223 research outputs found

    USO DE LA FIBRA DE CABUYA PARA EL ANALISIS DEL COMPORTAMIENTO MECANICO DE UNA MEZCLA ASFALTICA EN CALIENTE – 2019

    Get PDF
    La investigación tuvo como finalidad analizar la fibra de cabuya (agave americano) con los cuales se pretende diseñar una mezcla asfáltica de acuerdo a las condiciones de cada lugar de acuerdo a la normativa nacional. Para luego poder establecer la relación de causalidad entre las variables; para la obtención de los materiales se realizó la visita a la cantera de Anda bamba para los agregados, la fibra de cabuya se adquirió de la casa artesanal La casa de la cabuya y el asfalto fue proporcionado por Repsol. Se realizó una investigación de enfoque cuantitativo de nivel exploratorio descriptivo y diseño de tipo experimental puro con un diseño pos prueba únicamente. La técnica empleada fue observacional y para la recolección de datos de laboratorio se empleó formatos para la granulometría y diseño de mezcla por el método Marshall. El proceso del método Marshall se desarrolla de acuerdo a la norma MTC E 504, ASTM D 1559, AASHTO T 225. Los resultados obtenidos tanto para estabilidad y flujo de la mezcla modificada con fibra de cabuya tuvieron una disminución en la estabilidad y un incremento en la deformación por cada porcentaje de fibra de cabuya. Para medir la significancia de las medias de las dos variables se empleó el método estadístico t de student con lo que se puede concluir que el comportamiento mecánico de la mezcla se ve afectado por las fibras, pero, la mezcla asfáltica convencional y la mezcla asfáltica modificada con fibra de cabuya cumplen con los criterios de diseño de mezcla de acuerdo a la normativa del Perú la EG-2013.Tesi

    Mechanisms of cellular retention of melanin bound drugs : Experiments and computational modeling

    Get PDF
    Melanin binding of drugs is known to increase drug concentrations and retention in pigmented eye tissues. Even though the correlation between melanin binding in vitro and exposure to pigmented eye in vivo has been shown, there is a discrepancy between rapid drug release from melanin particles in vitro and the long in vivo retention in the pigmented tissues. We investigated mechanisms and kinetics of pigment-related drug retention experimentally using isolated melanin particles from porcine retinal pigment epithelium and choroid, isolated porcine eye melanosomes, and re-pigmented ARPE-19 cells in a dynamic flow system. The experimental studies were supplemented with kinetic simulations. Affinity and capacity of levofloxacin, terazosin, papaverine, and timolol binding to melanin revealed Kd values of asymptotic to 50-150 mu M and B-max asymptotic to 40-112 nmol.mg(-1). The drugs were released from melanin in < 1 h (timolol) or in 6-12 h (other drugs). The drugs were released slower from the melanosomes than from melanin; the experimental differences ranged from 1.2-fold (papaverine) to 7.4-fold (timolol). Kinetic simulations supported the role of the melanosomal membrane in slowing down the release of melanin binders. In release studies from the pigmented ARPE-19 cells, drugs were released from the cellular melanin to the extra -cellular space in asymptotic to 1 day (timolol) and asymptotic to 11 days (levofloxacin), i.e., much slower than the release from melanin or melanosomes. Simulations of drug release from pigmented cells in the flow system matched the experimental data and enabled further sensitivity analyses. The simulations demonstrated a significant prolongation of drug retention in the cells as a function of decreasing drug permeability in the melanosomal membranes and increasing melanin content in the cells. Overall, we report the impact of cellular factors in prolonging drug retention and release from melanin-containing cells. These data and simulations will facilitate the design of melanin binding drugs with prolonged ocular actions.Peer reviewe

    Release of functional dexamethasone by intracellular enzymes: A modular peptide-based strategy for ocular drug delivery

    Get PDF
    Tissue barriers limit drug delivery in the eye. Therefore, retinal diseases are treated with intravitreal injections. Delivery systems with reduced dosing frequency and/or cellular drug delivery properties are needed. We present here a modular peptide-based delivery system for cell targeted release of dexamethasone in the retinal pigment epithelial cells. The peptide–dexamethasone conjugates consist of cell penetrating peptide, enzyme cleavable linker and dexamethasone that is conjugated with hydrazone bond. The conjugates are chemically stable in the vitreous, internalize into the retinal pigment epithelial cells and release dexamethasone intracellularly by en- zymatic action of cathepsin D. In vitro binding assay and molecular docking confirm binding of the released dexamethasone fragment to the human glucocorticoid receptor. In vivo rabbit studies show increased vitreal retention of dexamethasone with a peptide conjugate. Modular peptide conjugates are a promising approach for drug delivery into the retinal cells.Peer reviewe

    Side-stream products of malting: a neglected source of phytochemicals

    Get PDF
    Whole grain consumption reduces the risk of several chronic diseases. A major contributor to the effect is the synergistic and additive effect of phytochemicals. Malting is an important technological method to process whole grains; the main product, malted grain, is used mainly for brewing, but the process also yields high amounts of side-stream products, such as rootlet. In this study, we comprehensively determined the phytochemical profile of barley, oats, rye, and wheat in different stages of malting and the subsequent extraction phases to assess the potential of malted products and side-streams as a dietary source of bioactive compounds. Utilizing semi-quantitative LC–MS metabolomics, we annotated 285 phytochemicals from the samples, belonging to more than 13 chemical classes. Malting significantly altered the levels of the compounds, many of which were highly increased in the rootlet. Whole grain cereals and the malting products were found to be a diverse and rich source of phytochemicals, highlighting the value of these whole foods as a staple. The characterization of phytochemicals from the 24 different sample types revealed previously unknown existence of some of the compound classes in certain species. The rootlet deserves more attention in human nutrition, rather than its current use mainly as feed, to benefit from its high content of bioactive components

    Metabolome of canine and human saliva: a non-targeted metabolomics study

    Get PDF
    Introduction Saliva metabolites are suggested to reflect the health status of an individual in humans. The same could be true with the dog (Canis lupus familiaris), an important animal model of human disease, but its saliva metabolome is unknown. As a non-invasive sample, canine saliva could offer a new alternative material for research to reveal molecular mechanisms of different (patho)physiological stages, and for veterinary medicine to monitor dogs' health trajectories. Objectives To investigate and characterize the metabolite composition of dog and human saliva in a non-targeted manner. Methods Stimulated saliva was collected from 13 privately-owned dogs and from 14 human individuals. We used a non-targeted ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-qTOF-MS) method to measure metabolite profiles from saliva samples. Results We identified and classified a total of 211 endogenous and exogenous salivary metabolites. The compounds included amino acids, amino acid derivatives, biogenic amines, nucleic acid subunits, lipids, organic acids, small peptides as well as other metabolites, like metabolic waste molecules and other chemicals. Our results reveal a distinct metabolite profile of dog and human saliva as 25 lipid compounds were identified only in canine saliva and eight dipeptides only in human saliva. In addition, we observed large variation in ion abundance within and between the identified saliva metabolites in dog and human. Conclusion The results suggest that non-targeted metabolomics approach utilizing UHPLC-qTOF-MS can detect a wide range of small compounds in dog and human saliva with partially overlapping metabolite composition. The identified metabolites indicate that canine saliva is potentially a versatile material for the discovery of biomarkers for dog welfare. However, this profile is not complete, and dog saliva needs to be investigated in the future with other analytical platforms to characterize the whole canine saliva metabolome. Furthermore, the detailed comparison of human and dog saliva composition needs to be conducted with harmonized study design.Peer reviewe

    Systemic Inflammation Induced Changes in Protein Expression of ABC Transporters and Ionotropic Glutamate Receptor Subunit 1 in the Cerebral Cortex of Familial Alzheimer`s Disease Mouse Model

    Get PDF
    Alzheimer's disease (AD) is an incurable disease, with complex pathophysiology and a myriad of proteins involved in its development. In this study, we applied quantitative targeted absolute proteomic analysis for investigation of changes in potential AD drug targets, biomarkers, and transporters in cerebral cortices of lipopolysaccharide (LPS)-induced neuroinflammation mouse model, familial AD mice (APdE9) with and without LPS treatment as compared to age-matched wild type (WT) mice. The ABCB1, ABCG2 and GluN1 protein expression ratios between LPS treated APdE9 and WT control mice were 0.58 (95% CI 0.44-0.72), 0.65 (95% CI 0.53-0.77) and 0.61 (95% CI 0.52-0.69), respectively. The protein expression levels of other proteins such as MGLL, COX-2, CytC, ABCC1, ABCC4, SLC2A1 and SLC7A5 did not differ between the study groups. Overall, the study revealed that systemic inflammation can alter ABCB1 and ABCG2 protein expression in brain in AD, which can affect intra-brain drug distribution and play a role in AD development. Moreover, the inflammatory insult caused by peripheral infection in AD may be important factor triggering changes in GluN1 protein expression. However, more studies need to be performed in order to confirm these findings. The quantitative information about the expression of selected proteins provides important knowledge, which may help in the optimal use of the mouse models in AD drug development and better translation of preclinical data to humans. (c) 2021 American Pharmacists Association. Published by Elsevier Inc. All rights reserved.Peer reviewe

    Syöpä muuttaa solunulkoisten vesikkelien metabolista sormenjälkeä

    Get PDF
    Cancer alters cell metabolism. How these changes are manifested in the metabolite cargo of cancer-derived extracellular vesicles (EVs) remains poorly understood. To explore these changes, EVs from prostate, cutaneous T-cell lymphoma (CTCL), colon cancer cell lines, and control EVs from their noncancerous counterparts were isolated by differential ultracentrifugation and analyzed by nanoparticle tracking analysis (NTA), electron microscopy (EM), Western blotting, and liquid chromatography-mass spectrometry (LC-MS). Although minor differences between the cancerous and non-cancerous cell-derived EVs were observed by NTA and Western blotting, the largest differences were detected in their metabolite cargo. Compared to EVs from noncancerous cells, cancer EVs contained elevated levels of soluble metabolites, e.g., amino acids and B vitamins. Two metabolites, proline and succinate, were elevated in the EV samples of all three cancer types. In addition, folate and creatinine were elevated in the EVs from prostate and CTCL cancer cell lines. In conclusion, we present the first evidence in vitro that the altered metabolism of different cancer cells is reflected in common metabolite changes in their EVs. These results warrant further studies on the significance and usability of this metabolic fingerprint in cancer.Peer reviewe

    Effects of 2-year physical activity and dietary intervention on adrenarchal and pubertal development: the PANIC study.

    Get PDF
    CONTEXT Childhood overweight has been linked to earlier development of adrenarche and puberty, but it remains unknown if lifestyle interventions influence sexual maturation in general populations. OBJECTIVE To investigate if a 2-year lifestyle intervention influences circulating androgen concentrations and sexual maturation in a general population of children. DESIGN AND PARTICIPANTS A 2-year intervention study in which 421 prepubertal and mostly normal-weight 6-9-year-old children were allocated either to a lifestyle intervention group (119 girls, 132 boys) or a control group (84 girls, 86 boys). INTERVENTION A 2-year physical activity and dietary intervention. MAIN OUTCOME MEASURES Serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, androstenedione, and testosterone concentrations, and clinical adrenarchal and pubertal signs. RESULTS The intervention and control groups had no differences in body size and composition, clinical signs of androgen action, and serum androgens at baseline. The intervention attenuated the increase of dehydroepiandrosterone (p = 0.032), dehydroepiandrosterone sulfate (p = 0.001), androstenedione (p = 0.003), and testosterone (p = 0.007) and delayed pubarche (p = 0.038) in boys but it only attenuated the increase of dehydroepiandrosterone (p = 0.013) and dehydroepiandrosterone sulfate (p = 0.003) in girls. These effects of lifestyle intervention on androgens and the development of pubarche were independent of changes in body size and composition but the effects of intervention on androgens were partly explained by changes in fasting serum insulin. CONCLUSIONS A combined physical activity and dietary intervention attenuates the increase of serum androgen concentrations and sexual maturation in a general population of prepubertal and mostly normal-weight children, independently of changes in body size and composition

    Functional in vitro characterization of SLCO1B1 variants and simulation of the clinical pharmacokinetic impact of impaired OATP1B1 function

    Get PDF
    Organic Anion Transporting Polypeptide 1B1 is important to the hepatic elimination and distribution of many drugs. If OATP1B1 function is decreased, it can increase plasma exposure of e.g. several statins leading to increased risk of muscle toxicity. First, we examined the impact of three naturally occurring rare variants and the frequent SLCO1B1 c.388A > G variant on in vitro transport activity with cellular uptake assay using two substrates: ', 7'-dichlorofluorescein (DCF) and rosuvastatin. Secondly, LC-MS/MS based quantitative targeted absolute proteomics measured the OATP1B1 protein abundance in crude membrane fractions of HEK293 cells over -expressing these single nucleotide variants. Additionally, we simulated the effect of impaired OATP1B1 function on rosuvastatin pharmacokinetics to estimate the need for genotype-guided dosing. R57Q impaired DCF and rosuvastatin transport significantly yet did not change protein expression considerably, while N130D and N151S did not alter activity but increased protein expression. R253Q did not change protein expression but reduced DCF uptake and increased rosuvastatin Km. Based on pharmacokinetic simulations, doses of 30 mg (with 50% OATP1B1 function) and 20 mg (with 0% OATP1B1 function) result in plasma exposure similar to 40 mg dose (with 100% OATP1B1 function). Therefore dose reductions might be considered to avoid increased plasma exposure caused by function-impairing OATP1B1 genetic variants, such as R57Q.Peer reviewe
    corecore