17 research outputs found

    BMP-2 and BMP-4 signalling in the developing spinal cord of human and rat embryos

    Get PDF
    Bone morphogenetic proteins (BMPs) are multifunctional growth factors implicated in multiple biological events. Studies on mice, chickens and other experimental animals have shown that BMP signalling plays critical role in embryonic development, in particular in the neural patterning. In our study we comparatively evaluated BMP-2 and BMP-4 protein expression in the developing spinal cord of human and rat embryos. The human and rat embryos of Carnegie stages 14, 18 and 20 were embedded in paraffin and cut serially in transversal direction. BMP-2 and BMP-4 were detected by immunohistochemical staining. Spatial and temporal expression pattern of BMP-s during early stages of spinal cord development was similar in human and rat embryos. Higher expression of BMP-s was seen in the dorsal and lower expression in the ventral part of the developing spinal cord both in human and rat embryos. However, temporal difference in the expression of BMPs in the non-neural ectoderm between human and rat embryos was noted. Staining of BMP-s in the non-neural ectoderm adjacent to the developing spinal cord in the human embryos seemed to have a tendency to decrease from earlier to later developmental stages, while in rat embryos there was an opposite tendenc

    Expression of Pax2 protein during the formation of the central nervous system in human embryos

    Get PDF
    Members of the paired box (Pax) gene family are expressed in distinctive regions of the developing central nervous system, supporting a role of neural patterning. In this study, Pax2 protein expression was examined in the developing neural tube by immunohistochemistry methods in 30 human embryos of Carnegiestages (CS) 10–20 collected after legal abortions. Pax2 expression was detected along the boundaries of main divisions of the developing brain and spinal cord. However, Pax2 expression was found to be stronger in the developing brain than in the spinal cord of the same young embryos in CS 10–14, which was the mostremarkable at CS 10. Pax2 expression was detected in the developing forebrain,midbrain and hindbrain. At later stages (CS 16–20) Pax2 expression was observed in the midbrain-hindbrain boundary and also in the developing diencephalon and cerebellum. In the wall of developing spinal cord Pax2 expression was detected in the ventricular, mantel and marginal layers. Pax2 staining was seen to increase throughout the later stages of spinal cord development and significantly stronger expression was found at CS 16–20 compared to CS 10. Furthermore, spatially restricted expression of Pax2 was observed along the compartmental dorsal-ventralaxis of the spinal cord as Pax2 staining was weaker in the ventricular layer of the ventral part of the developing spinal cord compared with developing area of dorsal part

    Pax proteins in embryogenesis and their role in nervous system development PAX PROTEINS IN EMBRYOGENESIS AND THEIR ROLE IN NERVOUS SYSTEM DEVELOPMENT

    Get PDF
    ABSTRACT The mammalian Pax genes encode a family of transcription factors, which play important roles in embryonic development and organogenesis. During the central nervous system development Pax genes have substantial roles in neural differentiation and regional specification. Pax proteins are expressed in populations of nerve cells within the developing forebrain, midbrain, hindbrain and spinal cord. In this article the fundamental roles of Pax proteins in the embryogenesis are outlined and the temporal and spatial influences of Pax on the formation of the central nervous system are discussed

    Deletion of the CCK2 receptor gene reduces mechanical sensitivity and abolishes the development of hyperalgesia in mononeuropathic mice

    No full text
    Previous studies suggest that cholecystokinin (CCK) is implicated in the modulation of pain sensitivity and the development of neuropathic pain. We used CCK(2) receptor deficient (CCK(2) (-/-)) mice and assessed their mechanical sensitivity using Von Frey filaments, as well as the development and time course of mechanical hyperalgesia in a model of neuropathic pain. We found that CCK(2) (-/-) mice displayed mechanical hyposensitivity, which was reversed to the level of wild-type animals after administration of naloxone (0.1-10 mg/kg). On the other hand, injection of L-365260 (0.01-1 mg/kg), an antagonist of CCK(2) receptors, decreased dose-dependently, mechanical sensitivity in wild-type mice. The mechanism of reduced mechanical sensitivity in CCK(2) (-/-) mice may be explained by changes in interactions between CCK and opioid systems. Indeed, CCK(2) (-/-) mice natively expressed higher levels of lumbar CCK(1), opioid delta and kappa receptors. Next, we found that CCK(2) (-/-) mice did not develop mechanical hyperalgesia in the Bennett's neuropathic pain model. Induction of neuropathy resulted in decrease of lumbar pro-opiomelanocortin (POMC) gene expression in wild-type mice, but increase of POMC expression in CCK(2) (-/-) mice. In addition, induction of neuropathy resulted in further increase of opioid delta receptor in CCK(2) (-/-) mice. Gene expression results indicate up-regulation of opioid system in CCK(2) (-/-) mice, which apparently result in decreased neuropathy score. Our study suggests that not only pain sensitivity, but also mechanical sensitivity and the development of neuropathic pain are regulated by antagonistic interactions between CCK and opioid systems

    Energy metabolism and thyroid function of mice with deleted Wolframin (Wfs1) gene

    No full text
    There is no data about the energy metabolism of patients with Wolfram syndrome caused by mutations in the wolframin (Wfs1) gene. The aim of this study was to investigate the role of Wfs1 in energy metabolism and thyroid function in Wfs1 deficient mice (Wfs1KO). 16 male (8 Wfs1KO, 8 wild type (wt)) and 16 female (8 Wfs1KO, 8wt) mice aged 11–13 weeks were studied alone in a specific metabolic cage for 48 h. Body weight, food, water and O2 consumption, motor activity, CO2 and heat production of mice were recorded. At the age of 14–20 weeks, plasma levels of thyroxine (T4), TSH and leptin were measured and histology of thyroid tissues examined. Mean CO2 and heat production was not different between the groups. Mean O2 consumption was higher in the Wfs1KO females compared to the Wfs1KO males (3 410.0±127.0 vs. 2 806.0±82.4 ml/kg/h; p<0.05), but not compared to the wt mice. The mean movement activity was not different between the groups except that the Wfs1KO females reared up more often than the wt females (199.8±63.46 vs. 39.26±24.71 cnts/48 h; p<0.05). Both male and female Wfs1KO mice had significantly lower body mass and food intake than wt mice. Male Wfs1KO mice also lost more weight in metabolic cage than wt males (20.43±0.41 vs. 16.07±0.86%; p<0.05) indicating more pronounced response to isolation. Male Wfs1KO mice had significantly lower levels of plasma leptin than wt male mice (3.37±0.40 vs. 5.82±0.71 ng/ml; p<0.01). Thyroid function measured by serum TSH and T4 levels was not different between Wfs1KO and wt groups, but both Wfs1KO and wt male mice had significantly higher mean T4 levels than female mice. The histology of thyroid tissue of Wfs1KO males showed a trend to a smaller mean number of epithelial cells per follicle than the wt male mice. Although Wfs1KO mice were smaller and lost more weight during the experiment, their energy metabolism was not different from wt mice except that the female Wfs1KO mice consumed more O2. As mice in this study were relatively young, longitudinal studies in older mice are necessary to clarify whether Wfs1 has a role in energy metabolism when the disease progresses further

    Altered renal morphology in transgenic mice with cholecystokinin overexpression

    No full text
    Although cholecystokinin is a regulatory peptide with a predominant role in the brain and the gastrointestinal tract, there is an increasing evidence for its role in the kidney. The aim of this study was to reveal morphological changes in the structure of kidney of mice with cholecystokinin overexpression by means of light, transmission and scanning electron microscope, and atomic force microscopy. Using immunohistochemistry the expression of important basement membrane proteins collagen IV, laminin and fibronectin, as well the distribution of cholecystokinin-8 in the renal structures was evaluated. The altered morphology of kidneys of mice with cholecystokinin overexpression was seen by all microscopic techniques used. The renal corpuscles were relatively small with narrow capsular lumen. The basement membranes of renal tubules were thickened and the epithelial cells were damaged, which was more pronounced for distal tubules. Characteristic feature was the increased number of vesicles seen throughout the epithelial cells of proximal and especially in distal tubules reflecting to the enhanced cellular degeneration. The relative expression of laminin but not collagen IV in the glomerular basement membrane was higher than in the tubular basement membranes. The content of fibronectin, in opposite, was higher in tubular membranes. Cholecystokinin-8 was clearly expressed in the glomeruli, in Bowman’s capsule, in proximal and distal tubules, and in collecting ducts. Ultrastructural studies showed irregularly thickened glomerular basement membranes to which elongated cytopodia of differently shaped podocytes were attached. As foot processes were often fused the number of filtration pores was decreased. In conclusion, cholecystokinin plays important role in renal structural formation and in functioning as different aspects of urine production in mice with cholecystokinin overexpression are affected-the uneven glomerular basement membrane thickening, structural changes in podocytes and in filtration slits affect glomerular filtration, while damaged tubular epithelial cells and changed composition of thickened tubular basement membranes affect reabsorption

    Pathological influence of obesity on renal structural changes in chronic kidney disease.

    Get PDF
    BACKGROUND: Role of obesity in renal pathological and structural changes remains poorly investigated, and this study was designed to examine the pathological effects of obesity on renal structural components in patients with chronic kidney diseases (CKD). METHODS: The study subjects were obese (body mass index, BMI > or = 25 kg/m2) patients with nonglomerulonephritis (non-GN, n = 26), IgA nephropathy (IgAN, n = 19), benign nephrosclerosis (BNS, n = 15), and thin basement membrane disease (TMD, n = 6), and 65 nonobese controls (n = 20, 20, 10, and 15, respectively). Patients were evaluated for glomerular lesions (mesangial proliferation and focal segmental/global glomerulosclerosis), glomerular size, and thickness of glomerular basement membrane (GBM). RESULTS: Urinary protein was higher in obese non-GN, IgAN, and BNS groups than in the respective controls. Focal segmental glomerulosclerosis (FSGS) lesions were noted in all obesity groups. The glomeruli were larger in size in obese than in nonobese patients of the non-GN and IgAN groups. The glomeruli of nonobese TMD and BNS patients were significantly larger in size than those of nonobese non-GN patients. GBM were thicker in obese than in nonobese patients irrespective of types of glomerular diseases, but only significantly so in non-GN and BNS groups. CONCLUSION: In non-GN, IgAN, and BNS, obesity worsens proteinuria and is associated with structural changes such as glomerulomegaly and GBM thickening, similar to changes observed in obesity-related nephropathy. Obesity seems to worsen the renopathological state in CKD
    corecore