27 research outputs found

    Ventilation Prior to Umbilical Cord Clamping Improves Cardiovascular Stability and Oxygenation in Preterm Lambs After Exposure to Intrauterine Inflammation

    Get PDF
    Background: Delaying umbilical cord clamping until after aeration of the lung (physiological-based cord clamping; PBCC) maintains cardiac output and oxygenation in preterm lambs at birth, however, its efficacy after intrauterine inflammation is not known. Given the high incidence of chorioamnionitis in preterm infants, we investigated whether PBCC conferred any benefits compared to immediate cord clamping (ICC) in preterm lambs exposed antenatally to 7 days of intrauterine inflammation.Methods: Ultrasound guided intraamniotic injection of 20 mg Lipopolysaccharide (from E. coli:055:B5) was administered to pregnant ewes at 0.8 gestation. Seven days later, ewes were anesthetized, preterm fetuses exteriorised via cesarean section, and instrumented for continuous measurement of pulmonary, systemic and cerebral pressures and flows, and systemic, and cerebral oxygenation. Lambs were then randomized to either PBCC, whereupon ventilation was initiated and maintained for 3 min prior to umbilical cord clamping, or ICC where the umbilical cord was cut and ventilation initiated 30 s later. Ventilation was maintained for 30 min.Results: ICC caused a rapid fall in systemic (by 25%) and cerebral (by 11%) oxygen saturation in ICC lambs, concurrent with a rapid increase in carotid arterial pressure and heart rate. The overshoot in carotid arterial pressure was sustained in ICC lambs for the first 20 min of the study. PBCC maintained cardiac output and prevented the fall in cerebral oxygen delivery at birth. PBCC lambs had lower respiratory compliance and higher respiratory requirements throughout the study.Conclusion: PBCC mitigated the adverse effects of ICC on oxygenation and cardiac output, and therefore could be more beneficial in preterm babies exposed to antenatal inflammation as it maintains cardiac output and oxygen delivery. The increased respiratory requirements require further investigation in this sub-group of preterm infants

    Efficacy of a new technique - INtubate-RECruit-SURfactant-Extubate - "IN-REC-SUR-E" - in preterm neonates with respiratory distress syndrome: Study protocol for a randomized controlled trial

    Get PDF
    Background: Although beneficial in clinical practice, the INtubate-SURfactant-Extubate (IN-SUR-E) method is not successful in all preterm neonates with respiratory distress syndrome, with a reported failure rate ranging from 19 to 69 %. One of the possible mechanisms responsible for the unsuccessful IN-SUR-E method, requiring subsequent re-intubation and mechanical ventilation, is the inability of the preterm lung to achieve and maintain an "optimal" functional residual capacity. The importance of lung recruitment before surfactant administration has been demonstrated in animal studies showing that recruitment leads to a more homogeneous surfactant distribution within the lungs. Therefore, the aim of this study is to compare the application of a recruitment maneuver using the high-frequency oscillatory ventilation (HFOV) modality just before the surfactant administration followed by rapid extubation (INtubate-RECruit-SURfactant-Extubate: IN-REC-SUR-E) with IN-SUR-E alone in spontaneously breathing preterm infants requiring nasal continuous positive airway pressure (nCPAP) as initial respiratory support and reaching pre-defined CPAP failure criteria. Methods/design: In this study, 206 spontaneously breathing infants born at 24+0-27+6 weeks' gestation and failing nCPAP during the first 24 h of life, will be randomized to receive an HFOV recruitment maneuver (IN-REC-SUR-E) or no recruitment maneuver (IN-SUR-E) just prior to surfactant administration followed by prompt extubation. The primary outcome is the need for mechanical ventilation within the first 3 days of life. Infants in both groups will be considered to have reached the primary outcome when they are not extubated within 30 min after surfactant administration or when they meet the nCPAP failure criteria after extubation. Discussion: From all available data no definitive evidence exists about a positive effect of recruitment before surfactant instillation, but a rationale exists for testing the following hypothesis: a lung recruitment maneuver performed with a step-by-step Continuous Distending Pressure increase during High-Frequency Oscillatory Ventilation (and not with a sustained inflation) could have a positive effects in terms of improved surfactant distribution and consequent its major efficacy in preterm newborns with respiratory distress syndrome. This represents our challenge. Trial registration: ClinicalTrials.gov identifier: NCT02482766. Registered on 1 June 2015

    Galcanezumab for the prevention of high frequency episodic and chronic migraine in real life in Italy: a multicenter prospective cohort study (the GARLIT study)

    Get PDF
    The clinical benefit of galcanezumab, demonstrated in randomized clinical trials (RCTs), remains to be quantified in real life. This study aimed at evaluating the effectiveness, safety and tolerability of galcanezumab in the prevention of high-frequency episodic migraine (HFEM) and chronic migraine (CM) in a real-life setting

    Unexpected effect of recruitment procedure on lung volume measured by respiratory inductive plethysmography (RIP) during high frequency oscillatory ventilation (HFOV) in preterm neonates with respiratory distress syndrome (RDS)

    No full text
    In clinical practice, one of the major problems in optimizing recruitment or lung volume during HFOV in preterm infants is the inability to accurately measure direct changes in lung volume at bedside

    Determination of Lung Volume and Hemodynamic Changes During High-Frequency Ventilation Recruitment in Preterm Neonates With Respiratory Distress Syndrome

    No full text
    To evaluate the changes in end-expiratory lung volume during an oxygenation-guided stepwise recruitment procedure in elective high-frequency ventilation. We hypothesized that high continuous distending pressure impedes pulmonary blood flow as evidenced by reduced lung volume measurements using respiratory inductive plethysmography. Changes in oxygenation, ventilation, and peripheral perfusion were evaluated as secondary outcomes

    Fetal Doppler velocimetry and bronchopulmonary dysplasia risk among growth-restricted preterm infants: An observational study

    Get PDF
    Objective To investigate whether fetal growth restriction (FGR) diagnosis, based on pathological prenatal fetal Doppler velocimetry, is associated with bronchopulmonary dysplasia (BPD) independently of being small for gestational age (SGA) per se at birth among very preterm infants. Design Prospective, observational study. FGR was defined as failing fetal growth in utero and fetal Doppler velocimetry abnormalities. Setting Policlinico Universitario Agostino Gemelli, Roma, Italy. Patients Preterm newborns with gestational age \ue2\u89\ua430 weeks and birth weight (BW) \ue2\u89\ua41250 g. Main outcome measures Bronchopulmonary dysplasia. Results In the study period, 178 newborns were eligible for the study. Thirty-nine infants (22%) were considered fetal growth-restricted infants. Among the 154 survived babies at 36 weeks postmenstrual age, 12 out of 36 (33%) of the FGR group developed BPD versus 8 out of 118 (7%) of the NO-FGR group (p<0.001). BPD rate was sixfold higher among the SGA-FGR infants compared with the SGA-NO-FGR infants. In a multivariable model, FGR was significantly associated with BPD risk (OR 5.1, CI 1.4 to 18.8, p=0.01), independently from BW z-score that still remains a strong risk factor (OR 0.5, CI 0.3 to 0.9, p=0.01). Conclusion Among SGA preterm infants, BPD risk dramatically increases when placenta dysfunction is the surrounding cause of low BW. Antenatal fetal Doppler surveillance could be a useful tool for studying placenta wellness and predicting BPD risk among preterm babies. Further research is needed to better understand how FGR affects lung development

    Target fraction of inspired oxygen during open lung strategy in neonatal high frequency oscillatory ventilation: a retrospective study

    No full text
    There is no agreement to define the target FiO2 to adopt in the lung recruitment phase during HFOV in preterm infants. We report our experience of an optimal lung volume strategy (OLVS), defined as FiO2 640.25 during the recruitment phase, in a cohort of neonates with gestational age (GA) 6427 weeks treated with elective HFOV for respiratory distress syndrome (RDS) between July 2006 and September 2008
    corecore