501 research outputs found

    Quantum Mechanics for Thinkers

    Get PDF
    This book provides quick access to quantum mechanics without dealing with a true textbook that demands proper specialized studies in physics (and related mathematics) for about a couple of years. It consists of three parts: basic formalism, formal development, and ontological issues. The 70 figures are a crucial instrument for becoming acquainted in a "representative" way with abstract problems, and the 30 in-section boxes assist readers understand for difficult mathematical problems. The book offers a considerable number of clear and analytical treatments of what are considered the most difficult conceptual problems of the theory

    Immunoscintigraphy for therapy decision making and follow-up of biological therapies

    Get PDF
    With the availability of new biological therapies there is the need of more accurate diagnostic tools to noninvasively assess the presence of their targets. In this scenario nuclear medicine offers many radiopharmaceuticals for SPECT or PET imaging of many pathological conditions. The availability of monoclonal antibodies provides tools to target specific antigens involved in angiogenesis, cell cycle or modulation of the immune systems. The radiolabelling of such therapeutic mAbs is a promising method to evaluate the antigenic status of each cancer lesion or inflamed sites before starting the therapy. It may also allow to perform follow-up of such biological therapies. In the present review we provide an overview of the most studied radiolabelled antibodies for therapy decision making and follow-up of patients affected by cancer and other pathological conditions

    Limit quantum efficiency for violation of Clauser-Horne Inequality for qutrits

    Full text link
    In this paper we present the results of numerical calculations about the minimal value of detection efficiency for violating the Clauser - Horne inequality for qutrits. Our results show how the use of non-maximally entangled states largely improves this limit respect to maximally entangled ones. A stronger resistance to noise is also found.Comment: Phys. Rev. A in pres

    Visualizing the Quantum Interaction Picture in Phase Space

    Full text link
    We illustrate the correspondence between the quantum Interaction Picture-evolution of the state of a quantum system in Hilbert space and a combination of local and global transformations of its Wigner function in phase space. To this aim, we consider the time-evolution of a quantized harmonic oscillator driven by both a linear and a quadratic (in terms of bosonic creation and annihilation operators) potentials and employ the Magnus series to derive the exact form of the time-evolution operator. In this case, the Interaction Picture corresponds to a local transformation of phase space-reference frame into the one that is co-moving with the Wigner function.Comment: Submitted to New Journal of Physic

    Damage Detection and Localization on Real Structures Subjected to Strong Motion Earthquakes Using the Curvature Evolution Method: The Navelli (Italy) Case Study

    Get PDF
    In recent years, structural health monitoring (SHM) has received increasing interest from both research and professional engineering communities. This is due to the limitations related to the use of traditional methods based on visual inspection for a rapid and effective assessment of structures and infrastructures when compared with the great potential offered by newly developed automatic systems. Most of these kinds of systems allow the continuous estimation of structural modal properties that are strictly correlated to the mechanical characteristics of the monitored structure. These can change as a result of material deterioration and structural damage related to earthquake shaking. Furthermore, a suitable configuration of a dense sensor network in a real-time monitoring system can allow to detect and localize structural and non-structural damage by comparing the initial and a final state of the structure after a critical event, such as a relevant earthquake. In this paper, the modal curvature evaluation method, used for damage detection and localization on framed structures, considering the mode curvature variation due to strong earthquake shaking, is further developed. The modified approach is validated by numerical and experimental case studies. The extended procedure, named "Curvature Evolution Method" (CEM), reduces the required computing time and the uncertainties in the results. Furthermore, in this work, an empirical relationship between curvature variation and damage index has been defined for both bare and infilled frames

    Labelling and clinical performance of human leukocytes labelled with 99m Tc-HMPAO using leukokit® with gelofusine versus leukokit® with HES as sedimentation agent

    Get PDF
    The scintigraphy with radiolabelled autologous leukocytes (WBCs) is considered the gold-standard technique for imaging infections. Leukokit (R) is a commercially available, disposable, sterile kit for labelling WBCs ex vivo. In this kit, WBCs isolation from red blood cells (RBCs) was performed using poly(O-2-hydroxyethyl)starch (HES) as the RBCs sedimentation agent. Due to its poor availability, HES has been recently replaced by Gelofusine as the RBC sedimentation agent. The aim of this study was to compare the labelling efficiency and the diagnostic accuracy of WBCs labelled with Leukokit (R) with HES vs Leukokit (R) with Gelofusine. WBCs were isolated using HES or Gelofusine for 45minutes and then purified from platelets (PLTs) and labelled with 1.1 +/- 0.3 GBq of freshly prepared Tc-99m- HMPAO. The following parameters were evaluated: the number and type of recovered WBCs, RBCs contamination, PLTs contamination, vitality of neutrophils, and chemotactic properties of neutrophils. Clinical comparison was performed between 80 patients (33 males; age 67.5 +/- 14.2) injected with Tc-99m-HMPAO-WBCs, using HES as the sedimentation agent, and 92 patients (38 males; age 68.2 +/- 12.8) injected with Tc-99m-HMPAO-WBCs using Gelofusine as the sedimentation agent. Patients were affected by prosthetic joint infections, peripheral bone osteomyelitis, or vascular graft infection. We compared radiolabelling efficiency (LE), final recovery yield (RY), and diagnostic outcome based on microbiology or 2-year follow-up. Results showed that HES provides the lowest RBCs and PLTs contamination, but Gelofusine provides the highest WBC recovery. Both agents did not influence the chemotactic properties of WBCs, and no differences were found in terms of LE and RY. Sensitivity, specificity, and accuracy were also not significantly different for WBCs labelled with both agents (diagnostic accuracy 90.9%, CI = 74.9-96.1 vs 98.3%, CI = 90.8-100, for HES and Gelofusine, respectively). In conclusion, Gelofusine can be considered a suitable alternative of HES for WBCs separation and labelling

    The Measurement Process in Local Quantum Theory and the EPR Paradox

    Full text link
    We describe in a qualitative way a possible picture of the Measurement Process in Quantum Mechanics, which takes into account: 1. the finite and non zero time duration T of the interaction between the observed system and the microscopic part of the measurement apparatus; 2. the finite space size R of that apparatus; 3. the fact that the macroscopic part of the measurement apparatus, having the role of amplifying the effect of that interaction to a macroscopic scale, is composed by a very large but finite number N of particles. The conventional picture of the measurement, as an instantaneous action turning a pure state into a mixture, arises only in the limit in which N and R tend to infinity, and T tends to 0. We sketch here a proposed scheme, which still ought to be made mathematically precise in order to analyse its implications and to test it in specific models, where we argue that in Quantum Field Theory this picture should apply to the unique time evolution expressing the dynamics of a given theory, and should comply with the Principle of Locality. We comment on the Einstein Podolski Rosen thought experiment (partly modifying the discussion on this point in an earlier version of this note), reformulated here only in terms of local observables (rather than global ones, as one particle or polarisation observables). The local picture of the measurement process helps to make it clear that there is no conflict with the Principle of Locality.Comment: 18 page

    In vitro and in vivo evaluation of 99mTc-polymyxin B for specific targeting of gram-bacteria

    Get PDF
    Background: Infectious diseases are one of the main causes of morbidity and mortality worldwide. Nuclear molecular imaging would be of great help to non-invasively discriminate between septic and sterile inflammation through available radiopharmaceuticals, as none is currently available for clinical practice. Here, we describe the radiolabeling procedure and in vitro and in vivo studies of99mTc-polymyxin B sulfate (PMB) as a new single photon emission imaging agent for the characterization of infections due to Gram-negative bacteria. Results: Labeling efficiency was 97 ± 2% with an average molar activity of 29.5 ± 0.6 MBq/nmol. The product was highly stable in saline and serum up to 6 h. In vitro binding assay showed significant displaceable binding to Gram-negative bacteria but not to Gram-positive controls. In mice,99mTc-HYNIC-PMB was mainly taken up by liver and kidneys. Targeting studies confirmed the specificity of99mTc-HYNIC-PMB obtained in vitro, showing significantly higher T/B ratios for Gram-negative bacteria than Gram-positive controls. Conclusions: In vitro and in vivo results suggest that99mTc-HYNIC-PMB has a potential for in vivo identification of Gram-negative bacteria in patients with infections of unknown etiology. However, further investigations are needed to deeply understand the mechanism of action and behavior of99mTc-HYNIC-PMB in other animal models and in humans
    • …
    corecore