13 research outputs found

    The peptide transporter 1a of the zebrafish Danio rerio, an emerging model in nutrigenomics and nutrition research: Molecular characterization, functional properties, and expression analysis

    Get PDF
    Background: Peptide transporter 1 (PepT1, alias Slc15a1) mediates the uptake of dietary di/tripeptides in all vertebrates. However, in teleost fish, more than one PepT1-type transporter might function, due to specific whole genome duplication event(s) that occurred during their evolution leading to a more complex paralogue gene repertoire than in higher vertebrates (tetrapods). Results: Here, we describe a novel di/tripeptide transporter in the zebrafish (Danio rerio), i.e., the zebrafish peptide transporter 1a (PepT1a; also known as Solute carrier family 15 member a1, Slc15a1a), which is a paralogue (78% similarity, 62% identity at the amino acid level) of the previously described zebrafish peptide transporter 1b (PepT1b, alias PepT1; also known as Solute carrier family 15 member 1b, Slc15a1b). Also, we report a basic analysis of the pept1a (slc15a1a) mRNA expression levels in zebrafish adult tissues/organs and embryonic/early larval developmental stages. As assessed by expression in Xenopus laevis oocytes and two-electrode voltage clamp measurements, zebrafish PepT1a, as PepT1b, is electrogenic, Na+-independent, and pH-dependent and functions as a low-affinity system, with K0.5 values for Gly-Gln at − 60 mV of 6.92 mmol/L at pH 7.6 and 0.24 mmol/L at pH 6.5 and at − 120 mV of 3.61 mmol/L at pH 7.6 and 0.45 mmol/L at pH 6.5. Zebrafish pept1a mRNA is highly expressed in the intestine and ovary of the adult fish, while its expression in early development undergoes a complex trend over time, with pept1a mRNA being detected 1 and 2 days post-fertilization (dpf), possibly due to its occurrence in the RNA maternal pool, decreasing at 3 dpf (~ 0.5-fold) and increasing above the 1–2 dpf levels at 4 to 7 dpf, with a peak (~ 7-fold) at 6 dpf. Conclusions: We show that the zebrafish PepT1a-type transporter is functional and co-expressed with pept1b (slc15a1b) in the adult fish intestine. Its expression is also confirmed during the early phases of development when the yolk syncytial layer is present and yolk protein resorption processes are active. While completing the missing information on PepT1-type transporters function in the zebrafish, these results open to future investigations on the similar/differential role(s) of PepT1a/PepT1b in zebrafish and teleost fish physiology.publishedVersio

    CT Perfusion in the Characterisation of Renal Lesions: An Added Value to Multiphasic CT

    Get PDF
    Objective. To prospectively evaluate if computed tomography perfusion (CTp) could be a useful tool in addition to multiphasic CT in renal lesion characterisation. Materials and Methods. Fifty-eight patients that were scheduled for surgical resection of a renal mass with a suspicion of renal cell carcinoma (RCC) were enrolled. Forty-one out of 58 patients underwent total or partial nephrectomy after CTp examination, and a pathological analysis was obtained for a total of 49 renal lesions. Perfusion parameters and attenuation values at multiphasic CT for both lesion and normal cortex were analysed. All the results were compared with the histological data obtained following surgery. Results. PS and MTT values were significantly lower in malignant lesions than in the normal cortex (P < 0.001 and P = 0.011, resp.); PS, MTT, and BF values were also statistically different between oncocytomas and malignant lesions. According to ROC analysis, the accuracy, sensitivity, and specificity to predict RCC were 95.92%, 100%, and 66.7%, respectively, for CTp whereas they were 89.80%, 93.35%, and 50%, respectively, for multiphasic CT. Conclusion. A significant difference between renal cortex and tumour CTp parameter values may suggest a malignant renal lesion. CTp could represent an added value to multiphasic CT in differentiating renal cells carcinoma from oncocytoma

    Cytoskeletal Responses and Aif-1 Expression in Caco-2 Monolayers Exposed to Phorbol-12-Myristate-13-Acetate and Carnosine

    No full text
    The dis(re)organization of the cytoskeletal actin in enterocytes mediates epithelial barrier dys(re)function, playing a key role in modulating epithelial monolayer&rsquo;s integrity and remodeling under transition from physiological to pathological states. Here, by fluorescence-based morphological and morphometric analyses, we detected differential responses of cytoskeletal actin in intestinal epithelial Caco-2 cell monolayers at two different stages of their spontaneous differentiation, i.e., undifferentiated cells at 7 days post-seeding (dps) and differentiated enterocyte-like cells at 21 dps, upon challenge in vitro with the inflammation-mimicking stimulus of phorbol-12-myristate-13-acetate (PMA). In addition, specific responses were found in the presence of the natural dipeptide carnosine detecting its potential counteraction against PMA-induced cytoskeletal alterations and remodeling in differentiated Caco-2 monolayers. In such an experimental context, by both immunocytochemistry and Western blot assays in Caco-2 monolayers, we identified the expression of the allograft inflammatory factor 1 (AIF-1) as protein functionally related to both inflammatory and cytoskeletal pathways. In 21 dps monolayers, particularly, we detected variations of its intracellular localization associated with the inflammatory stimulus and its mRNA/protein increase associated with the differentiated 21 dps enterocyte-like monolayer compared to the undifferentiated cells

    Analysis of subsets and function of monocytes by flow cytometry in septic patients and correlation with clinical outcome

    No full text
    Sepsis is a life-threatening dysregulated host response to infection responsible of multiple organs dysfunction (Sepsis-3 International Consensus Definition) where the clinical outcome is a balance between inflammation and immune suppression. Monocytes are critical immune effectors, cross-linking innate and adaptative immunity, responsible of antigen presentation and release of pro-inflammatory cytokines. Different subsets of monocytes perform different functions. We aimed to evaluate monocytes polarization and reprogramming from initial inflammation-phase to that of immune-suppression and monocytes anergy in association with increased risk of worst outcome and/or secondary infections. We analyzed 93 patients with procalcitonin level >0.5 ng/mL (hPCT) and suspected/confirmed sepsis (after microbial culture assay) and 84 controls by analysis of CD14, CD16 and HLA-DR expression on blood monocytes using fluorescent labeled monoclonal antibodies and BD FACS CANTO II. Complete blood cell count, procalcitonin and other biochemical markers were evaluated. Intermediate monocytes CD14++CD16+ increased in hPCT patients (with both positive and negative culture) compared to controls (13.6% ± 0.8 vs 6.2% ± 0.3, p<0.001), while classical monocytes CD14++CD16- were significantly reduced (72.5% ± 1.6 vs 82.6% ± 0.7, p<0.001). Among hPCT patients having positive microbial culture, the intermediate monocytes percentage was significantly higher in septic compared with non-septic/localized-infection patients (17.4% vs 11.5%; p<0.05) whilst classical monocytes percentage was lower (68.0% vs 74.5%, p=0.087). Three-four days following the diagnosis of sepsis, HLA-DR expression on monocyte (mHLA-DR) was lower (94.3%) compared to controls (99.4%) (p<0.05). Septic patients with the worst clinical conditions showed higher incidence of secondary infections, long-time hospitalization and lower HLA-DR+ monocytes compared to septic patients with better clinical outcome (88.4% vs 98.6%, p=0.05). Worst conditions patients didn’t show restoration of normal values of white blood cells, platelets, monocytes, neutrophils and lymphocytes counts compared to better outcome patients The dynamic nature of sepsis correlates with monocytes functional polarization and reprogramming from a lonely CD14++CD16+-pro-inflammatory-phenotype, in infected-not-septic hPCT patients to a decrease of HLA-DR surface expression in hPCT patients with confirmed sepsis, making HLA-DR reduction a marker of immune-paralysis and sepsis outcome. Moreover, worst clinical outcome showed a significant reduction of mHLA-DR percentage quantified as MFI (mode of florescence intensity), indicator of a reduced number of HLA-DR molecule per monocytes. Time course evaluation of hemato-chemical markers showed degeneration of the clinical conditions of worst-outcome-patients. Analysis of monocytes plasticity opens to new mechanisms responsible for pro/anti-inflammatory responses during sepsis, and new immunotherapies

    Zebrafish Larval Melanophores Respond to Electromagnetic Fields Exposure

    No full text
    Groups of zebrafish (Danio rerio) embryos receive radiations of different frequencies and intensities by means of new prototype devices. They are exposed to static (B0, 0 Hz), extremely low-frequency (ELF, 0.2 Hz), low-frequency (LF, 270 kHz), very-high-frequency (VHF, 100 MHz), and ultra-high-frequency (UHF, 900 MHz) field irradiations. The applied magnetic field intensities are 40 mT at 0 Hz, 40 mT at 0.2 Hz, 470 T at 270 kHz, 240 nT at 100 MHz, and 240 nT at 900 MHz. Such combinations are meant to cover environmental radiations from geomagnetic fields and cosmic magnetism to electromagnetic radiation of electronic instruments such as GSM and UMTS transmission-mode mobile systems. For each frequency, fish are monitored for up to 5 days. Unexposed embryos are used as controls. Notably, exposure to the different radiations brings alterations of body pigmentation in zebrafish embryos and larvae in terms of total number, area, and morphology of (black) melanophores. This research may contribute to evaluating the roles and effects of magnetic radiation on living matter

    Cytoskeletal Responses and Aif-1 Expression in Caco-2 Monolayers Exposed to Phorbol-12-Myristate-13-Acetate and Carnosine

    No full text
    The dis(re)organization of the cytoskeletal actin in enterocytes mediates epithelial barrier dys(re)function, playing a key role in modulating epithelial monolayer’s integrity and remodeling under transition from physiological to pathological states. Here, by fluorescence-based morphological and morphometric analyses, we detected differential responses of cytoskeletal actin in intestinal epithelial Caco-2 cell monolayers at two different stages of their spontaneous differentiation, i.e., undifferentiated cells at 7 days post-seeding (dps) and differentiated enterocyte-like cells at 21 dps, upon challenge in vitro with the inflammation-mimicking stimulus of phorbol-12-myristate-13-acetate (PMA). In addition, specific responses were found in the presence of the natural dipeptide carnosine detecting its potential counteraction against PMA-induced cytoskeletal alterations and remodeling in differentiated Caco-2 monolayers. In such an experimental context, by both immunocytochemistry and Western blot assays in Caco-2 monolayers, we identified the expression of the allograft inflammatory factor 1 (AIF-1) as protein functionally related to both inflammatory and cytoskeletal pathways. In 21 dps monolayers, particularly, we detected variations of its intracellular localization associated with the inflammatory stimulus and its mRNA/protein increase associated with the differentiated 21 dps enterocyte-like monolayer compared to the undifferentiated cells

    CT Perfusion in the Characterisation of Renal Lesions: An Added Value to Multiphasic CT

    Get PDF
    Objective. To prospectively evaluate if computed tomography perfusion (CTp) could be a useful tool in addition to multiphasic CT in renal lesion characterisation. Materials and Methods. Fifty-eight patients that were scheduled for surgical resection of a renal mass with a suspicion of renal cell carcinoma (RCC) were enrolled. Forty-one out of 58 patients underwent total or partial nephrectomy after CTp examination, and a pathological analysis was obtained for a total of 49 renal lesions. Perfusion parameters and attenuation values at multiphasic CT for both lesion and normal cortex were analysed. All the results were compared with the histological data obtained following surgery. Results. PS and MTT values were significantly lower in malignant lesions than in the normal cortex (P<0.001 and P=0.011, resp.); PS, MTT, and BF values were also statistically different between oncocytomas and malignant lesions. According to ROC analysis, the accuracy, sensitivity, and specificity to predict RCC were 95.92%, 100%, and 66.7%, respectively, for CTp whereas they were 89.80%, 93.35%, and 50%, respectively, for multiphasic CT. Conclusion. A significant difference between renal cortex and tumour CTp parameter values may suggest a malignant renal lesion. CTp could represent an added value to multiphasic CT in differentiating renal cells carcinoma from oncocytoma

    Identification of <em>SLC15A4/PHT1</em> Gene Products Upregulation Marking the Intestinal Epithelial Monolayer of Ulcerative Colitis Patients

    No full text
    SLC15A4/PHT1 is an endolysosome-resident carrier of oligopeptides and histidine recently come into view as a key path marker of immune/autoimmune/inflammatory pathways in immune cells. Yet, its emerging role in inflammatory processes directly targeting the gastrointestinal epithelial layer, as in the multifactorial pathophysiology of inflammatory bowel disease (IBD), is poorly investigated. Here, the first identification of SLC15A4/PHT1 gene products in human colonic epithelium of ulcerative colitis (UC) patients is reported, showing protein primarily localized in intracellular vesicle-like compartments. Qualitative and quantitative immunohistochemical analyses of colon biopsies revealed overexpression of SLC15A4/PHT1 protein product in the epithelial layer of UC patients. Results were successfully mirrored in vitro, in spontaneously differentiated enterocyte-like monolayers of Caco-2 cells specifically exposed to DSS (dextran sodium sulphate) to mimic IBD inflammatory onsets. SLC15A4/PHT1 expression and cellular localization were characterized confirming its (dys)regulation traits in inflamed vs. healthy epithelia, strongly hinting the hypothesis of SLC15A4/PHT1 increased function associated with epithelial inflammation in IBD patients

    The peptide transporter 1a of the zebrafish Danio rerio, an emerging model in nutrigenomics and nutrition research: Molecular characterization, functional properties, and expression analysis

    No full text
    Background: Peptide transporter 1 (PepT1, alias Slc15a1) mediates the uptake of dietary di/tripeptides in all vertebrates. However, in teleost fish, more than one PepT1-type transporter might function, due to specific whole genome duplication event(s) that occurred during their evolution leading to a more complex paralogue gene repertoire than in higher vertebrates (tetrapods). Results: Here, we describe a novel di/tripeptide transporter in the zebrafish (Danio rerio), i.e., the zebrafish peptide transporter 1a (PepT1a; also known as Solute carrier family 15 member a1, Slc15a1a), which is a paralogue (78% similarity, 62% identity at the amino acid level) of the previously described zebrafish peptide transporter 1b (PepT1b, alias PepT1; also known as Solute carrier family 15 member 1b, Slc15a1b). Also, we report a basic analysis of the pept1a (slc15a1a) mRNA expression levels in zebrafish adult tissues/organs and embryonic/early larval developmental stages. As assessed by expression in Xenopus laevis oocytes and two-electrode voltage clamp measurements, zebrafish PepT1a, as PepT1b, is electrogenic, Na+-independent, and pH-dependent and functions as a low-affinity system, with K0.5 values for Gly-Gln at − 60 mV of 6.92 mmol/L at pH 7.6 and 0.24 mmol/L at pH 6.5 and at − 120 mV of 3.61 mmol/L at pH 7.6 and 0.45 mmol/L at pH 6.5. Zebrafish pept1a mRNA is highly expressed in the intestine and ovary of the adult fish, while its expression in early development undergoes a complex trend over time, with pept1a mRNA being detected 1 and 2 days post-fertilization (dpf), possibly due to its occurrence in the RNA maternal pool, decreasing at 3 dpf (~ 0.5-fold) and increasing above the 1–2 dpf levels at 4 to 7 dpf, with a peak (~ 7-fold) at 6 dpf. Conclusions: We show that the zebrafish PepT1a-type transporter is functional and co-expressed with pept1b (slc15a1b) in the adult fish intestine. Its expression is also confirmed during the early phases of development when the yolk syncytial layer is present and yolk protein resorption processes are active. While completing the missing information on PepT1-type transporters function in the zebrafish, these results open to future investigations on the similar/differential role(s) of PepT1a/PepT1b in zebrafish and teleost fish physiology

    Rearing conditions and automated feed distribution systems for zebrafish (Danio rerio)

    No full text
    Zebrafish (Danio rerio) is a well-established animal model, used in a number of research areas. In the last decade, it has also emerged as a tool to evaluate the effects of diets and dietary components and to test novel paradigms in nutrigenomics, nutrigenetics, and nutritional physiology. Despite its worldwide use, the standardization of the zebrafish rearing conditions, including daily nutritional and good feed management practices, is not yet achieved. This is surprising when compared with what is available for other reared animals, such as rodents or other (e.g., commercial) fishes. To date, a major applicative goal in zebrafish nutritional physiology research is to define common, standard, and reproducible protocols of rearing and feeding conditions to generate reliable and comparable results among research laboratories. This review aims to focus on limitations and disadvantages of the current rearing and feeding practices and on some recent technological solutions provided by research groups and/or biotech companies in the field of facility design, with emphasis on automated feeding distribution systems. A general overview of some common schemes of zebrafish husbandry is also given.publishedVersio
    corecore