7 research outputs found

    The Acoustic Ecology of the Fin Whale in Eastern Antarctic and Australian Waters

    Get PDF
    Utilising ~360,000 hours of underwater sound recordings, this thesis presents a broad-scale study of the acoustic ecology of the Southern Hemisphere sub-species of fin whale in Eastern Antarctic, Sub-Antarctic, and Australian waters. The thesis results outline the seasonal migratory presence and song repertoire of the animals, suggesting two separate sub-populations of fin whale in these regions. Further, this thesis investigated diel patterns and environmental drivers of the animals’ presence in Eastern Antarctic water

    An open access dataset for developing automated detectors of Antarctic baleen whale sounds and performance evaluation of two commonly used detectors

    Get PDF
    Since 2001, hundreds of thousands of hours of underwater acoustic recordings have been made throughout the Southern Ocean south of 60° S. Detailed analysis of the occurrence of marine mammal sounds in these circumpolar recordings could provide novel insights into their ecology, but manual inspection of the entirety of all recordings would be prohibitively time consuming and expensive. Automated signal processing methods have now developed to the point that they can be applied to these data in a cost-efective manner. However training and evaluating the efcacy of these automated signal processing methods still requires a representative annotated library of sounds to identify the true presence and absence of diferent sound types. This work presents such a library of annotated recordings for the purpose of training and evaluating automated detectors of Antarctic blue and fn whale calls. Creation of the library has focused on the annotation of a representative sample of recordings to ensure that automated algorithms can be developed and tested across a broad range of instruments, locations, environmental conditions, and years. To demonstrate the utility of the library, we characterise the performance of two automated detection algorithms that have been commonly used to detect stereotyped calls of blue and fn whales. The availability of this library will facilitate development of improved detectors for the acoustic presence of Southern Ocean blue and fn whales. It can also be expanded upon to facilitate standardization of subsequent analysis of spatiotemporal trends in call-density of these circumpolar species.http://www.nature.com/srep/index.htmlpm2022Mammal Research Institut

    Fin whale (Balaenoptera physalus) migration in Australian waters using passive acoustic monitoring

    Get PDF
    © 2019, The Author(s). The fin whale is a globally endangered species and is listed as threatened in Australia, however no peer-reviewed studies are available to indicate the migratory movements of the species in Australian waters. This study uses passive acoustic monitoring as a tool to identify the migratory movements of fin whales in Australian waters. Sampling was conducted from eight locations around Australia between 2009 and 2017, providing a total of 37 annual migratory records. Taken together, our observations provide evidence of fin whale migration through Australian waters, with earliest arrival of the animals recorded on the Western Australian coast, at Cape Leeuwin in April. The whales travel through Cape Leeuwin, migrating northward along the Western Australian coast to the Perth Canyon (May to October), which likely acts as a way-station for feeding. Some whales continue migrating as far north as Dampier (19°S). On Australia’s east coast, at Tuncurry, fin whale seasonal presence each year occurred later, from June to late September/October. A total of only 8,024 fin whale pulses were recorded on the east coast, compared to 177,328 pulses recorded at the Perth Canyon. We suggest these differences, as well as the spatial separation between coasts, provide preliminary evidence that the fin whales present on the east and west coasts constitute separate sub-populations

    Deep learning algorithm outperforms experienced human observer at detection of blue whale D‐calls: a double‐observer analysis

    No full text
    Abstract An automated algorithm for passive acoustic detection of blue whale D‐calls was developed based on established deep learning methods for image recognition via the DenseNet architecture. The detector was trained on annotated acoustic recordings from the Antarctic, and performance of the detector was assessed by calculating precision and recall using a separate independent dataset also from the Antarctic. Detections from both the human analyst and automated detector were then inspected by an independent judge to identify any calls missed by either approach and to adjudicate whether the apparent false‐positive detections from the automated approach were actually true positives. A final performance assessment was conducted using double‐observer methods (via a closed‐population Huggins mark–recapture model) to assess the probability of detection of calls by both the human analyst and automated detector, based on the assumption of false‐positive‐free adjudicated detections. According to our double‐observer analysis, the automated detector showed superior performance with higher recall and fewer false positives than the original human analyst, and with performance similar to existing top automated detectors. To understand the performance of both detectors we inspected the time‐series and signal‐to‐noise ratio (SNR) of detections for the test dataset, and found that most of the advantages from the automated detector occurred at low and medium SNR

    Diel patterns of fin whale 20 Hz acoustic presence in Eastern Antarctic waters

    No full text
    This study presents evidence of diel patterns in fin whale (Balaenoptera physalus) 20 Hz acoustic presence in Eastern Antarctic waters. Passive acoustic recordings were collected at four sites in Eastern Antarctica from 2013 to 2019. A generalized linear model fitted by a generalized estimating equation was used to test the hypothesis that fin whale 20 Hz acoustic presence shows significant variation between light regimes dawn, day, dusk and night. In the Indian sector of Antarctica, at the Prydz and Southern Kerguelen Plateau sites, fin whale acoustic presence was significantly more common during the night and dawn before declining during the day and dusk periods. A different diel pattern was observed in the Pacific sector, at the Dumont d'Urville site: fin whale acoustic presence was significantly more common during the day than dusk and night periods. No diel pattern was identified at the Casey site. The identified diel patterns in the Indian sector of Eastern Antarctica correlate with previously identified diel patterns of the fin whales' prey. We suggest an indirect association between fin whale acoustic presence and foraging, with the animals more likely to produce the 20 Hz pulse during the night when not foraging and less likely to vocalize when foraging during the day

    Seasonal Distribution of the Fin Whale (Balaenoptera physalus) in Antarctic and Australian Waters Based on Passive Acoustics

    No full text
    The fin whale is listed as globally vulnerable, with ongoing threats to their population, yet little is known about the distribution and movements of the Southern Hemisphere sub-species, Balaenoptera physalus quoyi. This study assesses fin whale distribution in the Southern Hemisphere analysing acoustic recordings from 15 locations in Antarctic and Australian waters from 2002 to 2019. A seasonal acoustic presence of fin whales in Antarctic waters from late austral summer to autumn (February to June) with long-term, consistent annual usage areas was identified at the Southern Kerguelen Plateau and Dumont d’Urville sites. In comparison, limited vocal presence of fin whales was observed at the Casey site. In Australian waters, fin whales were seasonally present from austral autumn to mid-spring (May to October) on east and west coasts, with a decadal pattern of acoustic presence observed at Cape Leeuwin, WA. Two migratory pathways are identified, from the Indian sector of Antarctica to the west coast of Australia and from the Pacific sector of Antarctica to the east coast of Australia. The identified seasonal distributions and migratory pathways provide valuable information to aid in monitoring the recovery of this vulnerable sub-species. We suggest the identified distribution and dispersal from the Southern Kerguelen Plateau and Dumont d’Urville sites to the west and east coasts of Australia respectively, as well as the spatial separation between Antarctic sites, provide preliminary evidence of separate sub-populations of the Southern Hemisphere sub-species of fin whale

    An open access dataset for developing automated detectors of Antarctic baleen whale sounds and performance evaluation of two commonly used detectors

    Get PDF
    Funding Information: The annotated library was made possible with funding from: IWC-SORP Grant “An annotated library of underwater acoustic recordings for testing and training automated algorithms for detecting Southern Ocean baleen whales”; IWC-SORP Grant “IWC-SORP Project 5—Acoustic trends in abundance, distribution, and seasonal presence of Antarctic blue whales and fin whales in the Southern Ocean: 5-year strategic meeting”; Australian Antarctic Science Projects 4101, and 4102—Antarctic baleen whale habitat utilisation and linkages to environmental characteristics, and Population abundance, trend, structure and distribution of the endangered Antarctic blue whale; Research grants from the Korean Ministry of Oceans and Fisheries (KIMST20190361; PM20020; PE20230). This report is NOAA/PMEL contribution number 5005. South African National Antarctic Programme Grant/Award Number: SNA 2011112500003.Since 2001, hundreds of thousands of hours of underwater acoustic recordings have been made throughout the Southern Ocean south of 60° S. Detailed analysis of the occurrence of marine mammal sounds in these circumpolar recordings could provide novel insights into their ecology, but manual inspection of the entirety of all recordings would be prohibitively time consuming and expensive. Automated signal processing methods have now developed to the point that they can be applied to these data in a cost-effective manner. However training and evaluating the efficacy of these automated signal processing methods still requires a representative annotated library of sounds to identify the true presence and absence of different sound types. This work presents such a library of annotated recordings for the purpose of training and evaluating automated detectors of Antarctic blue and fin whale calls. Creation of the library has focused on the annotation of a representative sample of recordings to ensure that automated algorithms can be developed and tested across a broad range of instruments, locations, environmental conditions, and years. To demonstrate the utility of the library, we characterise the performance of two automated detection algorithms that have been commonly used to detect stereotyped calls of blue and fin whales. The availability of this library will facilitate development of improved detectors for the acoustic presence of Southern Ocean blue and fin whales. It can also be expanded upon to facilitate standardization of subsequent analysis of spatiotemporal trends in call-density of these circumpolar species.Publisher PDFPeer reviewe
    corecore