627 research outputs found

    Level spacings and periodic orbits

    Full text link
    Starting from a semiclassical quantization condition based on the trace formula, we derive a periodic-orbit formula for the distribution of spacings of eigenvalues with k intermediate levels. Numerical tests verify the validity of this representation for the nearest-neighbor level spacing (k=0). In a second part, we present an asymptotic evaluation for large spacings, where consistency with random matrix theory is achieved for large k. We also discuss the relation with the method of Bogomolny and Keating [Phys. Rev. Lett. 77 (1996) 1472] for two-point correlations.Comment: 4 pages, 2 figures; major revisions in the second part, range of validity of asymptotic evaluation clarifie

    How well-proportioned are lens and prism spaces?

    Full text link
    The CMB anisotropies in spherical 3-spaces with a non-trivial topology are analysed with a focus on lens and prism shaped fundamental cells. The conjecture is tested that well proportioned spaces lead to a suppression of large-scale anisotropies according to the observed cosmic microwave background (CMB). The focus is put on lens spaces L(p,q) which are supposed to be oddly proportioned. However, there are inhomogeneous lens spaces whose shape of the Voronoi domain depends on the position of the observer within the manifold. Such manifolds possess no fixed measure of well-proportioned and allow a predestined test of the well-proportioned conjecture. Topologies having the same Voronoi domain are shown to possess distinct CMB statistics which thus provide a counter-example to the well-proportioned conjecture. The CMB properties are analysed in terms of cyclic subgroups Z_p, and new point of view for the superior behaviour of the Poincar\'e dodecahedron is found

    MetaboTools: A comprehensive toolbox for analysis of genome-scale metabolic models

    Get PDF
    Metabolomic data sets provide a direct read-out of cellular phenotypes and are increasingly generated to study biological questions. Our previous work revealed the potential of analyzing extracellular metabolomic data in the context of the metabolic model using constraint-based modeling. Through this work, which consists of a protocol, a toolbox, and tutorials of two use cases, we make our methods available to the broader scientific community. The protocol describes, in a step-wise manner, the workflow of data integration and computational analysis. The MetaboTools comprise the Matlab code required to complete the workflow described in the protocol. Tutorials explain the computational steps for integration of two different data sets and demonstrate a comprehensive set of methods for the computational analysis of metabolic models and stratification thereof into different phenotypes. The presented workflow supports integrative analysis of multiple omics data sets. Importantly, all analysis tools can be applied to metabolic models without performing the entire workflow. Taken together, this protocol constitutes a comprehensive guide to the intra-model analysis of extracellular metabolomic data and a resource offering a broad set of computational analysis tools for a wide biomedical and non-biomedical research community

    On the Rate of Quantum Ergodicity on hyperbolic Surfaces and Billiards

    Full text link
    The rate of quantum ergodicity is studied for three strongly chaotic (Anosov) systems. The quantal eigenfunctions on a compact Riemannian surface of genus g=2 and of two triangular billiards on a surface of constant negative curvature are investigated. One of the triangular billiards belongs to the class of arithmetic systems. There are no peculiarities observed in the arithmetic system concerning the rate of quantum ergodicity. This contrasts to the peculiar behaviour with respect to the statistical properties of the quantal levels. It is demonstrated that the rate of quantum ergodicity in the three considered systems fits well with the known upper and lower bounds. Furthermore, Sarnak's conjecture about quantum unique ergodicity for hyperbolic surfaces is confirmed numerically in these three systems.Comment: 19 pages, Latex, This file contains no figures. A postscript file with all figures is available at http://www.physik.uni-ulm.de/theo/qc/ (Delay is expected to 23.7.97 since our Web master is on vacation.

    Hot pixel contamination in the CMB correlation function?

    Full text link
    Recently, it was suggested that the map-making procedure, which is applied to the time-ordered CMB data by the WMAP team, might be flawed by hot pixels. This could lead to a bias in the pixels having an angular distance of about 141 degrees from hot pixels due to the differential measuring process of the satellite WMAP. Here, the bias is confirmed, and the temperature two-point correlation function C(theta) is reevaluated by excluding the affected pixels. It is shown that the most significant effect occurs in C(theta) at the largest angles near theta = 180 degrees. Furthermore, the corrected correlation function C(theta) is applied to the cubic topology of the Universe, and it is found that such a multi-connected universe matches the temperature correlation better than the LCDM concordance model, provided the cubic length scale is close to L=4 measured in units of the Hubble length

    A measure on the set of compact Friedmann-Lemaitre-Robertson-Walker models

    Full text link
    Compact, flat Friedmann-Lemaitre-Robertson-Walker (FLRW) models have recently regained interest as a good fit to the observed cosmic microwave background temperature fluctuations. However, it is generally thought that a globally, exactly-flat FLRW model is theoretically improbable. Here, in order to obtain a probability space on the set F of compact, comoving, 3-spatial sections of FLRW models, a physically motivated hypothesis is proposed, using the density parameter Omega as a derived rather than fundamental parameter. We assume that the processes that select the 3-manifold also select a global mass-energy and a Hubble parameter. The inferred range in Omega consists of a single real value for any 3-manifold. Thus, the obvious measure over F is the discrete measure. Hence, if the global mass-energy and Hubble parameter are a function of 3-manifold choice among compact FLRW models, then probability spaces parametrised by Omega do not, in general, give a zero probability of a flat model. Alternatively, parametrisation by the injectivity radius r_inj ("size") suggests the Lebesgue measure. In this case, the probability space over the injectivity radius implies that flat models occur almost surely (a.s.), in the sense of probability theory, and non-flat models a.s. do not occur.Comment: 19 pages, 4 figures; v2: minor language improvements; v3: generalisation: m, H functions of

    Nodal domains statistics - a criterion for quantum chaos

    Get PDF
    We consider the distribution of the (properly normalized) numbers of nodal domains of wave functions in 2-dd quantum billiards. We show that these distributions distinguish clearly between systems with integrable (separable) or chaotic underlying classical dynamics, and for each case the limiting distribution is universal (system independent). Thus, a new criterion for quantum chaos is provided by the statistics of the wave functions, which complements the well established criterion based on spectral statistics.Comment: 4 pages, 5 figures, revte

    Supernovae observations and cosmic topology

    Full text link
    Two fundamental questions regarding our description of the Universe concern the geometry and topology of its 3-dimensional space. While geometry is a local characteristic that gives the intrinsic curvature, topology is a global feature that characterizes the shape and size of the 3-space. The geometry constrains, but does not dictate the the spatial topology. We show that, besides determining the spatial geometry, the knowledge of the spatial topology allows to place tight constraints on the density parameters associated with dark matter (Ωm\Omega_m) and dark energy (ΩΛ\Omega_{\Lambda}). By using the Poincar\'e dodecahedral space as the observable spatial topology, we reanalyze the current type Ia supenovae (SNe Ia) constraints on the density parametric space ΩmΩΛ\Omega_{m} - \Omega_{\Lambda}. From this SNe Ia plus cosmic topology analysis, we found best fit values for the density parameters, which are in agreement with a number of independent cosmological observations.Comment: 5 pages, 2 figures. Minor changes and a ref. added. To appear in A&A (2006

    Modeling deformations of the workpiece and removal of material when turning

    Get PDF
    During machining mechanical energy is dissipated into heat by frictional processes and plastic deformations of the workpiece material. Workpiece and tool are thereby subjected to thermal and mechanical loads that cause thermal expansions and mechanical deformations. These decrease the accuracy of machining. In order to reduce such deformations, enhanced cutting conditions need to be determined. Finite element (FE) simulations allow for such an optimization prior to actual machining. A validated 3D FE model to determine the temperature distribution and the deformations of the workpiece regarding the cutting condition and the actual tool position is outlined for turning. The continuous removal of material for arbitrary geometries when simulating the temperature distribution and the deformations is considered. This allows for the calculation of the actual workpiece diameter after turning
    corecore