related stress on perinatal women is of heightened public health concern given the established intergenerational impact of maternal stress-exposure on infants and fetuses. There is urgent need to characterize the coping styles associated with adverse psychosocial outcomes in perinatal women during the COVID-19 pandemic to help mitigate the potential for lasting sequelae on both mothers and infants. This study uses a data-driven approach to identify the patterns of behavioral coping strategies that associate with maternal psychosocial distress during the COVID-19 pandemic in a large multicenter sample of pregnant women (N = 2876) and postpartum women (N = 1536). Data was collected from 9 states across the United States from March to October 2020. Women reported behaviors they were engaging in to manage pandemic-related stress, symptoms of depression, anxiety and global psychological distress, as well as changes in energy levels, sleep quality and stress levels. Using latent profile analysis, we identified four behavioral phenotypes of coping strategies. Critically, phenotypes with high levels of passive coping strategies (increased screen time, social media, and intake of comfort foods) were associated with elevated symptoms of depression, anxiety, and global psychological distress, as well as worsening stress and energy levels, relative to other coping phenotypes. In contrast, phenotypes with high levels of active coping strategies (social support, and self-care) were associated with greater resiliency relative to other phenotypes. The identification of these widespread coping phenotypes reveals novel behavioral patterns associated with risk and resiliency to pandemic-related stress in perinatal women. These findings may contribute to early identification of women at risk for poor long-term outcomes and indicate malleable targets for interventions aimed at mitigating lasting sequelae on women and children during the COVID-19 pandemic

    Attempted use of PACE for riboswitch discovery generates three new translational theophylline riboswitch side products

    No full text
    Abstract Objective The purpose of this project was to use an in vivo method to discover riboswitches that are activated by new ligands. We employed phage-assisted continuous evolution (PACE) to evolve new riboswitches in vivo. We started with one translational riboswitch and one transcriptional riboswitch, both of which were activated by theophylline. We used xanthine as the new target ligand during positive selection followed by negative selection using theophylline. The goal was to generate very large M13 phage populations that contained unknown mutations, some of which would result in new aptamer specificity. We discovered side products of three new theophylline translational riboswitches with different levels of protein production. Results We used next generation sequencing to identify M13 phage that carried riboswitch mutations. We cloned and characterized the most abundant riboswitch mutants and discovered three variants that produce different levels of translational output while retaining their theophylline specificity. Although we were unable to demonstrate evolution of new riboswitch ligand specificity using PACE, we recommend careful design of recombinant M13 phage to avoid evolution of “cheaters” that short circuit the intended selection pressure

    Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations

    No full text
    PURPOSE: The phenotypic manifestations of cerebral cavernous malformation (CCM) disease caused by rare PDCD10 mutations have not been systematically examined, and a mechanistic link to Rho kinase (ROCK) mediated hyperpermeability, a potential therapeutic target, has not been established. METHODS: We analyze PDCD10-siRNA treated endothelial cells for stress fibers, ROCK activity and permeability. ROCK activity is assessed in CCM lesions. Brain permeability and CCM lesion burden is quantified, and clinical manifestations are assessed in prospectively enrolled subjects with PDCD10 mutations. RESULTS: We determine that PDCD10 protein suppresses endothelial stress fibers, ROCK activity and permeability in vitro. Pdcd10 heterozygous mice have greater lesion burden than other Ccm genotypes. We demonstrate robust ROCK activity in murine and human CCM vasculature, and increased brain vascular permeability in humans with PDCD10 mutation. Clinical phenotype is exceptionally aggressive compared to the more common KRIT1 and CCM2 familial and sporadic CCM, with greater lesion burden and more frequent hemorrhages earlier in life. We first report other phenotypic features including scoliosis, cognitive disability and skin lesions, unrelated to lesion burden or bleeding. CONCLUSION: These findings define a unique CCM disease with exceptional aggressiveness, and they inform preclinical therapeutic testing, clinical counseling and the design of trials

    Proceedings from the 9th annual conference on the science of dissemination and implementation

    No full text

    Proceedings from the 9th annual conference on the science of dissemination and implementation

    No full text
    corecore