73 research outputs found

    Non-linear coupled approach for the evaluation of seismic slope displacements

    Get PDF
    The design procedures to evaluate earthquake-induced sliding displacements typically refer to three different approaches: simplified methods; displacements methods and advanced dynamic methods. In the first class of methods, empirical relationships are used to predict the permanent slope displacement. The second class includes simplified dynamic analysis, by means of the conventional Newmark rigid block model, as well as through its improvements to account for soil deformability. The dynamic site response and the sliding block displacements are computed separately in the “decoupled” approach or simultaneously in the “coupled” analysis (stick-slip model). The advanced dynamic methods are based on finite element (FEM) or finite difference (FDM) formulations, which permit to account for topography and heterogeneity by two or three dimensional analysis. The paper describes the developments of a 1D lumped-mass stick-slip model for a layered subsoil including more generalized assumptions than a previous version (Ausilio et al., 2008). The depth of the sliding surface is considered not necessarily coincident with that of the bedrock, and located in a generic layer. This latter can be identified during the analysis. In the non-linear site response analysis, a recent soil damping formulation was used (Phillips & Hashash, 2009). In this formulation, a reduction factor modifying the extended Masing loading/unloading strain-stress relationship was introduced. The predictions of the coupled stick-slip model with non-linear soil behaviour were compared with the results of the equivalent linear approach for ideal slopes to show the effects of non linearity on seismic performance. Besides, the results show that the sliding surface depth, automatically researched, is function of main ground motion parameters

    Simplified relationships for estimating seismic slope stability

    Get PDF
    Eurocode 8 addresses seismic slope stability analysis with reference to limit state design, specifying a 50% re-duction of the peak horizontal inertia force of a potentially sliding mass. Such a coefficient has been shown to depend on several factors, including soil deformability and the frequency content of the seismic action. In this paper the reduction coefficient is expressed with reference to the above factors and compared to EC8 provisions for all soil classes. A simplified design procedure is then suggested by referring to updated correla-tions based on the Newmark sliding block model, including the influence of amplitude, duration and mean pe-riod of the ground motion on the predicted displacement. The reduction coefficient is further generalised to account for the slope ductility, i.e. the capability of sustain prescribed threshold displacements. The whole procedure has been calibrated through analyses carried out using acceleration time histories, selected from a database of records of Italian seismic events, on typical subsoil layering pertaining to the EC8 classes, also adopted by the Italian seismic Code

    Valutazione degli spostamenti permanenti sismoindotti mediante un approccio accoppiato non lineare

    Get PDF
    Le procedure per valutare lo spostamento che puĂČ subire un pendio sotto l’azione sismica tipicamente si riferiscono a tre diverse classi di metodi: 1) relazioni semplificate; 2) metodi degli spostamenti (o analisi dinamica semplificata) e 3) analisi dinamica avanzata. Tali approcci differiscono sostanzialmente dal grado di conoscenza del modello geotecnico del pendio e dell’azione sismica richiesta. In particolare, la seconda classe di metodi presenta un buon compromesso tra la facilitĂ  di applicazione, legata a schemi di pendio semplificati, e l’affidabilitĂ  dei risultati che rende tali metodi competitivi rispetto alle analisi dinamiche avanzate. I metodi degli spostamenti prendono origine dal modello di blocco rigido di Newmark (1965) e dalla rimozione delle ipotesi che ne stanno alla base. In particolare l’ipotesi stessa di “blocco rigido” puĂČ essere rimossa attraverso due approcci: a) approccio “disaccoppiato”, in cui la deformabilitĂ  dei terreni che causa la risposta dinamica del sito e gli spostamenti del blocco sono calcolati separatamente o b) approccio “accoppiato” in cui la risposta del sito Ăš valutata contemporaneamente nelle fasi di adesione e scorrimento del pendio. In questa nota, si sintetizzano gli sviluppi del codice ACST, implementato da Ausilio et al. (2008), effettuati nell’ambito del progetto ReLUIS MT 1.2 “Linee guida e codici per analisi di risposta sismica locale”. In particolare, si Ăš introdotta la non linearitĂ  nell’analisi della risposta dei terreni attraverso la formulazione modificata dei criteri di Masing secondo la recente formulazione di Phillips & Hashash (2009). Si Ăš, inoltre, implementata una procedura che permette di individuare automaticamente, durante il calcolo, la superficie di scorrimento di prima rottura. I risultati in termini di risposta sismica e spostamenti cumulati sono stati confrontati con quelli ottenuti con la prima versione del codice

    Seismic displacement analysis of homogeneous slopes: a review of existing simplified methods with reference to Italian seismicity.

    Get PDF
    The simplified displacement-based procedures for seismic slope stability represent a good-working balance between simplicity and reliability, since both slope ductility (i.e. the capacity of sustain permanent displacements) and deformability (basically affecting the asynchronous slope motion) are accounted for. In this paper the procedure proposed by Bray & Rathje (1998) is reviewed with particular reference to Italian seismicity on a set of subsoil models, representative of the different soil classes specified by Italian and European codes. The relationship expressing the decrease of the equivalent acceleration with increasing earthquake/soil frequency ratio is then obtained by means of dynamic 1D site response analyses. Statistical correlations between calculated Newmark displacements, significant ground motion parameters and the ratio of seismic load resistance to peak demand are then derived and compared to similar relationships proposed in literature

    Parametri di intensitĂ  sismica per la stima degli spostamenti permanenti di pendii omogenei

    Get PDF
    Gli attuali criteri di progettazione in condizioni sismiche si avvalgono di procedure legate alla valutazione della prestazione del sistema espressa in termini di perdite quantificabili (costi di riparazione), di funzionalitĂ  o di beni inestimabili (vite umane, beni storico-culturali). In tale ottica il parametro rappresentativo della risposta Ăš correlato attraverso procedure piĂč o meno sofisticate a uno o piĂč parametri che descrivano le caratteristiche del moto sismico. La scelta di tali parametri deve essere effettuata attraverso criteri di efficienza e sufficienza (cfr. p.es. Tothong & Luco, 2007; Luco & Cornell, 2007) inoltre devono poter essere prevedibili attraverso opportune leggi di ricorrenza. In tale ambito, la presente nota propone una applicazione dei criteri citati per la stima della curva di pericolositĂ  degli spostamenti cosismici dei pendii e per la valutazione critica dell’efficienza dei parametri di intensitĂ  del moto considerati significativi. In particolare vengono confrontate alcune relazioni indicate nella letteratura nazionale ed internazionale, e viene presentata una relazione che tiene conto dell’intensitĂ  di Housner, IH, quale parametro efficace per la stima degli spostamenti. Per la previsione del parametro IH viene proposta, inoltre, una legge di attenuazione in funzione di magnitudo e distanza

    The seismic performance of a earth dam by different displacementbased methods

    Get PDF
    The performance-based design of earth dams and the rehabilitation of existing ones require the evaluation of seismic performance based on permanent displacements caused by expected the earthquake. The paper reports a comparison between different methods with increasing complexity for estimating seismic displacements: simplified rigid block method, based on empirical relationships (Bray and Rathje, 1998; Tropeano et al., 2009); simplified uncoupled method, again based on the sliding block analysis, but accounting for soil deformability; coupled ‘stick-slip’ approach, based on a 1D lumped mass model to calculate together dynamic response of the site and movement of sliding block (Tropeano et al., 2011); 2D finite differences analyses by the FLAC code, reproducing the heterogeneity of soil and topographic effects. The methods were applied to the case of the dam of Marello mountain across the Angitola river (Southern Italy). The parameters for static and dynamic geotechnical characterization of subsoil model have been taken from the results of the site investigation published in technical reports. The spectral shape and peak ground acceleration specified by the Italian Seismic Hazard Map, representative of input motion on outcropping bedrock, allowed to choose a set of spectrum-compatible acceleration time histories to simulate the seismic input. The sliding displacements predicted using simplified method resulted strongly dependent on topographic coefficient. Both uncoupled and coupled approaches have shown conservative permanent displacements compared to Newmark method. The average displacement of the sliding block by two-dimensional finite difference analysis, considering the stiffness variability related to depth, results comparable with values obtained by other methods

    Elgvandringer i grenseland med fĂžlger for skogbruk, jakt og rovdyr

    Get PDF
    Forvaltning av elg i omrĂ„der med en delvis trekkende elgbestand byr pĂ„ utfordringer, fordi kostnadene i form av beiteskader pĂ„ skogen og goder i form av elgjakt ofte berĂžrer forskjellige grunneiere. Dette blir ytterligere komplisert nĂ„r elgtrekket gĂ„r pĂ„ tvers av forvaltningsinndelinger eller til og med over riksgrensen. GRENSEVILT har studert samspillet mellom elg, ulv, skogbruk og jakt i nordre Finnskogen, et stort barskogsomrĂ„de som er delt av riksgrensen. For Ă„ berenge stĂžrrelsenpĂ„ elgbestanden og beskrive den romlige fordelingen av elg for vintrene 2019/20 og 2020/21, samt somrene 2020 og 2021,har vi gjennomfĂžrt elgmĂžkktellinger over et areal pĂ„ mer enn 3500 km2. Vi Ăžnsket ogsĂ„ Ă„ studere hvordan elgtrekket pĂ„virker ulvens omrĂ„debruk, beitepĂ„ furu, og jaktuttaket. Derfor har vived hjelp av GPS-halsbĂ„nd analysert omrĂ„debruken til fire ulveflokker i samme omrĂ„de. Dessuten gjennomfĂžrte vi pĂ„ vĂ„ren 2021 en stor beitetakst som kombinerte den norke Solbraa-og den svenske Äbin-metoden. Til slutt har vi sammenstilt jaktdata fra norske vald og svenske Ă€lgjaktomrĂ„der for jaktĂ„rene 2019/20 og 2020/21.Vi beregnet elgens tetthet for tidsserien vinter 2019/20, sommer 2020, vinter 2020/21, og sommer 2021 til henholdsvis 1,18, 1,37, 1,01, og 1,70dyr/km2. Om sommeren var elgen noksĂ„jevnt fordelt over hele studieomrĂ„det, og om vinteren stod elgen mer konsentrert i de snĂžfattige omrĂ„dene, mens det var lite elgi de nordlige, snĂžrike omrĂ„dene. Til tross for at elgens fordeling endret seg mellom sommer og vinter, opprettholdt ulveflokkene de samme revirgrensene gjennom hele Ă„ret. Derimot tilpasset de sine aktivitetsomrĂ„der innenfor revirgrensene til endringen i elgfordelingen. Elgens vinterkonsentrasjonsomrĂ„der var kjennetegnet ved et stĂžrre beitetrykk pĂ„ furu. Skader pĂ„ produksjontrĂŠr var mest hyppig langs dalbunnen og i omrĂ„der med mye lauvkratt, men vi fant ikke noe tydelig sammenheng mellom skadegrad og elgens vinterfordeling. Elgens effekt pĂ„ skogbruk mĂ„lt med den norske Solbraa-metoden viste at beitegraden pĂ„ furu var stort sett liten. Den svenske Äbin-metoden tegnet et helt motsatt bilde, og bedĂžmmetskadegraden pĂ„ de samme prĂžveflatenesomsvĂŠrt alvorlig. Jaktuttaket i jaktomrĂ„dene gjenspeilet fordelingen av elg sommerstid i Norge, men ikke i Sverige, der det ble skutt mest elg i omrĂ„dene med lavest sommertetthet. De hardest beskattede jaktomrĂ„dene i Sverige hadde en lavere elgtetthet vinteren etter jakt. Vi fant ikke noensammenheng mellom beite-eller skadegrad pĂ„ furu og jaktuttak i jaktomrĂ„dene. I den Ăžstlige delen av studieomrĂ„det som har et stort innslag av trekkelg som oppholder seg pĂ„ norsk side pĂ„ sommeren og under jakta, men trekker til Sverige nĂ„r snĂžen hoper seg opp lenger nord, var det en tydelig mismatch i forvaltningen av elg mellom de to landene. Mens man i Sverige satset pĂ„ et hĂžyt jaktuttak for Ă„ fĂ„ bukt med beiteskader,og i tillegg beskattet trekkelg ved januarjakt,sparte man pĂ„ avskytingen pĂ„ norsk side fordi beitegraden ikke var bekymringverdigog elgens sommerbestand ogsĂ„ ble utsatt for ulvens uttak i tillegg til vinterjakt pĂ„ svensk side .Vi foreslĂ„r en bedre samordning av elgforvaltningen pĂ„ tvers av riksgrensen. Det krever dialog og samarbeid mellom rettighetshaverne. Et felles elgforvaltningsomrĂ„de som strekker seg over grensen og dekker trekkelgens helĂ„rsomrĂ„de hadde gjort et slikt samarbeid enklere. Dessuten foreslĂ„r vi en samordning av beitetakstmetoden og en felles trafikklysmodell som baserer seg pĂ„ tetthet av uskadde produksjonstrĂŠr heller enn beite-eller skadegraden

    Engineering Reconnaissance Following the October 2016 Central Italy Earthquakes - Version 2

    Get PDF
    Between August and November 2016, three major earthquake events occurred in Central Italy. The first event, with M6.1, took place on 24 August 2016, the second (M5.9) on 26 October, and the third (M6.5) on 30 October 2016. Each event was followed by numerous aftershocks. As shown in Figure 1.1, this earthquake sequence occurred in a gap between two earlier damaging events, the 1997 M6.1 Umbria-Marche earthquake to the north-west and the 2009 M6.1 L’Aquila earthquake to the south-east. This gap had been previously recognized as a zone of elevated risk (GdL INGV sul terremoto di Amatrice, 2016). These events occurred along the spine of the Apennine Mountain range on normal faults and had rake angles ranging from -80 to -100 deg, which corresponds to normal faulting. Each of these events produced substantial damage to local towns and villages. The 24 August event caused massive damages to the following villages: Arquata del Tronto, Accumoli, Amatrice, and Pescara del Tronto. In total, there were 299 fatalities (www.ilgiornale.it), generally from collapses of unreinforced masonry dwellings. The October events caused significant new damage in the villages of Visso, Ussita, and Norcia, although they did not produce fatalities, since the area had largely been evacuated. The NSF-funded Geotechnical Extreme Events Reconnaissance (GEER) association, with co-funding from the B. John Garrick Institute for the Risk Sciences at UCLA and the NSF I/UCRC Center for Unmanned Aircraft Systems (C-UAS) at BYU, mobilized a US-based team to the area in two main phases: (1) following the 24 August event, from early September to early October 2016, and (2) following the October events, between the end of November and the beginning of December 2016. The US team worked in close collaboration with Italian researchers organized under the auspices of the Italian Geotechnical Society, the Italian Center for Seismic Microzonation and its Applications, the Consortium ReLUIS, Centre of Competence of Department of Civil Protection and the DIsaster RECovery Team of Politecnico di Torino. The objective of the Italy-US GEER team was to collect and document perishable data that is essential to advance knowledge of earthquake effects, which ultimately leads to improved procedures for characterization and mitigation of seismic risk. The Italy-US GEER team was multi-disciplinary, with expertise in geology, seismology, geomatics, geotechnical engineering, and structural engineering. The composition of the team was largely the same for the two mobilizations, particularly on the Italian side. Our approach was to combine traditional reconnaissance activities of on-ground recording and mapping of field conditions, with advanced imaging and damage detection routines enabled by state-of-the-art geomatics technology. GEER coordinated its reconnaissance activities with those of the Earthquake Engineering Research Institute (EERI), although the EERI mobilization to the October events was delayed and remains pending as of this writing (April 2017). For the August event reconnaissance, EERI focused on emergency response and recovery, in combination with documenting the effectiveness of public policies related to seismic retrofit. As such, GEER had responsibility for documenting structural damage patterns in addition to geotechnical effects. This report is focused on the reconnaissance activities performed following the October 2016 events. More information about the GEER reconnaissance activities and main findings following the 24 August 2016 event, can be found in GEER (2016). The objective of this document is to provide a summary of our findings, with an emphasis of documentation of data. In general, we do not seek to interpret data, but rather to present it as thoroughly as practical. Moreover, we minimize the presentation of background information already given in GEER (2016), so that the focus is on the effects of the October events. As such, this report and GEER (2016) are inseparable companion documents. Similar to reconnaissance activities following the 24 August 2016 event, the GEER team investigated earthquake effects on slopes, villages, and major infrastructure. Figure 1.2 shows the most strongly affected region and locations described subsequently pertaining to: 1. Surface fault rupture; 2. Recorded ground motions; 3. Landslides and rockfalls; 4. Mud volcanoes; 5. Investigated bridge structures; 6. Villages and hamlets for which mapping of building performance was performed
    • 

    corecore