48 research outputs found

    Light-matter interactions in multi-element resonators

    Full text link
    We investigate structural resonances in multi-element optical resonators and provide a roadmap for the description of the interaction of single extended cavity modes with quantum emitters or mechanical resonators. Using a first principle approach based on the transfer matrix formalism we analyze, both numerically and analytically, the static and dynamical properties of three- and four-mirror cavities. We investigate in particular conditions under which the confinement of the field in specific subcavities allows for enhanced light-matter interactions in the context of cavity quantum electrodynamics and cavity optomechanics

    Strong coupling and long-range collective interactions in optomechanical arrays

    Get PDF
    We investigate the collective optomechanics of an ensemble of scatterers inside a Fabry-Perot resonator and identify an optimized configuration where the ensemble is transmissive, in contrast with the usual reflective optomechanics approach. In this configuration, the optomechanical coupling of a specific collective mechanical mode can be several orders of magnitude larger than the single-element case, and long-range interactions can be generated between the different elements since light permeates throughout the array. This new regime should realistically allow for achieving strong single-photon optomechanical coupling with massive resonators, realizing hybrid quantum interfaces, and exploiting collective long-range interactions in arrays of atoms or mechanical oscillators.Comment: 11 pages, 12 figure

    Cavity optomechanics with arrays of thick dielectric membranes

    Get PDF
    Optomechanical arrays made of structured flexible dielectrics are a promising system for exploring quantum and many-body optomechanical phenomena. We generalize investigations of the optomechanical properties of periodic arrays of one-dimensional scatterers in optical resonators to the case of vibrating membranes whose thickness is not necessarily small with respect to the optical wavelength of interest. The array optical transmission spectrum and its optomechanical coupling with a linear Fabry-Perot cavity field are investigated both analytically and numerically.Comment: 7 pages, 6 figure

    Enhanced optomechanical readout using optical coalescence

    Get PDF
    We present a scheme to strongly enhance the readout sensitivity of the squared displacement of a mobile scatterer placed in a Fabry-P\'erot cavity. We investigate the largely unexplored regime of cavity electrodynamics in which a highly reflective element positioned between the end mirrors of a symmetric Fabry-P\'erot resonator strongly modifies the cavity response function, such that two longitudinal modes with different spatial parity are brought close to frequency degeneracy and interfere in the cavity output field. In the case of a movable middle reflector we show that the interference in this generic "optical coalescence" phenomenon gives rise to an enhanced frequency shift of the peaks of the cavity transmission that can be exploited in optomechanics.Comment: 5 pages, 3 figure
    corecore