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Foreword

The discovery of quantum mechanics and its comprehension are at
the basis of the foundations of modern technology. This fact is not
widely recognized. I believe that if one asks the layman which are the
most important technological applications of quantum mechanics,
he would mostly select nuclear power. After some reflections he
could mention lasers, but he would not think of the most important
one, i.e., the transistor that is at the basis not only of computers
but of practically any device we commonly use (with some notable
exceptions like bicycles, wind surfs, and skis).

People who are not trained in quantum mechanics can use
a transistor without difficulties, and with some minor technical
training they can understand the specifications and use transistors
to build simple devices like a wireless radio: transistors behave
in a way that is not very different from the old thermionic tubes.
However, quantum mechanics has been crucial in the design of
transistors, which, when finally constructed, worked exactly as
predicted by quantum mechanics.

In spite of the ubiquitousness of quantum mechanics appli-
cations, quantum mechanics remains some kind of mystery not
only for learned people with a humanistic background, but also
for most of the scientists, with the exception of physicists and
chemists. The intrinsic difficulty in understanding the principles
of quantum mechanics certainly contributes to this deplorable
situation. However, this situation is worsened by an aura of
incomprehensibility that derives from most of the presentations of
quantum mechanics that one find in the literature. Indeed, books
that describe quantum mechanics may be divided into two main
categories:
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xii Foreword

• Those that require an advanced knowledge of mathematical
analysis (differential and integral calculus), thus casting
away most of the people. Such books are perfect for people
interested in getting a working knowledge of quantum
mechanics, but are of no use for those interested in knowing
only what quantum mechanics is and in understanding its
implications.

• Those that are directed toward the general public. Although
some of these books are excellent, their presentation
is limited to a qualitative description. By the time one
gets ready to see how all extraordinary properties of
quantum mechanics could be implemented in a quantitative
description of the system, the presentation, in most cases,
stops, usually adding something like “More details would
be too technical; they need too much mathematics and
therefore cannot be described here.” At the end, quantum
mechanics seems to be something like magic that can be
understood only by fifth-level wizards.

On the contrary, this book makes a strong effort to arrive to a
quantitative formulation of quantum mechanical for very simple
systems, a formulation that is constructed using minimal mathema-
tical requirements. In this way the reader can easily arrive at the
conceptual core of quantum mechanics in its precise mathematical
formulation without having to know analysis and calculus. This can
be done only if the authors are very careful in choosing the model
systems that one uses for the presentation: the choice made in this
book is very appropriate so that the reader becomes acquainted with
the formalism of quantum mechanics in the simplest possible way.

Only in the second part of the book, after a minimal description
of the analytic mathematical tools needed, the reader finds the
extension (to a generic system) of the formalism that he or she
has learned in the first part. In this way the reader arrives at
an understanding of the usual formalism of quantum mechanics
separating the conceptual steps, described in the first part, from the
technical issues, described in the second part.

In the last part of the book, Ontological Issues, the authors
discuss the general implications of quantum mechanics that have
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Foreword xiii

been discussed in many places, including popularization articles: the
measurement problem, non-locality and non-separability, quantum
information, and finally the interpretation of quantum mechanics.
The authors’ viewpoint on these highly debated subjects is deep and
original: the presentation is quite concise, although it does not shy
away from giving technical details where needed.

The book is well written and is very readable. It fulfills at its best
the premise of the title Quantum Mechanics for Thinkers.

Giorgio Parisi
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Introduction

Reasons for Studying Quantum Mechanics

Quantum mechanics represents one of the great conceptual revolu-
tions of the 20th century. It has raised a huge number of fundamental
questions of both physical and philosophical kind.

• What does matter mean at all?
• What are the main properties or characteristics of matter?
• Can matter be reduced to information?
• Is our universe probabilistic at the most fundamental level?
• Are there non-local correlations in nature?
• Are non-causal interconnections between physical systems

possible?
• Is the bound on the speed of information propagation set by

the theory of relativity violated?
• What do terms like state, observable, and property mean at

all?
• Can physical reality exist without observers?
• Are observers necessary for having a macroscopic world?
• What are the general features of information processing and

exchange in our universe?

These questions (and there are also many others) give a first feeling
about the depth of the conceptual turn represented by quantum
mechanics. Even those classical hypotheses or laws that have passed
the quantum mechanical check have somehow been transformed or
at least been corrected. It is important for people who desire to deal
with fundamental problems in science, especially in quantum theory
or in those fields (like chemistry, mathematics, and informatics) that
are closely related to quantum theory, to have a deep and clear
understanding of this kind of problems. This book provides such an
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opportunity. We think that undergraduate students in physics could
also take advantage of this book, and then transition to more difficult
stuff. This book could also be of some use in the last years of the high
school. Indeed, one of the major problems we find for these classes
is that most of our students go out of the school without having ever
heard a single word about quantum mechanics, that is, about the
basic physical theory that we have, and it is likely that most of them
will never have the opportunity to come back to these issues.

The book is also addressed to people interested in the philosophy
of science or in problems at the interface between science and
philosophy. As a matter of fact, one of the biggest problems of
modern thought is a fracture between science and philosophy
causing severe alienation to both fields. Indeed, science without
philosophy can become a pure technique, where finally ad hoc
solutions and pure simulations dominate, whereas philosophy
without science can shift toward esotericism and aestheticism. As
a matter of fact, the issues that have been raised within natural
sciences, and especially in physics, have always implied a deep shift
of the philosophical paradigms. The affirmation of Galilean and
Newtonian classical mechanics, which is an important part of the
first scientific revolution, has led to a radical rearrangement of the
theory of knowledge, first making of the physical science a privileged
reference and then, with Kant’s doctrine of the a priori synthetic
judgments, as the unique and authentic form of knowledge.

Quantum mechanics implies, or should imply, even a more radical
change of the philosophical modules. However, this has happened in
an incomplete and partial form. This is because the discussion on the
foundations of this theory is not yet accomplished and so far has not
even been dealt with at a sufficiently deep level. Theoretically deal-
ing with the foundations of quantum mechanics is an urgent task, es-
pecially considering its huge predictive power and the wide domain
of applicability. Its practical consequences already determine many
aspects of our modern society (atomic bombs and atomic energy,
semiconductors, transistors, and photovoltaic cells, lasers and light-
emitting diodes, applications to technology of new states of matter
like Bose–Einstein condensates, etc.) and many other may be deter-
mined in the near future (quantum cryptography, quantum telepor-
tation, quantum computation, photography without light, etc.).
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Aim of the Book

We find that most of the problems that we have stated above are
often treated by public opinion and even by cultivated laypersons
with superficiality and without a true understanding of the physical
and conceptual foundations of quantum theory. It is very often heard
or read that quantum mechanics allows telepathy or that reality
does not exist. Statements like these show a deep misunderstanding
about the true meaning of quantum theory. Therefore, the main aim
of the book is to allow the students, the scholars, the philosophers,
and even the laypersons interested in these issues to have a quick
access to quantum mechanics without dealing with a true textbook
that demands proper specialized studies in physics (and related
mathematics) for about a couple of years. The phrase “quick access”
does not mean that this is a popular science book. It is in fact a
scientific book, but addressed to people who do not already posses
the prerequisite for dealing with such a sophisticated scientific stuff.

In order to understand the theoretic and philosophical problems
in quantum mechanics, it is indeed necessary to master certain
formal instruments. In other words, this book does contain quite
a few equations. However, we have tried to reduce the formalism
to the minimum extent required for understanding the basis of the
theory. Moreover, we have also explained from scratch mathematical
tools like vector and matrix algebra, probability (in the first part of
the book), as well as integration and differentiation (in the second
part of the book). This is the reason why the first part is confined
to an algebraic approach. In this way, the book is somehow self-
contained and only presupposes some high-school background in
mathematics.

What Is Required of the Reader?

Although we shall try to do things as simply as possible, this does
not mean that the reader shall not meet some difficulties and should
not make some efforts to understand the mathematics and the
underlying physics. However, our basic assumption is that the study
of this book is in the range of university students and scholars of
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any faculty, or of any cultivated layperson, who are motivated and
interested in deepening their knowledge of the subject. Where the
reader should meet some particular difficulties in mathematics, we
recommend to make use of some online resources where many
mathematical concepts are explained with different degrees of
difficulty. In particular, we suggest the online mathematics reference
MATHWORLD.a As an alternative, the reader can also take into
account the Mathematics Portal of WIKIPEDIAb and the ENCYCLOPEDIA

OF MATHEMATICS.c Finally, for a first introduction to this type of
mathematics we strongly recommend the textbook by Heller.d

To minimize the mathematics and to emphasize the underlying
physics, we have chosen to present many of the technical details in
the form of in-section boxes and end-of-section problems. There are
30 boxes and 130 problems altogether, with the solutions to most of
the problems provided at the end of the book. However, the reader is
encouraged to try to work out the problems by him- or herself before
resorting to the solutions provided. There are also many resuming
tables that help the reader quickly find the information that he or
she desires. Moreover, we have included 70 figures which not only
provide a kind of graphical help but often can even be understood as
an integral part of the explanation. In order to help the reader better
organize the concepts developed in the book, we have composed a
summary of the main concepts at the end of each chapter. Finally, the
book contains an extensive bibliography of about 150 entries, and
two full, accurate, and comprehensive subject and author indexes for
assisting the reader’s quick search.

While this book could be an excellent starting point for self-
study of quantum mechanics, it is obviously better if the reader
is helped by someone with a physics background in dealing with
this study. This could happen through an introductory course to
quantum mechanics but also through a tutorial. A word of caution
is also necessary. The present book does not substitute a complete
course in quantum mechanics as taught in any physics department
and taking advantage of more advanced textbooks.e With the help of

ahttp://mathworld.wolfram.com
bhttp://en.wikipedia.org/wiki/Portal:Mathematics
chttp://www.encyclopediaofmath.org
d(Heller, 2006).
e(Le Bellac, 2006), (Auletta et al., 2009).
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this book, a careful reader can understand what quantum mechanics
is (and this is the aim of the book) but cannot learn to make use
of it. In other words, this book helps the reader understand what
quantum mechanics is, what are its conceptual foundations, and how
its basic formalism works, but does not make of him or her an expert
in quantum mechanics.

Outline of the Book

The book is divided into three major parts and is organized as
follows:

I. Basic Issues
The first part contains five fundamental chapters. Chapter 1
provides a short review of classical mechanical concepts.
Chapters 2–5 represent the foundation block that deals with the
basic notions of quantum theory. However, already Chapter 5
raises many conceptual problems that may give a taste of what
follows. Some readers may be satisfied to study this part. It is
relatively easy but also needs some time, especially if the reader
has never been engaged with mathematics or he or she was,
but many years ago. Our suggestion in this case is to read each
chapter repeatedly before going further in order to become fully
familiar with this language.

II. Formal Issues
The second part consists of three technical chapters, Chapters 6–
8. In this part we introduce some of the most important quantum
mechanical observables: position and momentum, energy, and
angular momentum and spin. Arguably, this is probably the
most difficult part for people not acquainted with physics or
mathematics. It is, however, necessary if one really wants to
understand the deep meaning of the philosophical conclusions
drawn in the subsequent chapters. We stress that the main
difficulty is not in the equations themselves, since each step
is explained and we presume that a patient reader who will
follow those steps shall also be able to consistently progress.
The main problem is rather in the large quantity of information
packed together. Then we suggest to proceed by taking time
in order to assimilate each step and eventually read each
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section again and again. If, having tried several times, the
reader does not understand the meaning of certain steps, we
suggest to take them as facts since it is plausible that some
developments can become clearer afterwards. If the reader
encounters insurmountable difficulties, he or she may initially
skip the latter sections of these chapters and try to come back
to specific aspects when the third part of the book demands the
knowledge of some previous notions. Sooner or later, however,
if the reader wants a deeper understanding of the theory, it
becomes necessary to study the whole of it. Indeed, only to
have assimilated the Schrödinger equation or the model of the
hydrogen atom can bring the reader even to really appreciate
not only the usefulness but even the beauty of this theory.

III. Ontological Issues
The third part is composed of four advanced chapters. The
measurement problem is dealt with in Chapter 9, the issue of
quantum non-locality in Chapter 10, and quantum information
in Chapter 11. Finally, the interpretation of the theory that puts
together the previous three subjects (and all the main issues
raised in the book) is dealt with in Chapter 12. As a matter
of fact, Chapters 9–12 represent the block that will turn out
to be the most satisfactory one for people searching for a true
understanding of quantum mechanics. Here, the reader can
appreciate how worthwhile was the previous study for arriving
at such a point!

It is likely that the first part could be very useful for students in
the last years of the high school or for laypersons who intend to
understand the very basic notions of quantum mechanics. Scholars
in mathematics and chemistry will especially like the second part,
while scholars in informatics and philosophy will perhaps find
the third part more interesting. Undergraduate students in physics
should study the whole book carefully as a kind of fore-preparation
for the more technical studies.

Last but not least, the reader can visit the book’s websitea for
communications about the book and errata of the book.

ahttp://www.gennaroauletta.net/qmftbook
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Chapter 1

Classical Mechanics

The aim of this chapter is to present some very basic principles
of classical mechanics. They can help us understand the novelty of
quantum theory.

1.1 Classical-Mechanical Description

Classical mechanics was founded by Newton and contemporary
17th-century natural philosophers, and further developed in the
18th and 19th centuries by many physicists and mathematicians, as
a result of the search for a rational, causal, and scientific explanation
of the universe. In classical mechanics, real-world objects are
modeled as a collection of point particles, i.e., objects with negligible
size. The motion of a point particle is characterized by a small
number of parameters such as its position, mass, velocity, and the
forces applied to it. The position of a point particle is defined
with respect to an arbitrary fixed reference point in the three-
dimensional Euclidean space, which is usually chosen as the origin
of some coordinate system. The velocity of a point particle is the
rate of change of its position with time. The force applied to a point
particle (called the external force) is the cause for the point particle

Quantum Mechanics for Thinkers
Gennaro Auletta and Shang-Yung Wang
Copyright c⃝ 2014 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4411-71-4 (Hardcover), 978-981-4411-72-1 (eBook)
www.panstanford.com
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x

y

z

A

Figure 1.1 A vector a represented by the arrow connecting the initial point
O (the origin) with the terminal point A. See Box 1.1 for details.

to undergo a certain change in its velocity, i.e., an acceleration
(Newton’s second law of motion). For the sake of simplicity, here
we shall refer to a point particle or a collection of point particles
simply as an object. Newton’s first law of motion states that if an
object experiences no net external force, then its velocity is constant,
i.e., the object is either at rest or it moves in a straight line with a
constant speed. The first law of motion postulates the existence of a
certain set of frames of reference called inertial reference frames,
relative to which the motion of an object not subject to external
forces is a straight line at a constant speed. For this reason, Newton’s
first law is also referred to as the law of inertia.

Mechanical forces act along a given direction. Indeed, a force is
ascertained by considering its effects, for instance pushing or pulling
along a certain direction. The same is true for position, velocity,
momentum (velocity at which an object travels multiplied by its
mass), and also for acceleration (the variation of velocity in time).
Then, all these quantities (and also other ones) can be represented
by Euclidean vectors (sometimes called spatial vectors or simply
vectors). A vector is a geometric object that has both a magnitude
(or length), representing for instance the strength of the force, and
a direction [see Box 1.1]. A vector is graphically represented as an
arrow, connecting an initial point with a terminal point, as shown in
Fig. 1.1.
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Box 1.1 Euclidean vectors

In mathematics, a Euclidean vector is a geometric object that
has a magnitude (or length) and a direction. Geometrically, a
vector a is represented by the arrow connecting the initial point
O (taken to be the origin) with the terminal point A [see Fig. 1.1].
The magnitude of the vector, symbolized as ∥a∥, is the distance
between the initial and terminal points; its direction is specified
by two angles θ and φ, where θ is called the polar angle of the
vector measured from the z direction (with 0 ≤ θ ≤ 180◦), and
φ the azimuthal angle of the vector measured from the x axis to
its orthogonal projection (showed by the dashed line) in the xy
plane (with 0 ≤ φ < 360◦). A vector of unit magnitude is called a
unit vector. Conventionally, a vector a is represented in Cartesian
coordinates as

a = ax ex + ayey + azez, (1.1)

where ex , ey , and ez are the unit vectors in the x , y, and z
directions, respectively.

Vectors can be added and multiplied by a real number. Here,
we only deal with addiction and multiplication of a vector by
a constant. Given two vectors a and b, their sum a + b is
also a vector. The addition method is given by the so-called
parallelogram rule, which states that a + b is the diagonal of the
parallelogram, where a and b are adjacent sides [see Fig. 1.2].
Let k be a real number. The vector ka, obtained by multiplying
a by k, is a vector with magnitude |k|∥a∥ and pointing in the
same direction of a if k > 0, or in the opposite direction of a if
k < 0. (In the next chapter we shall learn the exact meaning of
the expression |k|; by now, consider it as positive number.)

In classical mechanics forces are clearly local (examples are
spring force, friction, etc.). Although we know today that all of the
fundamental forces can be treated in terms of fields (which are
characterized by specific interdependences between the involved
systems and therefore may involve non-local aspects), classical
mechanics does not deal with this subject and even assumes (or
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at least assumed until the late 19th century) that also the effect of
potentials (connected with the fields) could be explained through
kinds of local interactions that somehow “propagate” though a
physical medium, like the ether that was still assumed in the 19th
century for explaining the propagation of electromagnetic waves.
Then, classical mechanics satisfies separabilitya in that when there is
no causal influence of local and ultimately mechanical type between
two systems, they can be considered separated with respect to each
other. By separated it is meant here that every operation performed
locally in one of the two systems has no influence on, nor can be
influenced by, the other system.

The most important quantity in classical mechanics is energy,
which is the ability of a physical system to do work on other physical
systems (e.g., a motor bringing a lift to a certain height). Energy is
thought to be a function of both the position and the momentum.
As mentioned, position tells us the place in the space that a certain
object occupies while momentum is the velocity at which the object
travels multiplied by its mass. In other words, momentum tells us
the impact that a certain object may have in the collision with other
objects. It is indeed intuitively clear that, in the case of an accident, a
car can have a bigger impact on other cars if the speed is greater,
but also that at equal speed a large vehicle (like a truck), which
possesses therefore more mass, can have a bigger impact than a
car. Position and momentum are sufficient to describe a mechanical
system as far as the energy can be determined.

1.2 Basic Principle of Classical Mechanics

In order to understand classical mechanics, it is useful to grasp its
basic principles,b a compact theoretical building established in the
18th and 19th centuries. This will turn out to be relevant also for
understanding the conceptual foundations of quantum mechanics.

Classical mechanics is a deterministic theory. Determinism
consists in the idea that given the laws of classical mechanics and
any current state of a mechanical system as well as an appropriate

aEinstein et al. (1935).
b(Auletta, 2004a).
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knowledge of the forces acting on it, it is possible to predict or
retrodict any past or future state.a This means, that given any
current state, both past and future are univocally determined. In
turn, determinism is grounded on two assumptions:

(i) The omnimoda determinatiob assumption that any state of a
classical system represents a complete collection of properties.
In other words, given any property that can be meaningfully
attributed to the system, it is possible to decide whether or not
the current state of the system instantiates it. With a property
we understand the value of a parameter (like time, energy,
speed, position, etc.) used to describe the system.

(ii) The assumption of the existence of a set of dynamical laws
allowing to derive any future trajectory or state from the
knowledge of the current state. In the case of classical me-
chanics, it was supposed that the connection between different
states of the same system across the time was continuous.c

For this reason, the parameters describing the state of a given
system are expressed, in mathematical terms, as functions of the
continuous time variable (we have already seen that the energy
is a function of position and momentum).

Classical mechanics is also methodologically reductionist. The
basic assumption of classical mechanics here is that every physical
system can be reduced to its elementary components. To this
purpose, we need two basic assumptions: linearity and separability.
We have already considered separability. Let us consider linearity.
Classical mechanics is indeed a priori a linear theory. By a linear
theory, we mean the sum of the forces acting on a system results in
an effect that is the sum of the effects of the forces taken separately.
In other words, two different forces acting on an object along
two different directions can be summed and the resulting effect is
proportional to this sum. Indeed, the acceleration a is proportional
to the net (external) force F (and inversely proportional to the mass
m of the object) according to the famous Newton’s second law of

a(Laplace, 1796).
b(Baumgarten, 1739, Par 148).
c(Leibniz MS, Vol. VII, p. 25), (Boscovich, 1754).
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F1
F1 + F2 

F2

Figure 1.2 The sum of forces, also called classical superposition of forces.
This addition method is sometimes called the parallelogram rule because F1

and F2 form the sides of a parallelogram and F1 + F2 is the diagonal of the
parallelogram, where F1 and F2 are adjacent sides.

motion

F = ma, (1.2)

where we stress that vectors are represented by bold letters in
opposition to pure (or scalar) quantities like the mass. In other
words, the mass offers a resistance (called inertia) to any attempt
at moving the body, as it is clear by rewriting the previous equation
as

a = F
m

, (1.3)

which tells us that the acceleration is proportional to the net force
acting on the body and inversely proportional to its mass. This is
intuitively clear when we consider that is more difficult to move
an object the more mass it has (on the Earth surface the mass of
a body, which is the quantity of matter it has, is connected with
its weight, which is the gravitational pull exerted by the Earth).
Therefore, two forces sum, for instance, as shown in Fig. 1.2. The
physics of the 20th century has introduced many non-linear effects
as occurring in complex and chaotic systems. However, the core of
classical mechanics was and still is linear, otherwise we could not
speak of a mechanics at all.

These two basic postulates (determinism and reductionism)
implied the idea that in classical mechanics it is possible, at least
in principle, to reduce the measurement error below any arbitrary
threshold, so that it can become inessential. Therefore, possible
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measurement errors should be rather considered consequences
of the unavoidable technological limitations that characterize any
civilization we know and not as denoting an impossibility as such.
As we shall see in the following chapters, quantum mechanics is very
different under this point of view.

1.3 Summary

In this chapter we have dealt with the basic principles of classical
mechanics:

• Determinism, which is ground on the assumptions of perfect
determination and continuity.

• Reductionism, which presupposes linearity and separability.
• The possibility, at least in principle, to measure perfectly the

properties of a system.
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Chapter 2

Superposition Principle

The aim of this chapter is to present the very peculiar undulatory
character of quantum systems that allows something unknown to
classical physics called self-interference and therefore a superposi-
tion of the states in which the system under observation can be. We
shall also become acquainted with the basic formalism of the theory,
especially by learning to compute probabilities.

2.1 Origin and Foundations of Quantum Mechanics

Quantum mechanics was built as a physical theory between
1900 and 1927. Its founding fathers, among whom we recall
Bohr, Schrödinger, Born, and Heisenberg, started this enterprise
by developing the work of the giants like Planck, Einstein, and
de Broglie. It is also true that the last three physicists, even if
playing a crucial role in laying the foundation of the theory, never
accepted it as a new fundamental explanation of the physical world.
The basic principles of quantum mechanics are essentially the
superposition principle, the complementarity principle, and the
uncertainty principle. The latter, as we shall see, should be rather
considered a corollary of other further principles. For historical

Quantum Mechanics for Thinkers
Gennaro Auletta and Shang-Yung Wang
Copyright c⃝ 2014 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4411-71-4 (Hardcover), 978-981-4411-72-1 (eBook)
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reasons as well as because it facilitates the basic understanding of
quantum theory, we shall consider it as a true principle.

In the early days of quantum mechanics, the incredible insight of
de Broglie was that matter can present undulatory features.a After
Maxwell’s treatise on electromagnetismb and Hertz’s experimental
verification,c nobody doubted about the undulatory nature of light
but everybody understood matter in corpuscular terms (in the
previous centuries many physicists were influenced by the basic
principles of classical mechanics and supported the idea that also
light was corpuscular). De Broglie’s new insight could eventually
lead to a unification of the phenomena of matter and light. However,
as we shall see, in the quantum mechanical framework the undu-
latory nature of matter (as well as of light) presents aspects that
are totally inexplicable classically. Although in the following sections
we shall very often use photons (light quanta) as a paradigm for
explaining several aspects of quantum mechanics,d the following
results apply as well as to matter for the reason indicated here.

2.2 Classical and Quantum Superposition

The quantum superposition principle constitutes an extension of
the linearity and superposition principles of classical waves, but
in a surprising form. In the previous chapter, we have already
seen the classical superposition of forces. Here, we shall consider
a slightly different case of superposition. Indeed, classically it is well
known that waves are disturbances that propagate through space
along certain paths. Waves are characterized by the wavelength
(distance between adjacent peaks) and the amplitude (height of
the peak) [see Fig. 2.1]. A distinct property of waves is the
phenomenon of interference. For instance, if two different sea waves
enter simultaneously a port from two different entrances, they will
combine in the port area summing their effects in certain points
(giving rise to constructive interference) and erasing their effects in

a(De Broglie, 1924).
b(Maxwell, 1873).
c(Hertz, 1887).
dWe obviously never take into consideration relativistic complications.
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!
Distance (in wavelengths)

Phase (in degrees)

wavelength

phase

amplitude

Figure 2.1 Snapshot of two waves of the same wavelength and amplitude
at a particular moment in time. The amplitude of the wave is the distance
between a peak and the baseline. Its wavelength (denoted by λ) is
the distance between adjacent peaks and is inversely proportional to the
frequency, which is the number of peaks that go through a given point in a
unit time interval (the larger is the frequency, the shorter the wavelength).
The phase of a wave (solid line) relative to a reference wave (dotted
line), whose peak corresponds to 0◦ phase, is the distance between their
respective peaks (modulo the wavelength). The two waves are 90◦ out of
phase.

other points (giving rise to destructive interference) [see Fig. 2.2].
What determines wave interference is their phase difference φ

(the so-called relative phase, given by the distance between their
respective peaks modulo the wavelengtha) [see Fig. 2.1]. If the phase
difference is 0◦ (or 360◦), the waves are in phase (the peaks and
valleys coincide), and in this case the interference is constructive.
If it is 180◦ they are completely out of phase (a peak of a wave
corresponds to a valley of the other wave and vice versa), and
the resulting interference is destructive. Clearly, we also have a
continuum of intermediate cases. It is very important to understand
that, in a classical framework, such an interference phenomenon
concerns the spatial behavior of waves, i.e., to the way different
waves diffuse in space. Something analogous but inherently different
occurs in quantum mechanics.

aThe term modulo means the remainder of a quotient [see Box 11.2 for details].
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constructive interference

destructive interference

in-phase
superposition

out-of-phase
superposition

wave 1

wave 2

wave 1

wave 2

Figure 2.2 Constructive and destructive interference depending on the
phases of the waves. In the former case they are in phase, in the latter case
they are completely out of phase (intermediate cases result in intermediate
interferences). Adapted from (Auletta, 2011a, p. 12).

2.3 A Photon in an Interferometer

Let us consider a quantum system, for instance, a photon. The
photon is the quantum of light, that is, the minimum entity
constituting light. By now, we will abstract from what this could
precisely mean and confine our attention to its wave-like properties.
Let us assume that such a photon is in a certain physical state,
for instance, that it travels along a certain path. To make clear the
reasoning, have a look at Fig. 2.3, in which an apparatus called the
interferometer is depicted schematically (here, the so-called Mach–
Zehnder version is shown). As we can see, a beam of photons is
pumped into the apparatus by the laser located below on the left.
After a short horizontal path, the photons meet a device, called
the beam splitter, here indicated by BS1, with the function to split
the incoming beam into two beams. In specific, a beam splitter is
a half-silvered mirror with the property to partly transmit (here
the horizontal component) and partly reflect (here the vertical
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BS1

BS2

PS

M2

M1 

D2 

D1

LASER

Figure 2.3 Schematic setup of the Mach–Zehnder interferometer (top-
lateral view). The source beam coming from the laser is split at the first
beam splitter BS1. After reflections at the two mirrors M1 and M2, the upper
and lower paths are recombined at the second beam splitter BS2 and then
detected at the photodetectors D1 and D2. The phase shifter PS causes a
relative phase difference φ of the upper beam.

component) a given light beam. It is very important to stress the
following two points:

(i) The laser can be regulated in such a way that it sends one
photon at a time into the interferometer (in other words, there
is always a single photon between the input at BS1 and the final
detectors).

(ii) As we have mentioned the photon is the minimum entity of
light, for reasons that will be clear below, it must be considered
an indivisible entity. Therefore, rigorously speaking, it cannot
be physically split into two parts by the beam splitter. As we
shall see, such a splitting has to do with the probabilities for the
photon to be transmitted or reflected.

In the simplest case, these two probabilities are equal, that is,
that the photon has 50% probability to be transmitted and 50%
probability to be reflected. Since it is in general assumed that
probability varies between 0 (when we have 0% probability) and
1 (when we have 100% probability), then the case that we are
considering here corresponds to a probability of 1

2 for the photon
to be either transmitted or reflected. A short review of the concept
and basic properties of probability can be found in Box 2.1.

Let us now indicate with a specific symbol the component of the
photon that has been transmitted. By now we do not need to care
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Box 2.1 Probability

Probability theory plays an important role in the study of
mathematics and physics. It deals with the relation of certain
outcomes (like to get a head) of an random experiment (like
to flip a coin). A possible outcome of an random experiment
(e.g., head or tail in a coin flipping) is called a sample point.
The set of all possible outcomes of an experiment is called the
sample space, usually denoted by $. A subset of the sample space
to which a probability can be assigned is called an event. In
other words, an event is a set of outcomes of the experiment
(different outcomes may be grouped in a single event). Each time
the experiment is run, a given event A either occurs, if the out-
come of the experiment is an element of A, or does not occur,
if the outcome of the experiment is not an element of A. In
particular, the sample space $ itself is an event; by definition it
always occurs (because it comprehends all possible outcomes).
At the other extreme, the empty set ∅ is also an event; by
definition it never occurs.

Let A and B be two events, then A implies B (denoted in the
set theory by A ⊂ B), if A occurs, B must also occur. The union of
A and B (denoted by A ∪ B) is the event obtained by combining
the elements of A and B . The intersection of A and B (denoted
by A ∩ B) is the event whose elements are common to both A
and B . If the intersection of events A and B is empty, (denoted by
A ∩ B = ∅), then A and B are said to be mutually exclusive (or
disjoint) events.

It is an experimental fact that if an ordinary coin is flipped N
times, coming up heads Nh times, the ratio of Nh to N is nearly 1

2 ,
and the large we make N the closer the ratio approaches 1

2 . We
express the results by the following statement: The probability
of a coin coming up heads is 1

2 . This illustrates the intuitive
frequency concept of probability. Let us generalize this as follows.
If a random experiment has N possible outcomes, all mutually ex-
clusive and equally likely, and the number NA of these outcomes
lead to the event A, then the probability of A is defined by

℘(A) = NA

N
, (2.1)
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which is the classical definition of probability. An intuitive and
easy (yet classical) example of a set of mutually exclusive events
is represented by the six possible outcomes when throwing a
dice. If we throw a single dice (so, we do not consider possible
combinations given by throwing different dice), the probability
to get any of the faces is 1

6 since all six outcomes are equally
probable. Moreover, probability satisfies the following basic
rules:

0 ≤ ℘(A) ≤ 1 for all A ⊂ $, (2.2a)

℘($) = 1, (2.2b)

℘(A ∪ B) = ℘(A) + ℘(B) − ℘(A , B), (2.2c)

℘(A ∪ B) = ℘(A) + ℘(B) if A ∩ B = ∅, (2.2d)

where ℘(A , B) = ℘(A ∩ B) is the joint probability of events A
and B , i.e., the probability that A and B both occur. It is noted
that Eqs. (2.2c) and (2.2d) are referred to as the addition rule for
probability and that the latter is a special case of the former.

about the exact meaning of the term component, but do not forget
what previously said above about the indivisibility of the photon. For
the sake of simplicity, we call the transmitted component down since
it takes the lower path. It can be denoted by the symbol

|d⟩, (2.3)
where we have used d as a shorthand for down. We are totally free
in the choice of the symbol, provided that it is univocal. Instead,
the symbol | ⟩ is not arbitrary (though being conventional) since
in quantum mechanics it denotes the state of a quantum system. For
reasons that will be clear below, it is called a ket. Similarly, we can
call up the other component (the reflected one) of the photon since
it takes the upper path. It can then be denoted by the symbol

|u⟩. (2.4)
Now, we shall try to describe the action of BS1 on the photon.
Suppose that its initial state (before meeting BS1) is described again
by |d⟩. This is justified by the fact that the photon going to BS1 is
along the path that is parallel to the down component. Now, the
action of BS1 can be mathematically described by

|d⟩ BS1−−→ cd |d⟩ + cu|u⟩. (2.5)
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Here the transformation induced by BS1 on the photon is indicated
by an arrow with the superscript BS1. The initial state of the
photon is written on the left-hand side of the arrow, while the final
transformed state of the photon, with the two components down and
up, is written on the right-hand side of the arrow.

2.4 Probability Amplitudes

To understand the meaning of the expression (2.5), we first note
that cd and cu are some coefficients (numbers) representing the
“amounts” in which the two components are present in the state
resulting from the action of BS1, i.e., the degrees to which the photon
is transmitted and reflected. A short consideration will tell us that
these coefficients must somehow be negatively related, namely, the
more likely the photon is reflected, the less likely it is transmitted
and vice versa. As will be discussed below, the coefficients cd and
cu are related to the probabilities ℘d and ℘u of finding the photon
in the lower and upper path, respectively. In fact, the probability
in quantum mechanics is computed as the square modulus of the
corresponding coefficient. We recall that the modulus of a real
number a is denoted by |a| and is the absolute value of a. Hence,
|a| is always positive irrespective of the fact whether a is positive
or negative. The coefficients cd and cu whose square moduli give
probabilities are called the probability amplitudes. As a consequence
of the wave-like character of quantum systems, the probability
amplitudes are in general complex numbers. For a short review of
the basic properties of complex numbers, see Box 2.2.

Box 2.2 Complex numbers

Complex numbers are an extension of real numbers and can be
written in the form a + bi, where a and b are two real numbers
and i =

√
−1 is called the imaginary unit. In this form, a is called

the real part and b the imaginary part of the complex number
a +bi. They can be geometrically represented in the Cartesian co-
ordinates, with the real part represented by a displacement along
the x axis, and the imaginary part by a displacement along the
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y axis. The complex number a+bi is then identified with the point
(a, b) in a plane, and the resultant plane is called the complex
plane [see Fig. 2.4].

The complex conjugate of a complex number c = a + bi is
the complex number c∗ = a − bi, i.e., the number given by the
real part of c plus the imaginary part with interchanged sign. The
modulus (or absolute value) of a complex number c is denoted by
|c| and defined by

|c| =
√

c c∗ =
√

a2 + b2. (2.6)

For instance, we have |1 + i| =
√

(1 + i)(1 − i) =
√

2 and the
square modulus of 1 + i is given by |1 + i|2 = 2. If c is a real
number (i.e., b = 0), then |c| =

√
a2 = |a|, which is the usual

absolute value of the real number a, that is, the numerical value
of a without regard to its sign. Geometrically, |c| is the distance of
the point (a, b) to the origin of the complex plane. The modulus
has the following fundamental properties:

|c| ≥ 0 (equality holds if and only if c = 0), (2.7a)

|c1c2| = |c1||c2|, (2.7b)

|c1 + c2| ≤ |c1| + |c2|, (2.7c)

where c, c1, and c2 are arbitrary complex numbers. In particular,
the inequality (2.7c) is called the triangle inequality.

Since the square moduli of the coefficients in the expression (2.5)
stand for probabilities, they satisfy the normalization condition that
the sum of all probabilities of a set of mutually exclusive events be
equal to one [see Box 2.1]. Therefore, the coefficients cd and cu in
the expression (2.5) have to satisfy the normalization condition

|cd |2 + |cu|2 = 1. (2.8)

It in turn implies that the two probabilities (and also the respective
transmission and reflection coefficients) are not independent since

|cd |2 = 1 − |cu|2 , (2.9)

in accordance with the fact that both the coefficients and the
corresponding probabilities are negatively related. In the case in



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

26 Superposition Principle

Re

Im 

Figure 2.4 Complex plane and the geometric representation of c = a + ib
and its complex conjugate c∗ = a − ib.

which they are real numbers, they also satisfy the requirement to
vary between −1 and 1, i.e., −1 ≤ cd , cu ≤ 1.

Problem 2.1 Find the complex conjugates and square moduli of the
following complex numbers: (a) 2 + i and (b) 1 + 3i.

2.5 Formulation of the Superposition Principle

Coming back to the expression (2.5), we can see that the state of
the photon after it has passed through BS1 is classically unknown.
Indeed, the photon is now delocalized, that is, we cannot say
that it is exclusively in the state |d⟩, nor can we say that it is
exclusively in the state |u⟩. In other words, the photon now is
in a state that does not show the deterministic character that
is peculiar to classical mechanics [see Section 1.2]. Indeed, the
parameter path of the photon does not have a determined value
since, according to the expression (2.5), any single photon going
through the interferometer is both in the lower and in the upper
paths of the interferometer. This is the fundamental content of the
quantum superposition principle, which can be formulated in its
generality as follows.

Principle 2.1 (Superposition Principle) If a quantum system can
be either in a state |ψ1⟩ or in a state |ψ2⟩, it can also be in any linear
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combination of these two states, i.e., it can also be in the superposition
state |ψ⟩ defined by

|ψ⟩ = c1|ψ1⟩ + c2|ψ2⟩, (2.10)

where c1 and c2 are complex coefficients satisfying the normalization
condition |c1|2 + |c2|2 = 1.

As a matter of fact, the state |ψ⟩ = cd |d⟩ + cu|u⟩ describes the
most general state of a photon after it has passed through a generic
beam splitter. We stress here two essential features of this principle:

(i) We do not deal here with a lack of knowledge, namely, with
some ignorance of a certain situation such that to acquire
further information could fill a knowledge gap and let us
know for sure whether the photon is in fact in the state |d⟩
or |u⟩. The indetermination of the quantum state must be
taken as an objective and irreducible state of affairs. As a
matter of fact, it does not depend on some statistics since it
is true of single quantum systems. Indeed, the laser has been
regulated to send one photon at a time into the interferometer.
In other words, quantum mechanics does not satisfy the
omnimoda determinatio requirement of classical mechanics [see
Section 1.2].

(ii) While classical systems show a superposition of spatial waves,
here it is the state itself of the system to be delocalized. For
this reason, one has spoken of the self–interference of quantum
systems.a This means that we do not have two different waves
interfering with each other, but a single physically indivisible
photon being in the state |ψ⟩ of which |d⟩ and |u⟩ are two
component states. This is the specific sense in which we should
understand these components. We shall consider below some
further consequences of this fact.

2.6 Transmission, Reflection, and Phase Shift

Let the probabilities that after having passing through BS1 the
photon is in the down path and in the upper path be demoted

a(Dirac, 1958, p. 9).
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by ℘d and ℘u , respectively. We assume that in our example the
probabilities of transmission and reflection are equal (i.e., a 50–
50 beam splitter), hence ℘d = ℘u = 1

2 . Then, from the fact that
℘d = |cd|2 and ℘u = |cu|2, it is not difficult to see that the coefficients
(if, for the sake of simplicity, real numbers) could be cd = cu = 1√

2
.

Hence we have

|d⟩ BS1−−→ 1√
2

(|d⟩ + |u⟩) , (2.11)

where the factor 1√
2

on the right-hand side of the arrow denotes that
BS1 is a 50–50 beam splitter.

We now consider how this state evolves further. First, note that
the mirrors M1 and M2 do not change the state of the photon.
After M1, the component |u⟩ of the photon meets a device called
phase shifter (indicated by PS in Fig. 2.3), which produces a phase
shift (the phase difference between lower and upper components)
of the amount φ. Recall that we have considered waves (or state
components in the quantum mechanical case) as being in phase
(when the phase difference is of 0◦, 360◦, or multiples) or completely
out of phase (when the phase difference is of 180◦ or odd multiples).
By inspection of Fig. 2.1, we can see that there are also intermediate
cases in which the components of the photon are partly out of
the phase or partly in phase. Therefore, it is necessary that the
formulation of the superposition principle allows for a description of
all the possible relative phases between the component states. This
is exactly where the complex coefficients come to the rescue. Since
the relative phase φ varies periodically, going from 0◦ to 360◦ (or
0 to 2π in radians) and starting a new cycle, the suitable choice to
represent the relative phase would be the exponential function with
a purely imaginary exponent [see Boxes 2.3 and 2.4]

eiφ = cos φ + i sin φ . (2.12)

From the profiles of the sine and cosine functions depicted in Fig. 2.6,
we see that these two functions are sinusoidals that behave precisely
as waves. Since they are periodic functions with period 2π , the
function eiφ allows us to describe arbitrary phase differences. As a
result, the action of PS on the component |u⟩ can be mathematically
described by

|u⟩ PS−−→ eiφ|u⟩. (2.13)
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Box 2.3 Trigonometric functions

Trigonometric functions (also called the circular functions) play
an important role in mathematics and physics. They are functions
of an angle φ and can be constructed geometrically in terms of a
circle. Consider the right triangle O P Q in Fig. 2.5. The sine and
cosine of the angle φ are defined in terms of the segments O P ,
P Q, and OQ by

sin φ = P Q
O P

, cos φ = OQ
O P

. (2.14)

Note that O P represents the radius of the circumference while
OQ and O R are its projections on the x and y axes, respectively.
Note also that P Q = O R . The other four trigonometric functions,
called the tangent, cotangent, secant, and cosecant of the angle φ,
can then be defined in terms of the sine and cosine by

tan φ = sin φ

cos φ
, cot φ = cos φ

sin φ
, sec φ = 1

cos φ
, csc φ = 1

sin φ
.

(2.15)
Note that cotangent and cosecant interchange sine and cosine
relative to tangent and secant, respectively. While the angle φ is
usually measured in degrees, in the context of trigonometry it
is more convenient to measure the angle φ in radians, which is
the ratio of the length of a circular arc to the radius of the arc.
A full angle of 360 degrees is therefore 2π radians. Similarly, a
straight angle (i.e., 180 degrees) is π radians and a right angle is π

2
radians. The graphs of the sine and cosine functions are displayed
in Fig. 2.6. The values of the sine, cosine, and tangent of certain
special angles can be calculated easily and are listed in Table 2.1.

The inverse trigonometric functions arcsin, arccos, arctan,
etc., are the inverse functions of the trigonometric functions (they
map one of these to their angle). As can be seen from Fig. 2.6,
the inverse trigonometric functions are multivalued, namely,
every input is associated with two or more distinct outputs. For
instance, we find from Table 2.1 that arctan 1 = π

4 , 5π
4 , etc. Hence,

the inverse trigonometric functions are not uniquely defined
unless the respective ranges are suitably restricted.
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Table 2.1 Values of the sine, cosine, and tangent of certain special
angles. The symbols +∞ and −∞ denote plus infinity and minus infinity,
respectively

φ (in degrees) φ (in radians) sin φ cos φ tan φ

0◦ 0 0 1 0

45◦ π

4
1

√
2

1
√

2
1

90◦ π

2
1 0 +∞

135◦ 3π

4
1

√
2

− 1
√

2
−1

180◦ π 0 −1 0

225◦ 5π

4
− 1

√
2

− 1
√

2
1

270◦ 3π

2
−1 0 −∞

315◦ 7π

4
− 1

√
2

1
√

2
−1

360◦ 2π 0 1 0

x

y

P

Q

R

O

r

Figure 2.5 Geometric representation of sine and cosine on a circle. See
Box 2.3 for details.
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Figure 2.6 Plot of the sine (solid line) and cosine (dotted line) functions.
They can be understood as mathematical waves being out of phase by 90◦

(or π
2 in radians).

Box 2.4 Euler formula

Another way of representing complex numbers is by utilizing the
polar coordinates (on which we will say more in Chapter 8) in the
complex plane and the Euler formula

eiφ = cos φ + i sin φ , (2.16)

where e is a number approximately equal to 2.718281 (as we
shall see, it is the base of the natural logarithm) and the real
argument φ of the cosine and sine functions is given in radians.
A complex number c = a + bi may be written in the so-called
polar form as [see Box 2.2 and Fig. 2.4]

c = |c|(cos φ + i sin φ) = |c|eiφ . (2.17)

Here, φ is known as the complex argument or phase, i.e., the
angle between the x axis and the Cartesian vector (a, b) measured
counterclockwise in radians. As can be seen from Fig. 2.4, the
complex conjugate of eiφ is given by

e−iφ = cos φ − i sin φ . (2.18)

In the particular case in which φ = 180◦ (or π in radians), the
Euler formula becomes

eiπ + 1 = 0, (2.19)

which connects the constants π (fundamental for the circumfer-
ence) and e with the numbers 0, 1, and i.
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The Euler formula is one the most beautiful in the history of
mathematics and allows to express sines and cosines in terms
of exponentials and vice versa. Indeed, summing and subtracting
Eqs. (2.16) and (2.18) we have

cos φ = 1
2

(
eiφ + e−iφ

)
, sin φ = 1

2i
(

eiφ − e−iφ
)

. (2.20)

Using the Euler formula, one can derive important trigonometric
identities. For instance, from the following identity

ei(α+β) = cos(α + β) + i sin(α + β)

= (cos α + i sin α)(cos β + i sin β) = eiαeiβ , (2.21)

we obtain the so-called addition formulas

sin(α + β) = sin α cos β + cos α sin β, (2.22a)

cos(α + β) = cos α cos β − sin α sin β. (2.22b)

Moreover, for α = −β = φ we have
∣∣eiφ

∣∣2 = eiφe−iφ = e0 = 1, (2.23)

which implies

cos2 φ + sin2 φ = 1. (2.24)

This is the well-known Pythagorean trigonometric identity.

Combining Eqs. (2.11) and (2.13), we can now mathematically write
the transformations induced by the beam splitter BS1 and the phase
shifter PS as

|d⟩ BS1−−→ 1√
2

(|d⟩ + |u⟩)

PS−−→ 1√
2

(|d⟩ + eiφ|u⟩). (2.25)

Hence, the state of the photon before it reaches the beam splitter
BS2 is a superposition of components |d⟩ and |u⟩, and the relative
phase between the two components is given by φ.

Problem 2.2 Calculate eiφ for φ = 0◦ (or 0 in radians), φ = 45◦ (or
π
4 in radians), φ = 90◦ (or π

2 in radians), φ = 135◦ (or 3π
4 in radians),



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

Action of the Second Beam Splitter 33

and φ = 180◦ (or π in radians) by making use of the Euler formula
(2.12) and Table 2.1.

Problem 2.3 Check the derivation of Eqs. (2.20) and (2.22).

Problem 2.4 Have you understood this section? If not, your task
is to read it again. Then try to write down a complete list of the
concepts that you have not understood (you may read it again for
writing down such a list). Once that you have the list, try to find out
where is the piece of information that you have missed in order to
understand any item of the list. If you think that there are terms
that you find strange or weird, make use of the web resources we
have indicated in the introduction. Once you have finished, read it
again and verify if you understand it fully. If not, start again the
procedure until you have absolute clarity about these issues. This
work will take you some time but is very important to the extent to
which it will teach you the basic requirement of scientific thought:
to systematically and methodically reflect on a problem by singling
out its components. For this reason, we strongly suggest to follow
it also for the next difficulties that you may meet in this book but
also for problems in your professional career. Consider that great
scientists are not gods or prophets but only persons like you and
us. However, one of the reasons of their success is that they have
applied this method with more determination and coherence than
other people.

2.7 Action of the Second Beam Splitter

The two components of the photon finally meet at the second
beam splitter BS2 [see Fig. 2.3]. We note that the geometry of the
apparatus can be set in such a way that they arrive simultaneously.
It is very important to understand that the transformation induced
by BS2 is to merge the two components and then to split again the
whole, here we again assume that the two outgoing components
have equal probability. Let us first consider the action of BS2 on the
two components separately. The transformation on |d⟩ is similar to
that induced by BS1 (indeed the input states are so far the same and
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the beam splitters are parallel), that is,

|d⟩ BS2−−→ 1√
2

(|1⟩ + |2⟩) , (2.26)

where with |1⟩ and |2⟩ we indicate here the two paths leading
to the detectors D1 and D2, respectively. We could have still used
the symbols |d⟩ and |u⟩, in which case we would have written
precisely Eq. (2.11). However, the new symbols are more useful for
understanding what happens at BS2 and also for calculating the final
detection probabilities. The transformation on |u⟩ has, instead, a
different form

|u⟩ BS2−−→ 1√
2

(|1⟩ − |2⟩) . (2.27)

The reason for this expression will be clearly explained in
Section 4.6. By now, let us take it as an experimental fact. Since the
total input to BS2 is represented by the output state (i.e., the last
line) in Eq. (2.25), we need to combine the latter two equations and
obtain

1√
2

(
|d⟩ + eiφ|u⟩

) BS2−−→ 1√
2

[
1√
2

(|1⟩ + |2⟩) + eiφ 1√
2

(|1⟩ − |2⟩)
]

= 1
2

(
|1⟩ + |2⟩ + eiφ|1⟩ − eiφ|2⟩

)
. (2.28)

Collecting the terms in last line, we obtain the final state | f ⟩ of the
photon after it leaves the beam splitter BS2, but before it is set to be
detected at D1 or D2

| f ⟩ = 1
2

[(
1 + eiφ

)
|1⟩ +

(
1 − eiφ

)
|2⟩

]
. (2.29)

It is important to note that the state | f ⟩ is precisely of the same form
as that in Eq. (2.10), with the coefficients of components |1⟩ and |2⟩
given by

c1 = 1
2

(
1 + eiφ

)
and c2 = 1

2
(

1 − eiφ
)

, (2.30)

respectively. Moreover, Eq. (2.29) reveals clearly that in order
to account for the relative phase between the components, the
coefficients of the components of a quantum state in general are
complex numbers. This is also the reason why we need to calculate
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the square moduli (and not simply the squares) of the coefficients to
obtain the corresponding probabilities.

Problem 2.5 Explain why a simple square of the probability
amplitude (which, as we have seen above, is in general a complex
number) would not give the correct probabilities.

2.8 Computing the Detection Probabilities

As we have mentioned, to find the probabilities of certain mea-
surement outcomes, we need to calculate the square moduli of the
probability amplitudes associated with the components describing
the outcomes. In the case of the Mach–Zehnder interferometer, our
problem is how to compute the probability that either the detector
D1 or the detector D2 clicks when a photon is in the interferometer.
We see now how useful has been to indicate the outputs after BS2 as
states |1⟩ and |2⟩. Since D1 clicking is associated with the component
|1⟩ while D2 clicking is associated with |2⟩, we calculate the square
moduli of the two respective coefficients given by Eqs. (2.30).
Therefore, the probability that the photon will be detected by D1 is
given by

℘1 = |c1|2 =
∣∣∣∣

1
2

(
1 + eiφ

)∣∣∣∣
2

= 1
4

(
1 + eiφ

) (
1 + e−iφ

)
, (2.31)

where we recall that according to Box 2.2 the square modulus of
a complex number c is computed by multiplying c by its complex
conjugate c∗ (and the complex conjugate of eiφ is e−iφ). Since we have
[see Eq. (2.23)]

∣∣eiφ
∣∣2 = 1, (2.32)

the above expression for ℘1 can be simplified to

℘1 = 1
4

(
2 + eiφ + e−iφ

)
= 1

2
(1 + cos φ) , (2.33)

where we have used the first of Eqs. (2.20).
Let us now compute the probability that D2 clicks. It is given by

℘2 = |c2|2 =
∣∣∣∣

1
2

(
1 − eiφ

)∣∣∣∣
2

= 1
2

(1 − cos φ) , (2.34)
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Figure 2.7 Statistical results of photon counting at detectors D1 and D2.
The number fractions of photons counted at detectors D1 (solid line) and
D2 (dotted line) are plotted as functions of the phase shift φ. It should be
noted that for each value of the phase shift φ the sum of the two fractions is
always unity.

It is straightforward to verify that the normalization condition is
indeed satisfied, i.e.,

℘1 + ℘2 = 1
2

(1 + cos φ + 1 − cos φ) = 1. (2.35)

For φ = 90◦ (or π
2 in radians), both D1 and D2, when several

experimental runs are performed, will click with a probability of
1
2 (since cos π

2 = 0). In fact, when we perform many experimental
runs with different value of φ, we obtain a typical interference profile
like the ones shown in Fig. 2.7. What is also interesting is that there
are limiting values of φ for which either D1 or D2 never clicks [see
Problem 2.8].

Problem 2.6 Verify the formula for the probability ℘2 that D2 clicks
in Eq. (2.34).

Problem 2.7 Show that the squares of the coefficients given by
Eqs. (2.30) do not express true probabilities.

Problem 2.8 Given the state | f ⟩ in Eq. (2.29), what are the limiting
values of the phase shift φ for which one of the two detectors never
clicks?
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2.9 Summary

In this chapter we have

• Followed the path of a photon in an interferometer.
• Learned that the photon in an interferometer is delocalized.
• Understood the phenomena of constructive and destructive

interference.
• Seen that a photon in an interferometer can do self–

interference.
• Formulated the principle of superposition, i.e., if two states are

allowed then an arbitrary linear combination of them is also
allowed.

• Learned the action of the beam splitter and phase shifter in an
interferometer.

• Understood that the coefficients of the superposition represents
the probability amplitudes.

• Learned to find the probabilities of measurement outcomes by
computing the square moduli of the corresponding probability
amplitudes.
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Chapter 3

Quantum States as Vectors

The aim of this chapter is to present the vector nature of quantum
states. We shall also become acquainted with the concepts of
projectors and the mathematical tool of matrix calculation.

3.1 Photon Polarization

In this chapter we shall elaborate the concepts presented in the
previous chapter. To this end, let us consider another important
property of the photon: polarization. Light is an electromagnetic
wave and ordinarily it oscillates in all directions orthogonal to its
propagation direction, as it happens for the light coming from the
sun or spreading out of a normal electric bulb. However, when
passing through a polarization filter (e.g., polarized sunglasses) light
may acquire a privileged oscillation direction, and in this case we say
that it is polarized in that direction (in this way polarized sunglasses
are able to eliminate reflected glare).

Let us consider two polarization directions in particular:
horizontal polarization, which we denote by the ket |h⟩, and vertical
polarization, which we denote by the ket |v⟩. As we know from the
superposition principle [see Principle 2.1], this also means that a

Quantum Mechanics for Thinkers
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photon can be in any superposition of these two states. Therefore,
an arbitrary photon polarization state |ψ⟩ can be written as

|ψ⟩ = ch|h⟩ + cv |v⟩, (3.1)

where ch and cv are complex coefficients satisfying the normaliza-
tion condition

|ch|2 + |cv |2 = 1. (3.2)

Since the resulting state |ψ⟩ is a combination of two independent
polarization directions, it will in general represent itself a given
polarization direction.a In the easiest (symmetric) case it represents
a polarization at 45◦ (or π

4 in radians) relative to the horizontal
polarization when

ch = cv = 1√
2

. (3.3)

3.2 Action of the Polarization Filter

Let us suppose to insert a polarization filter along an arbitrary
direction a on the path of an incoming photon in the state |ψ⟩ given
by Eq. (3.1) [see Section 2.4]. The bold letter expresses the fact
that this direction is an Euclidean vector [see Fig. 1.1 and Box 1.1].
Experimentally, if we send many photons in the same state |ψ⟩, it
is observed that only a portion of the photons will pass through
the filter. It is found that the fraction of photons passing through is
the same as the probability that a single photon will pass through
the filter. The latter is given by

℘pass(θ) = cos2 θ , (3.4)

where θ is the angle between the filter direction a and the photon
polarization direction given by |ψ⟩ [see Fig. 3.1]. The probability for
the photon to be blocked (or absorbed) by the filter is given by

℘block(θ) = 1 − ℘pass(θ) = sin2 θ , (3.5)

where we have used the trigonometric relation cos2 θ + sin2 θ = 1
[see Box 2.4] and the normalization condition for probabilities.

aFor the sake of presentational simplicity, we consider here only the so-called linear
polarization.
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a

polarization filter

Figure 3.1 The photon that is initially in a polarization state |ψ⟩ pass will
pass through a polarization filter in the direction a with a probability given
by cos2 θ , where θ is the angle between the filter direction a and the photon
polarization direction given by |ψ⟩. As will be explain below, the resulting
state is |a⟩.

Below we shall understand the exact meaning of these expressions.
For the time being, let us take them as experimental facts and
only remark that we again face the puzzling nature of quantum
mechanics: it is indeed classically impossible that systems prepared
in the same state (like the state |ψ⟩) behave in different ways, that is,
a part will pass through the filter while a part will not.

In the easiest case when a is the horizontal direction and |ψ⟩ is
the polarization state with θ = 45◦ (or π

4 in radians), after having
sent many photons in the same state |ψ⟩, we would observe that half
of the photons will pass through the filter and half of the photons will
be blocked by the filter (in fact, a polarization at an angle θ = 45◦

is halfway between horizontal and vertical polarization directions).
Obviously, all photons that have passed through the filter are now
polarized along the direction a. In other words, the filter acts as a
projector that projects the state |ψ⟩ onto the state |a⟩ represented
by the polarization direction a. Consequently, we can write the state
|ψ⟩ as a combination of the alternatives: the “passing through the
filter” state, |a⟩, and the “blocked by the filter” state, |a′⟩. Therefore,
taking into account the expressions (3.4) and (3.5), we can write

|ψ⟩ = cos θ |a⟩ + sin θ |a′⟩. (3.6)

The validity of this formula is guaranteed by the fact that the
probabilities of measurement outcomes in quantum mechanics are
the square moduli of the corresponding probability amplitudes.
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In our case, the probabilities (3.4) and (3.5) are precisely the
square moduli of the respective coefficients cos θ and sin θ given by
Eq. (3.6).

3.3 Vector Spaces and Bases

The most evident justification of Eq. (3.6) is given by geometric
considerations [see Fig. 3.2]. Since polarization directions can be
represented by vectors like a as well as by polarization states like
|ψ⟩, it is quite natural to consider also quantum states as vectors.
In particular, Eq. (3.6) can be interpreted as the vector |ψ⟩ being
the linear combination (or superposition) of the vectors |a⟩ and
|a′⟩. The example we have introduced can be quite useful because it
makes things very intuitive. Moreover, it seems to be a quite natural
extension of the classical superposition that we have considered in
Section 1.2. However, if the reader has really acquired this result, the
following two provisos become immediately necessary:

(i) The ket |a⟩, together with other quantum states like |a′⟩, |ψ⟩,
etc., is a state vector. It is not an ordinary vector such as a,
which are those generally considered in classical mechanics
[see Box 1.1]. Indeed, classical vectors (like positions, velocities,
forces, and so on) are represented by ordinary spatial vectors.

Figure 3.2 The vectors |a⟩ and |a′⟩ constitute a basis for geometrically
expressing the vector |ψ⟩ in a two-dimensional Hilbert space.
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They are geometric objects in a three-dimensional vector space,
called the Euclidean space. On the other hand, quantum states
are geometric objects in an abstract vector space called the
Hilbert space, whose dimensions depend on the system under
consideration (until now we have only considered the two-
dimensional case, but there can be more than two and in
some cases even infinite dimensions, as we shall see later). In
short, a vector space is a mathematical structure formed by a
collection of vectors, i.e., objects that may be added together
(called addition) and multiplied by numbers (called scalar
multiplication).

(ii) Quantum state vectors can describe many different physical
phenomena and parameters, not only polarization. In the
previous chapter, we have seen that they describe the path
taken by a photon in an interferometer. In the specific case
of the polarization vector a, we have also associated with it
a state vector |a⟩, but such an association between a spatial
vector and a state vector is rather an exception. In other
words, quantum state vectors do not need to correspond to
any ordinary vectors. Moreover, we should carefully distinguish
the polarization direction a from the polarization state |a⟩
in which the photon is when having a polarization in the
direction a. So, although a and |a⟩ are associated, since the latter
represents photons in a polarization state along the a direction,
they are nevertheless two different kinds of vectors that are
only contingently connected here due to the specificity of the
example.

An inspection of Fig. 3.2 shows that the state vectors |a⟩ and
|a′⟩ constitute a basis in a two-dimensional Hilbert space. In other
words, they are the basic direction vectors that allow us to express
other state vectors (like |ψ⟩ and any other state vector representing
a polarization direction) as their linear combinations. We note that
from this specific point of view the state vectors |a⟩ and |a′⟩ are not
very different from the basis vectors ex and ey in a two-dimensional
Euclidean space [see Box 1.1]. A basis constituted by the basis state
vectors |a⟩ and |a′⟩ is usually indicated in the following way as

{|a⟩, |a′⟩}. (3.7)
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Moreover, just like the unit vectors in the x and y directions can be
conveniently represented in component form as ex = (1, 0) and
ey = (0, 1), respectively, so can the two vectors |a⟩ and |a′⟩. However,
we write them in component form as

|a⟩ =
(

1
0

)
and |a′⟩ =

(
0
1

)
. (3.8)

Here, we have preferred to used the column vectors to represent
state vectors (or kets) and have reserved row vectors to another type
of vectors that will be discussed in Section 3.4. This is for the sake of
simplicity in the mathematical notion, as it will became clear very
soon. Then, the state vector |ψ⟩ that is defined by the superposition
(3.6) can be written in component form as

|ψ⟩ = cos
(

1
0

)
+ sin

(
0
1

)
=

(
cos θ

sin θ

)
. (3.9)

Problem 3.1 Express the following two state vectors in component
form

|φ⟩ = 1√
2

(|a⟩ + |a′⟩) and |φ′⟩ = 1√
2

(|a⟩ − |a′⟩)

3.4 Scalar Products and Brackets

We are now in a position to discuss an important mathematical
concept of the Hilbert space, namely, the scalar product of two
vectors. To this end, we shall introduce to every ket (or state vector)
|ψ⟩ in a Hilbert space a dual counterpart, called a bra and denoted
by ⟨ψ |. The bra ⟨ψ | is the complex conjugate transpose (or conjugate
transpose for short) of the corresponding ket |ψ⟩:

• The term transpose means to interchange columns and rows.
• Since the coefficients in a state vector (or probability ampli-

tudes) are in general complex numbers [see Sections 2.4–2.6],
the coefficients in a bra dual to a ket are the complex conjugates
of the corresponding coefficients in the ket.

The conjugate transpose of the kets |a⟩ and |a′⟩ defined by Eq. (3.8)
are respectively given by

⟨a| =
(

1 0
)

and ⟨a′| =
(

0 1
)

, (3.10)
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where 0 and 1 are real numbers and are therefore the complex
conjugates of themselves. For the ket |ψ⟩ given by Eq. (3.6), its dual
bra is given by

⟨ψ | = cos θ⟨a| + sin θ ⟨a′|, (3.11)

which is then written in component form as

⟨ψ | = cos θ
(

1 0
)

+ sin θ
(

0 1
)

=
(

cos θ sin θ
)

. (3.12)

This allows us to formulate the general rules for addition and scalar
multiplication of vectors. Given two arbitrary state vectors

|a⟩ =
(

a1

a2

)
and |b⟩ =

(
b1

b2

)
, (3.13)

where the components a’s and b’s are complex numbers, we have

α|a⟩ =
(

α a1

α a2

)
, (3.14a)

α⟨a| =
(
α a∗

1 α a∗
2

)
, (3.14b)

|a⟩ + |b⟩ =
(

a1

a2

)
+

(
b1

b2

)
=

(
a1 + b1

a2 + b2

)
, (3.14c)

⟨a| + ⟨b| =
(

a∗
1 a∗

2

)
+

(
b∗

1 b∗
2

)
=

(
a∗

1 + b∗
1 a∗

2 + b∗
2

)
, (3.14d)

where α is a complex number. Note that the sum |a⟩ + ⟨b| is never
allowed.

The scalar product of two state vectors is a generalization of the
dot product of two Euclidean vectors. A brief discussion of the latter
can be found in Box 3.1. In specific, the scalar product of two state
vectors |a⟩ and |b⟩ is a complex number and is defined by

⟨a|b⟩ =
(

a∗
1 b∗

1

) (
b1

b2

)
= a∗

1b1 + b∗
1b2. (3.15)

The general rule for calculating the scalar product is then to multiply
the first and second columns in the row vector by the corresponding
rows in the column vector and then add the results together. This is
a special case of the so-called matrix multiplication, which will be
discussed in more detail in Section 3.6. Since the expression ⟨a|b⟩
can be thought of as a bra acting on a ket, it is called a bracket
(note that the two central vertical bars resulting by writing the
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Box 3.1 Dot product of vectors

The dot product (or scalar product) is an important operation
between two Euclidean vectors. For two vectors a and b, their dot
product a · b is a real number and is defined by

a · b = ∥a∥ ∥b∥ cos θ , (3.16)

where ∥a∥ and ∥b∥ are the magnitudes of the vectors a and b,
respectively, and θ is the angle between a and b. The dot product
a · b is a number that expresses how much the vectors a and b
aligned. When two vectors are aligned (i.e., a = kb with k ̸=
0), their dot product is obviously different from zero. When the
dot product of two vectors is zero, the vectors are said to be
orthogonal since they are pointing in perpendicular directions.

The magnitude of a vector ∥a∥ can be expressed in terms of
the dot product as

∥a∥ =
√

a · a. (3.17)

It is suitable to introduce Cartesian coordinates. By denoting
with ex , ey , and ez the unit vectors in the x , y, and z directions
(in Cartesian coordinates), respectively, we can decompose any
vector in their components and write the dot product of the
vectors a = ax ex + ayey + azez and b = bx ex + byey + bzez

as

a · b = ax bx + ayby + azbz. (3.18)

For the sake of notational simplicity, the magnitude squared of a
vector a is usually written as a2, which in Cartesian coordinates
takes the form

a2 ≡ ∥a∥2 = a2
x + a2

y + a2
z . (3.19)

Moreover, the dot product satisfies the following properties:

a · b = b · a, (3.20a)

a · a ≥ 0 (equality holds if and only if a = 0), (3.20b)

a · (b + c) = (a · b) + (a · c), (3.20c)

(ka) · b = a · (kb) = k(a · b), (3.20d)

where k is an arbitrary real number.
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scalar product have been contracted into a single one for the sake
of notational simplicity). In addition, the scalar product satisfies the
following properties [see Eqs. (3.20)]:

⟨b|a⟩ = ⟨a|b⟩∗, (3.21a)

⟨a|a⟩ ≥ 0 (equality holds if and only if |a⟩ = 0), (3.21b)

(⟨b| + ⟨c|) |a⟩ = ⟨b|a⟩ + ⟨c|a⟩, (3.21c)

⟨a| (|b⟩ + |c⟩) = ⟨a|b⟩ + ⟨a|c⟩, (3.21d)

⟨b| (α|a⟩) = α⟨b|a⟩, (3.21e)

(α⟨b|) |a⟩ = α⟨b|a⟩, (3.21f)

where α is a complex number.
The scalar product ⟨a|b⟩ is a number that expresses how much

the state vectors |a⟩ and |b⟩ overlap. When two state vectors coincide
(i.e., |a⟩ = |b⟩ ̸= 0), their scalar product is obviously different
from zero. When the scalar product of two state vectors is zero, they
are said to be orthogonal since they no longer have an overlap. For
instance, the basis state vectors |a⟩ and |a′⟩ given by Eq. (3.8) are
orthogonal because [see Problem 3.2]

⟨a|a′⟩ = 0. (3.22)

The scalar product also helps defining the magnitude (or length) of a
state vector, which is also called its norm. Similarly to Eq. (3.17) the
norm of the state vector |ψ⟩ is denoted by ∥|ψ⟩∥ and is defined as
the square root of the scalar product of |ψ⟩ with itself, i.e.,

∥|ψ⟩∥ =
√

⟨ψ |ψ⟩. (3.23)

We recall that in quantum mechanics a state vector has to fulfill the
normalization condition [see Section 2.4], which is tantamount to
having unit magnitude, i.e.,

∥|ψ⟩∥ ≡
√

⟨ψ |ψ⟩ = 1. (3.24)

This in turn implies that

⟨ψ |ψ⟩ = 1. (3.25)

A state vector satisfies the normalization condition (3.25) is said
to be normalized. If a non-zero state vector |ψ⟩ is not normalized,
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then the corresponding normalized state vector (in the finite-
dimensional case) is given by

|ψ⟩normalized = |ψ⟩
∥|ψ⟩∥

. (3.26)

The combination of orthogonality and normalization is called
orthonormality (or the orthonormal condition). In other words, two
state vectors are orthonormal if they are orthogonal and both of
unit magnitude. A set of state vectors forms an orthonormal set if
all state vectors in the set are mutually orthogonal and all of unit
magnitude. An orthonormal set of state vectors which also forms a
basis is called an orthonormal basis. It is straightforward to verify
that the basis {|a⟩, |a′⟩} is an orthonormal basis, i.e., the following
orthonormal conditions hold:

⟨a|a⟩ = ⟨a′|a′⟩ = 1 and ⟨a|a′⟩ = ⟨a′|a⟩ = 0. (3.27)
The above orthonormal conditions can be written in a compact form
as

⟨ j |k⟩ = δ jk, (3.28)
where j, k = a, a′ and δ jk is the Kronecker delta defined by

δ jk =

⎧
⎨

⎩
1 for j = k,

0 for j ̸= k.
(3.29)

To put it in another way, the Kronecker delta tells us that the two
indexes j and k need to coincide otherwise its value is zero. As we
will see below, the concept of orthonormal basis plays an important
role in quantum mechanics.

Problem 3.2 Derive the result (3.22) by making use of the vector
components.

Problem 3.3 Compute the scalar products ⟨ψ |a⟩ and ⟨ψ |a′⟩, where
|ψ⟩, |a⟩, and |a′⟩ are given by Eqs. (3.8) and (3.9).

Problem 3.4 Compute the scalar product of the state vectors
|ψ⟩ = c|a⟩ + c′|a′⟩ and |ϕ⟩ = d|b⟩ + d′|b′⟩,

where

|b⟩ = 1√
2

(|a⟩ + |a′⟩) and |b′⟩ = 1√
2

(|a⟩ − |a′⟩).

(Hint: Expand first the ket |φ⟩ in the basis {|a⟩, |a′⟩} by taking
advantage of the latter two equations.)
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Figure 3.3 The action of a polarization filter along the direction a as a
projection.

3.5 Polarization Filters as Projectors

We have mentioned the fact that a polarization filter along a given
direction a let pass through only a portion of the photons sent in
the state |ψ⟩. We have also said that the filter acts as a selecting
devise that projects this part of the photons along the direction a
by eliminating the part along the orthogonal direction a′, precisely
those that will not pass through but are absorbed by the filter. The
reason for this circumstance is that we have here a situation of
mutual exclusivity, namely, either a photon passes through the filter
or not. We mathematically express this by saying that the scalar
product between |a⟩ (repressing photons passing through the filter)
and |a′⟩ (representing photons that are blocked by the filter) is zero,
i.e., ⟨a|a′⟩ = 0. We can represent this situation as in Fig. 3.3. The two
entities shown in the figure as P̂a and P̂a′ are called the projectors (or
projection operators) into the states |a⟩ and |a′⟩, respectively. They
mathematically describe the action of the filters in the direction a
and a′, respectively.

To find the definition of the projector, let us make use of the
general form of superposition and write

|ψ⟩ = ca|a⟩ + ca′ |a′⟩, (3.30)
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where ca and ca′ are complex coefficients satisfying the normaliza-
tion condition

|ca|2 + |ca′ |2 = 1. (3.31)

Since {|a⟩, |a′⟩} is an orthonormal basis, we can write down the
overlaps of |ψ⟩ with |a⟩ and |a′⟩, on the one hand, and on the other
hand express the coefficients ca and ca′ in their terms as (they turn
out to express precisely the same concept)

⟨a|ψ⟩ = ca and ⟨a′|ψ⟩ = ca′ . (3.32)

In other words, probability amplitudes are themselves scalar
products (or brackets). Upon substituting Eq. (3.32) into Eq. (3.30),
we can express the state vector |ψ⟩ as

|ψ⟩ = ⟨a|ψ⟩|a⟩ + ⟨a′|ψ⟩|a′⟩. (3.33)

By interchanging the order of the scalar products and the accompa-
nying state vectors, we can rewrite the right-hand side of Eq. (3.33)
as

|ψ⟩ = (|a⟩⟨a|)|ψ⟩ + (|a′⟩⟨a′|)|ψ⟩. (3.34)

This is absolutely allowed because the scalar products ⟨a|ψ⟩ and
⟨a′|ψ⟩, being complex numbers, can always be interchanged with
vectors in a product. Equation (3.34) is very instructive and leads
to the following definitions of the projectors

P̂a = |a⟩⟨a| and P̂a′ = |a′⟩⟨a′|. (3.35)

We note that if the initial state is given by the state |ψ⟩, then the
states projected by the projector P̂a and P̂a′ are denoted by P̂a|ψ⟩
and P̂a′ |ψ⟩, respectively, which allows us to write Eq. (3.34) as

|ψ⟩ = P̂a|ψ⟩ + P̂a′ |ψ⟩. (3.36)

By comparing this equation with Eq. (3.6), we immediately see that

P̂a|ψ⟩ = cos θ |a⟩ and P̂a′ |ψ⟩ = sin θ |a′⟩, (3.37)

as it should be in accordance with our examination in Section 3.2.

Problem 3.5 Making use of the orthonormal conditions (3.27),
prove the identity

(⟨a| + ⟨a′|)(|a⟩ + |a′⟩) = ⟨a|a⟩ + ⟨a′|a′⟩.
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3.6 Projectors as Matrices

While the scalar product is a product of a bra (a row vector) and a
ket (a column vector), the projector is a product of a ket (a column
vector) and a bra (a row vector). Then, by taking into account the
component form of the vectors |a⟩ and |a′⟩ given by Eq. (3.8), we can
write the projectors P̂a and P̂a′ respectively as [see Eq. (3.35)]

P̂a = |a⟩⟨a| =
(

1
0

) (
1 0

)
(3.38a)

and

P̂a′ = |a′⟩⟨a′| =
(

0
1

) (
0 1

)
. (3.38b)

In order to compute these two projectors we need to introduce some
mathematical notions. First, it is important to understand that a
projector is not a number, like the result of a scalar product, which
is indeed a probability amplitude. Instead, it describes the action of
projection. As a matter of fact, the projector is the first example of
another type of mathematical structure called linear operators that
also play an important role in quantum mechanics. A linear operator
Ô acts on a state vector |ψ⟩, resulting in a new state vector Ô|ψ⟩, and
satisfies the following properties:

Ô(|ψ1⟩ + |ψ2⟩) = Ô|ψ1⟩ + Ô|ψ2⟩, (3.39a)

Ô(α|ψ⟩) = α Ô|ψ⟩, (3.39b)

where the |ψ⟩’s are arbitrary state vectors and α is a complex
number. Since in this book we deal only with linear operators, here
and henceforth we shall refer to them simply as operators whenever
no confusion may arise. Note that here and in what follows an
operator is written with a hat so that it can be easily distinguished
from a number. The easiest way in which linear operators are
uniquely and concisely represented in a given orthonormal basis
is by using matrices. A matrix is a generalization of the concept of
vector having both columns and rows. An m × n matrix consists of m
rows and n columns. A matrix is said to be square if m = n, and
rectangular if m ̸= n. In particular, an m × 1 matrix is a column
vector, and a 1 × n matrix is a row vector. The individual entries in
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a matrix are called its elements. The element in the i th row and the
j th column of a matrix Â is referred to as the (i, j)th element of Â
and is commonly written as ai j . An element in row j and column j of
a square matrix is called a diagonal element of the square matrix,
while an element that is not diagonal is called off-diagonal. The
convention that we shall use is that a matrix will also be written with
a hat.

We now discuss some basic operations of matrices. For the
sake of presentational simplicity, we will consider here 2 × 2
square matrices. The generalization to rectangular matrices is
straightforward. Addition and scalar multiplication of matrices are
defined analogously to that of vectors. Given two arbitrary 2 × 2
matrices

Â =
[

a11 a12

a21 a22

]
and B̂ =

[
b11 b12

b21 b22

]
, (3.40)

where the elements a’s and b’s are complex numbers, we have

α Â =
[
α a11 α a12

α a21 α a22

]
(3.41a)

and

Â + B̂ =
[

a11 + b11 a12 + b12

a21 + b21 a22 + b22

]
, (3.41b)

where α is a complex number. In addition, matrix multiplication is
an operation that, in the easiest case, takes a pair of square matrices,
and produces another square matrix that is called their product Â B̂ .
For instance, the product of matrices Â and B̂ is written as Â B̂ and
defined by

Â B̂ =
[

a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]
. (3.42)

In general, if Â is an n × m matrix and B̂ is an m × p matrix, the
product Â B̂ of their multiplication is an n× p matrix but the product
B̂Â is not defined. In other words, in order to perform the product
Â B̂ we need that the number of columns of Â is the same as the
number of rows of B̂ .

The matrix Â can be also viewed as a collection of two row
vectors

⟨a1| =
(

a11 a12
)

, ⟨a2| =
(

a21 a22
)

, (3.43)
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while the matrix B̂ as a collection of two column vectors

|b1⟩ =
(

b11

b21

)
, |b2⟩ =

(
b12

b22

)
, (3.44)

so that formally we can write Â and B̂ respectively as

Â =
(

⟨a1|
⟨a2|

)
and B̂ =

(
|b1⟩ |b2⟩

)
. (3.45)

Then, matrix multiplication can be calculated in analogy with
the scalar product between vectors and the matrix Â B̂ given by
Eq. (3.42) can be expressed in a compact form as

Â B̂ =
[
⟨a1|b1⟩ ⟨a1|b2⟩
⟨a2|b1⟩ ⟨a2|b2⟩

]
. (3.46)

In terms of the elements, on the other hand, we can write the (i, j)th
element of the matrix Â B̂ as

( Â B̂)i j =
2∑

k=1

aik bkj , (3.47)

where i, j = 1, 2 and use has been made of the summation
notation [see Box 3.2]. Matrix multiplication satisfies the following
properties:

Â(B̂Ĉ ) = ( Â B̂)Ĉ , (3.48a)

Â(B̂ + Ĉ ) = Â B̂ + ÂĈ , (3.48b)

(Â + B̂)Ĉ = ÂĈ + B̂Ĉ , (3.48c)

α(Â B̂) = (α Â)B̂ = Â(α B̂), (3.48d)

where Â, B̂ , and Ĉ are matrices such that the above operations are
defined and α is a complex number. Therefore, in the basis {|a⟩, |a′⟩}
the projectors P̂a and P̂a′ can be expressed in matrix form as [see
Eqs. (3.38)]

P̂a = |a⟩⟨a| =
(

1
0

) (
1 0

)
=

[
1 0
0 0

]
(3.49a)

and

P̂a′ = |a′⟩⟨a′| =
(

0
1

) (
0 1

)
=

[
0 0
0 1

]
. (3.49b)
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Box 3.2 Summation and series

Summation is the operation of addition. The result of summation
is called the sum. The summation operation can be conveniently
indicated by using the summation symbol (the capital sigma,
,). For instance, the sum of the square of the first four natural
numbers can be written as

4∑

k=1

k2 = 1 + 22 + 32 + 42 = 30, (3.50)

where k = 1 in the subscript and 4 in the superscript denote that
the summation index k takes integer values from 1 to 4.

Let {ak}n
k=1 = {a1, a2, . . . , an} be a sequence of n numbers, in

which each term ak is given by a certain rule, whose character
is here irrelevant. A series is the sum of a sequence and can be
written in summation notation as

n∑

k=1

ak = a1 + a2 + · · · + an. (3.51)

If the number of terms n is finite, the series is called a finite series;
otherwise, it is called an infinite series. An example of an infinite
series is the geometric series

∞∑

k=0

1
2k = 1 + 1

2
+ 1

4
+ 1

8
+ 1

16
+ · · · , (3.52)

where the symbol ∞ denotes infinity. It is not difficult to see that
this series is built by taking the fraction 1

2 and considering in
succession infinite exponents, from zero on. Infinite series play an
important role in mathematical analysis and require the notion of
limits to be fully understood and manipulated.

It is noted that the matrix multiplication performed in obtaining the
matrices given by Eqs. (3.49) is a particular instance of the square
matrix multiplication discussed above (where we have column and
row vectors instead of matrices).

As we shall see in the following chapters, in quantum mechanics
every physical quantity can be in principle represented by an
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operator and is called an observable. Then, in general, if {|bk⟩} is
an orthonormal basis (where k is some discrete index labeling the
basis vectors), the (i, j)th element of the matrix representing the
observable Ô is given by

Oi j = ⟨bi |Ô|bj ⟩. (3.53)

Here we note that ⟨bi |Ô|bj ⟩ is a legitimate mathematical object and
is in fact a shorthand notation for the scalar product of the kets |bi ⟩
and Ô|bj ⟩, i.e.,

⟨bi |Ô|bj ⟩ = ⟨bi |Ôb j ⟩, (3.54)

where |Ôb j ⟩ = Ô|bj ⟩.

Problem 3.6 Compute the following matrices:

Â =
[

1 2
3 4

]
+

[
1 4
2 3

]
+

[
1 3
4 2

]
and B̂ =

[
1 2 3
4 5 6

] ⎡

⎣
1 2
3 4
5 6

⎤

⎦ .

Problem 3.7 Using the matrix multiplication rule (3.47), check the
derivation of the matrices given by Eqs. (3.49).

3.7 Action and Properties of Projectors

Let us now apply the projectors in Eqs. (3.38) to the polarization
states encountered so far to show that they can fully describe the
experimental outcomes that we are dealing with. First, let us remark
that a projector applied to the same state vector into which it
projects leaves this state vector unchanged. Indeed, we have

P̂a|a⟩ =
[

1 0
0 0

] (
1
0

)
=

(
1
0

)
= |a⟩ (3.55a)

and

P̂a′ |a′⟩ =
[

0 0
0 1

] (
0
1

)
=

(
0
1

)
= |a′⟩. (3.55b)

Physically, this means that photons already in the polarization state
|a⟩ will all pass through a filter that is aligned along the same
direction. Likewise, photons already in the state |a′⟩ will all pass
through a filter aligned along the direction a′ that is orthogonal to
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a. We also expect that a projector applied to a state orthogonal to
the state into which it projects gives zero as the result. Indeed, we
find that

P̂a|a′⟩ =
[

1 0
0 0

](
0
1

)
= 0 (3.56a)

and

P̂a′ |a⟩ =
[

0 0
0 1

](
1
0

)
= 0. (3.56b)

The physical meaning of this result is that photons in a polarization
state (e.g., |a′⟩) that is orthogonal to the direction of a given
polarization filter (e.g., a) will all be blocked by the filter.

Much more interesting is the action of the projectors P̂a and P̂a′

on an arbitrary polarization state |ψ⟩ of the form given by Eq. (3.33)
[see also (3.32)]:

P̂a|ψ⟩ = ⟨a|ψ⟩ P̂a|a⟩ + ⟨a′|ψ⟩ P̂a|a′⟩

= ⟨a|ψ⟩|a⟩ (3.57a)
and

P̂a′ |ψ⟩ = ⟨a|ψ⟩ P̂a′ |a⟩ + ⟨a′|ψ⟩ P̂a′ |a′⟩

= ⟨a′|ψ⟩ |a′⟩, (3.57b)
which are in accordance with Eqs. (3.37). Being the outcomes of
the action of projection, the projected states P̂a|ψ⟩ and P̂a′ |ψ⟩ have
a magnitude that is smaller than or equal to the state vector |ψ⟩
(which is taken to be normalized and hence is of unit magnitude).
In specific, from Eqs. (3.35) and (3.32) and, since for any normalized
vector |ψ⟩, ∥|ψ⟩∥ = 1, we have

∥ P̂a|ψ⟩∥2 = ∥⟨a|ψ⟩|a⟩∥2

= |⟨a|ψ⟩|2 ∥|a⟩∥
= |⟨a|ψ⟩|2

= |ca|2 (3.58a)
and

∥ P̂a′ |ψ⟩∥2 = ∥⟨a′|ψ⟩|a′⟩∥2

=
∣∣⟨a′|ψ⟩

∣∣2 ∥|a′⟩∥

=
∣∣⟨a′|ψ⟩

∣∣2

= |ca′ |2 . (3.58b)
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Because of the normalization condition (3.31), we conclude that
0 ≤ |ca|2 , |ca′ |2 ≤ 1. The physical meaning of the above equations
is our main result here. The action of a projector, say P̂a , on
an arbitrary state |ψ⟩ is precisely that it lets pass through the
component of |ψ⟩ that is parallel to the direction of the projector
with a probability given by the square modulus of the corresponding
probability amplitude |⟨a|ψ⟩|2. When |ψ⟩ is not already a state along
the direction of the projector, this probability is less then one, as
expressed in Fig. 3.3.

We will now discuss three important properties of projectors.
The first property is that the projectors are positive semidefinite
operators, meaning that

⟨ψ | P̂a|ψ⟩ ≥ 0 and ⟨ψ | P̂a′ |ψ⟩ ≥ 0 for all |ψ⟩. (3.59)

This property can be proved easily by rewriting the above
expressions as

⟨ψ | P̂a|ψ⟩ = ⟨ψ |a⟩⟨a|ψ⟩ = |⟨a|ψ⟩|2 ≥ 0, (3.60a)

⟨ψ | P̂a′ |ψ⟩ = ⟨ψ |a′⟩⟨a′|ψ⟩ = |⟨a′|ψ⟩|2 ≥ 0, (3.60b)

where use has been made of Eq. (3.21a). The second property
is that the square of a projector is the projector itself, while the
product of projectors onto orthogonal states vanishes. In particular,
we have

P̂ 2
a =

[
1 0
0 0

] [
1 0
0 0

]
=

[
1 0
0 0

]
= P̂a , (3.61a)

P̂ 2
a′ =

[
0 0
0 1

] [
0 0
0 1

]
=

[
0 0
0 1

]
= P̂a′ , (3.61b)

P̂a P̂a′ =
[

1 0
0 0

] [
0 0
0 1

]
= 0, (3.61c)

P̂a′ P̂a =
[

0 0
0 1

] [
1 0
0 0

]
= 0, (3.61d)

which can be expressed in a compact form as

P̂ j P̂k = δ jk P̂k, (3.62)

where j and k can be either a or a′. The reason of the last two
expressions in Eqs. (3.61) is that projectors onto orthogonal states
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represent mutually exclusive measurement outcomes. Mathemati-
cally, this is a consequence of the orthogonality of the corresponding
state vectors. In general, a set of projectors satisfying the property
(3.62) is said to be orthogonal.

As said, projectors represent mutually exclusive outcomes of a
measurement. These outcomes occur with certain probabilities and
the sum of all probabilities of a set of mutually exclusive outcomes
must be equal to 1 (like all possible six results when throwing a
dice), according to the normalization condition. Consequently, all
possible mutually exclusive outcomes of a measurement constitute
a complete set of orthogonal states. The third property states that
the sum of all projectors onto a complete set of orthonormal states
is equal to the identity operator. In our two-dimensional case, the
basis {|a⟩, |a′⟩} is a complete orthonormal basis as

P̂a + P̂a′ =
[

1 0
0 0

]
+

[
0 0
0 1

]
=

[
1 0
0 1

]
= Î , (3.63)

or equivalently, ∑

j=a, a′

P̂ j = Î , (3.64)

where Î is two-dimensional identity matrix representing the
identity operator in a two-dimensional Hilbert space. It is noted that
Eq. (3.63) is also called the completeness relation or the resolution of
the identity.

These three properties are general in nature and hence valid
in arbitrary dimensions. In particular, in arbitrary dimensions the
identity operator is represented by the identity matrix with all
diagonal elements equal to 1 and all off-diagonal elements equal to
0. The reason why it is called identity matrix is that it represents the
operation that induces no change for all operators and states, i.e., we
have

Î Â = Â Î = Â and Î |ψ⟩ = |ψ⟩, (3.65)

where Â is an arbitrary operator and |ψ⟩ is an arbitrary state.

Problem 3.8 Using of the properties of the scalar product, prove
the results (3.55) and (3.56).

Problem 3.9 Redo the calculations of Eqs. (3.57) in vector and
matrix forms.
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Problem 3.10 Check Eq. (3.61) by making use of the product of
matrices.

Problem 3.11 Prove Eq. (3.61) by making use of the properties of
the scalar product. (Hint: Use the expressions P̂a = |a⟩⟨a| and P̂a′ =
|a′⟩⟨a′|.)

Problem 3.12 Prove Eqs. (3.65) by using the projectors P̂a and P̂a′

as matrices and the polarization state |ψ⟩.

3.8 Summary

In this chapter we have

• Learned that a quantum state is represented by a normalized
vector in a Hilbert space, called the state vector.

• Seen that a state vector can be expanded in a complete
orthonormal basis, with the expansion coefficients being the
respective probability amplitudes.

• Learned the scalar product of two state vectors and its basic
properties.

• Learned the matrix representation of linear operators and the
basic properties of matrix multiplication.

• Introduced the projectors associated with a complete ortho-
normal basis and shown that they represent mutually exclusive
outcomes of a measurement.
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Chapter 4

Bases and Operations

In this chapter we shall present the dilemma between an undulatory
and corpuscular understanding of quantum systems. We shall show
the historical reasons that have led to the necessity to posit the
quantization principle. Then, we shall focus on the concept of
observables and show two crucial aspects of quantum observables:
there are different possible bases to expand a quantum state
(hence superposition is a relative concept) and observables do not
necessarily commute. Finally, the concept of non-local features is
introduced.

4.1 Corpuscular Nature of Light

In Chapter 2 we have followed the photon in the interferometer.
We have seen that it is in a superposition state, producing self–
interference. We have also seen that, after many experimental
runs, the curves describing the detection events feature a typical
interference pattern [see Fig. 2.7]. However, if we ask what happens
to a single photon in the superposition state (2.29) when it is
detected, we face a puzzling situation: the photon has been revealed
either by D1 or by D2, exactly as we would expect for a classical
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B
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propagation
direction

Figure 4.1 Snapshot of an electromagnetic wave, which is a self-
propagating transverse oscillating wave of electric and magnetic fields.
Oscillation of the electric field E and magnetic field B associated with
a linearly polarized electromagnetic wave is depicted here. The electric
and magnetic fields oscillate in phase perpendicular to each other and
perpendicular to the direction of energy and wave propagation. Adapted
from (Auletta et al., 2009, p. 20).

corpuscle. It is as if the superposition state were disappeared and
we had a sudden localization of the photon in one of the two paths
(either in the state |1⟩ or in the state |2⟩). How is this possible?
It is timely to recall that, according to classical physics, light is a
wave-like continuous phenomenon, whose electric and magnetic
components oscillate in phase perpendicular to each other as well
as perpendicular to the propagation direction [see Fig. 4.1]. On
the other hand, matter was conceived classically as composed of
corpuscles, i.e., of discontinuous elements.

Historically, the corpuscular and discontinuous nature of radi-
ation was precisely the background on which quantum mechanics
was born. In two seminal papers published in 1900, the German
physicist Max Planck provided an extraordinary solution to the
famous black body problem that had arisen in physics towards the
end of the 19th century.a A black body is an idealized physical
body that absorbs all incident electromagnetic radiation falling
on it. Because of this perfect absorptivity at all wavelengths, a
black body is also the best possible emitter of thermal radiation,
which it radiates incandescently in a characteristic, continuous
spectrum that depends on the body’s temperature. Electromagnetic

a(Planck, 1900a,b).
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radiation absorbed by the black body eventually reaches a thermal
equilibrium with the body, and then is reemitted as thermal
radiation by the body. However, the classical theory of radiation
cannot correctly predict the spectral properties of the black body.
According to classical calculations, we should have the so-called
ultraviolet catastrophe, a situation in which the intensity of the
electromagnetic radiation trapped in the black body goes to infinity.
The reason is that the energy intensity was calculated by assuming
that there is a continuum in the energy of the electromagnetic
radiation.

Planck was able to solve the theoretical problem by assuming
that the energy of the electromagnetic radiation (which amounts
to say the light itself) be discontinuous, that is, that the energy
carried by the light always comes in units. It is interesting to remark
that Planck did not consider the incident light as discontinuous
but only the emitted one. In other words, he did not oppose the
traditional continuous understanding of light but assumed that,
being the structure of the black body composed of atoms, and
therefore corpuscular and discontinuous, the radiation that was
emitted by the black body was discontinuous as well. In this way,
Planck postulated the formula

E = nhν (n = 0, 1, 2, 3, . . . ), (4.1)

where E the energy carried by the light, ν is the frequency of the
light, and h is a new constant of nature called the Planck constant,
whose value in SI units (the International System of Units that is the
modern form of the metric system) is

h = 6.626069 × 10−34 J · s. (4.2)

In the above expression, we have

10−34 = 1
1034 ,

while J · s means Joule times second and the Joule is the unit of
energy. In order to understand how small the Planck constant is, it
suffices to consider that a Joule roughly measures the energy that is
required to elevate a weight of 1 kg by a vertical height of 10 cm
on the surface of the Earth. We have already met the concept of
frequency [see Fig. 2.1] and said that it is inversely proportional to
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the wavelength. Indeed, the frequency is the number of oscillations
that a wave makes in a unit time interval, and it is obviously larger
when the wavelength is shorter, which for light also demands more
energy. In this context, we recall that visible light goes from red
(longer wavelength with lower energy) to blue and violet (shorter
wavelength with higher energy). In summary, Planck’s postulate,
now commonly known as the quantum postulate, states that energy
may be emitted and absorbed in discrete units (expressed by n =
0, 1, 2, 3, . . .). In turn, this means that in certain contexts energy
takes the form of discrete packets called quanta (from which the
term quantum mechanics), and that the indivisible light quanta of
energy hν are the single photons, as anticipated in Chapter 2.

Although the quantum postulate was initially formulated as a
pure formal hypothesis in order to solve a specific problem (which
could be taken to represent, therefore, what is called an ad hoc
hypothesis), its consequences were truly revolutionary for physics.
Indeed, for centuries it was postulated that Nature cannot do
jumps (Natura non facit saltus). As Leibniz put it, continuity can be
found in time, extension, quality, motion, and all nature transitions,
since nothing happens jump-like (numquam fit per saltum).a On the
contrary, here it was assumed for the first time that certain physical
parameters like energy are not continuous [see Section 1.2].

It is very interesting to analyze a little bit the form of inference
that led Planck to his conclusion. Planck was deeply committed to
the validity of the classical laws. However, he could not explain
why those laws pushed to a conclusion or an expectation that
was in so strident contrast with experimental results. In such a
situation, the best option is to perform an abduction,b that is, to
try to show that there is some new property or behavior that was
not taken into account by the previous applications of those laws
and whose existence can solve the anomaly without rejecting the
laws as such.c In the case considered here, Planck did not reject the
assumption of the continuity of the natural laws [see Chapter 1],
neither of the electromagnetic waves as such. He only postulated

a(Leibniz MS, Vol. VII, p. 25). See also (Boscovich, 1754).
b(Peirce, 1866), (Peirce, 1877), (Peirce, 1878).
c(Auletta, 2009).
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that, under special circumstances, when light is reemitted by a
discontinuous matter structure, then it shows a new property,
namely discontinuity. In the following we shall see that there is a
deep insight in this result that remains valid even when the classical
laws will be abandoned and a new theory, i.e., quantum mechanics,
will be formulated.

4.2 Further Experimental Evidences

Some years after Planck’s pathbreaking work, Einstein used the
quantum postulate to solve another classical problem of physics,
showing in this way that Planck’s solution could not be considered
a mere ad hoc solution.a This new problem was the photoelectric
effect. It was experimentally known that when a certain metal
is irradiated by ultraviolet light, electrons are emitted. Now, if
light was continuous, as it was assumed at that time, one should
need a significant amount of time (of irradiation) for cumulating
energy sufficient to break the atomic bonds and expel the electrons.
However, the photoelectric effect is almost instantaneous once the
metal is irradiated by ultraviolet light. Einstein solved the problem
by assuming that the incident (and no longer only the reemitted)
light was composed of discrete energy packets relatively well
localized that were called photons later on.

To assume that the incident light was discontinuous was a big
conceptual step because it raised two fundamental questions: (i)
whether or not light could be considered corpuscular as such,
and (ii) if discontinuity could be generalized to other physical
contexts. The majority of the physicists at that time had an abiding
faith in the validity of classical mechanics (even Planck never took
very seriously Einstein’s work on the photoelectric effect). Things
began to change when Bohr became aware that a discontinuity
in the possible orbits at which the electrons are located in an
atom could be a solution to the stability problem of the atom.b A
couple of years earlier, Rutherford had proposed a planetary model

a(Einstein, 1905).
b(Bohr, 1913).
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of atom, in which negatively charged particles (electrons) would
revolve around a positively charged nucleus in a circular motion at
all possible continuous distances. The model accounted for many
experimental facts known at that time but presented the problem
that an accelerating electric charge (due to the circular motion
of the electrons) emits electromagnetic radiation, according to the
classical theory of electromagnetism, with the consequence that the
electrons should progressively lose energy and finally fall, with a
spiral trajectory, into the nucleus in a very short time. However, this
disagrees with the experience that shows matter is exceeding long-
living (apart from radioactive matter). To solve this problem, Bohr
proposed that the electrons in an atom can occupy only a certain
number of orbits which correspond to certain discrete energy
levels and that the electrons cannot jump from one energy level to
another without emitting (when jumping to a lower energy level)
or absorbing (when jumping to a higher energy level) a quantum
of energy, i.e., a photon. This was a splendid confirmation of both
Planck’s and Einstein’s results.

Einstein also applied Planck’s formula to solve the problem of the
specific heat of a solid (although the final formula is due to Debye).
At the same time it was also discovered that the spectrum of the elec-
tromagnetic radiation emitted by diluted gases was not continuous.
The accumulation of independent experimental evidence that, at
least at microscopic scale, nature shows a discontinuous behavior
became overwhelming when Compton discovered the remarkable
effect that now bares his name. In the Compton effect experiment,
an electron is scattered with a photon and results in a decrease in
the energy of the photon.a This can be accounted for by assuming
that during the scattering the electron first absorbs the photon and
then emits another photon of lower energy. In this way, the reality of
light quanta could be barely put into question.

In such a situation, an abductive solution is no longer sufficient.
The accumulation of independent evidences showed that there can
be a problem with the classical theory as such and not only with
specific applications. In such situations, we face a terrible dilemma:
We become growingly aware that the classical laws no longer

a(Compton, 1923).
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possess general validity and should be rather considered statistical
regularities (for instance, valid for macroscopic bodies, for which
some approximations can be valid but not for microscopical systems
like atoms or electrons that demand new fundamental laws). This is
the essence of the inferential procedure called induction.a However,
how to find the new laws? Unfortunately, there is no inference
that could provide a solution. In other words, there is no scientific
method for finding solutions to current scientific problems. It is
simply a matter of insight by some very creative people. The person
who provided such a new insight was Heisenberg.

4.3 Quantization Principle

The big idea of Heisenberg was to assume that microscopic systems
systematically behave in a discontinuous way (when interacting
with other systems) and to introduce the appropriate mathematical
tools for dealing with the discontinuities that were experimentally
found.b The first point can be summarized in a quantization
principle that puts together all the previous contributions.

Principle 4.1 (Quantization Principle) Some relevant physical
quantities of quantum systems can show discontinuous characteristics
when the latter interact with other systems or are subject to fields
or external forces. In those cases, the Planck constant h is associated
with the minimum quantum of energy or action involved in those
interactions.

Therefore, Planck’s idea that only emitted radiation is corpus-
cular is to a certain sense right, obviously not in the specific
assumption, because light may show corpuscular properties in
many different contexts and for various reasons, but because it is
here implicit that, in order to show this discontinuous behavior,
light need to interact with something else. The progress of science
consists precisely in singling out the conditions and the extent to
which certain regularities that were previously assumed need to

a(Auletta, 2009).
b(Heisenberg, 1925).
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be understood, and therefore it always consists in error correction
though which, when generalizing, previous statements are more
specifically formulated.

About the mathematical tools, we have seen in Chapter 1 that
being all of the physical quantities (time, energy, speed, position,
etc.) continuous in a classical world, they are very well mathe-
matically expressed by continuous variables and functions thereof.
Heisenberg understood that these can no longer be the appropriate
mathematical instruments and proposed to introduce operators as
the mathematical representation of quantum mechanical quantities.
Operators can indeed cover both the discontinuous and continuous
cases. In the first case, they are represented by matrices [see
Section 3.6]. In the previous chapter, we have already found
two examples of operators: projectors and the identity operator
[see Section 3.7]. An operator is much more a dynamical entity
than a variable or a function. Indeed, it induces or represents a
transformation. In the previous chapter, we have indeed seen that
projectors can represent the action of a polarization filter on the
photon, as it is evident by Eq. (3.57). To distinguish the quantum
mechanical operator form of physical quantities from the classical
variables and functions, we will refer to the former as physical
observables. A projector can be understood as the easiest example of
observables. For instance, P̂a can be understood as a test addressed
to the incoming photon by asking the question “Are you in the
polarization state |a⟩?” If the answer is yes, the photon will pass
the test. If the answer is no, which means that the photon is in
the orthogonal polarization state |a′⟩, it will not pass it. In the
intermediate cases, in which the photon is in a superposition state
of |a⟩ and |a′⟩, it has a non-zero probability to pass the test, as again
given by Eq. (3.57).

Let us now express the action of P̂a described by Eqs. (3.55) and
(3.56) as

P̂a|a⟩ = |a⟩ = +1 (|a⟩), (4.3a)

P̂a|a′⟩ = 0 = 0 (|a′⟩). (4.3b)
The two equations above are examples of the general eigenvalue
equation

Ô|o j ⟩ = o j |o j ⟩, (4.4)
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where Ô is an observable, o j is called the eigenvalue of Ô, and |o j ⟩
is the eigenstate corresponding to the eigenvalue o j (with j being
some index labeling the eigenvalues). These notions will be clarified
in the following sections. By now, let us remark that the eigenvalue
o j is the possible value that we read on a certain measurement
device when we perform a measurement of the observable Ô, a value
that we obtain when the measured system is in fact in the state |o j ⟩.
In the polarization case, the states |a⟩ and |a′⟩ are eigenstates of the
observable P̂a with respective eigenvalues +1 and 0 [see Eqs. (4.3)],
which express the possible results that we obtain when testing if
the photon is in the state |a⟩, namely, yes for +1 and no for 0. As
mentioned, they can be thought of as measurement outcomes and
therefore also as values shown on a measuring device (for instance,
a counter or a graduated scale).

Problem 4.1 Make use again of Eqs. (3.55) and (3.56) to check the
two eigenvalue equations of the observable P̂a′ .

4.4 Quantum Observables in General

It is possible to generalize these results to observables that are
combinations of projectors. Suppose that instead of the state vector
(and the corresponding polarization direction) |a⟩ or |a′⟩, we
consider a state vector (and a polarization direction) |ψ⟩, given by
Eq. (3.33), which for the sake of convenience we rewrite here as

|ψ⟩ = |a⟩⟨a|ψ⟩ + |a′⟩⟨a′|ψ⟩. (4.5)

Then, in this case we are tempted to mathematically write the
corresponding observable as the operator

Ô = P̂a + P̂a′ , (4.6)

whose eigenstates should be both |a⟩ and |a′⟩. However, we see
immediately that Ô would coincide with the identity operator Î [see
Eq. (3.63)], which, by definition, is not an observable (since every
state is its eigenstate with the same eigenvalue +1). Therefore, our
equation (4.6) does not work. In order to distinguish the two distinct
eigenstates |a⟩ and |a′⟩, we can assign to them different eigenvalues
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and construct an observable of the form

Ô′ = − P̂a + P̂a′ = −|a⟩⟨a| + |a′⟩⟨a′|, (4.7)

or in terms of the matrices,

Ô′ = −
[

1 0
0 0

]
+

[
0 0
0 1

]
=

[
−1 0
0 +1

]
. (4.8)

The operator Ô′ is obviously neither the identity operator nor
a projector, but is precisely the form of the observable we look
for. Indeed, when applied to the states |a⟩ and |a′⟩, the resulting
eigenvalues will be −1 and +1 (the two possible values that we
obtain when measuring Ô′), respectively, and therefore we shall
be able to discriminate between the two different outcomes. It is
true that the derivation that we have performed is very particular.
But this does not matter since it leads us to a result of general
validity, provided that we abandon the specific assumptions that
were used to derive this conclusion (this kind of inference is called
conditional reasoning). Indeed, the main conclusion here is that at
least in one case it is possible to construct an appropriate observable
that distinguishes between the two different eigenvalues −1 and
+1 associated respectively with the two different projectors P̂a and
P̂a′ . The two outcomes represented by the two eigenvalues are the
two different possible results that we could obtain by performing
a certain operation associated with the observable Ô′. But which
kind of operation is it? We have mentioned that it should be a
measurement. This is a very important issue and we need to be
careful by addressing it step by step. By now, let us deal with some
formal aspects of observables and operators.

In order to be the mathematical representation of physical
observables, operators (or matrices) need to obey some constraints.
The most important one is that the eigenvalues be real (and not
imaginary or complex) numbers. As we have seen, eigenvalues of
an observable are indeed associated with the possible results of a
certain test or experiment and therefore should even be displayed by
some measuring devices. But imaginary or complex numbers cannot
be suitable to this purpose. Mathematically this requirement of real
eigenvalues is tantamount to imposing that the operator (or matrix)
representing a physical observable will be equal to its conjugate
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transpose (a mathematical operation that we have already seen for
state vectors in Section 3.4).

The conjugate transpose (or Hermitian conjugate) of an m × n
matrix Â with complex elements is the n×m matrix Â

†
obtained from

Â by taking the transpose and then taking the complex conjugate of
each element, i.e., the conjugate transpose is formally defined by

(A†)i j = (A ji )∗, (4.9)

where the subscripts denote the (i, j)th element with 1 ≤ i ≤ n and
1 ≤ j ≤ m. For a ket (i.e., a 2 × 1 matrix)

|ψ⟩ =
(

a
b

)
, (4.10)

its transposed conjugate is its dual bra (i.e., a 1 × 2 matrix):

|ψ⟩† =
(

a∗ b∗) = ⟨ψ |. (4.11)

Then, for a 2 × 2 matrix

Â =
[

a b
c d

]
, (4.12)

we have

Â
† =

[
a∗ c∗

b∗ d∗

]
. (4.13)

In addition, the conjugate transpose satisfies the following proper-
ties:

(Â + B̂)† = Â
† + B̂† for any matrices Â and B̂ of the same

dimensions, (4.14a)

(α Â)† = α∗Â
†

for any complex number α and any matrix Â,
(4.14b)

(Â B̂)† = B̂† Â
†

for any m × n matrix Â and any n × p matrix B̂ ,
(4.14c)

(Â
†
)† = Â for any matrix Â, (4.14d)

Eigenvalues of Â
†

are the complex conjugates of those of Â.
(4.14e)
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In technical terms the above requirement amounts to saying that the
operator (or matrix) representing a physical observable needs to be
Hermitian. We may express this requirement in operator form as

Ô = Ô†, (4.15)

where Ô† denotes precisely the conjugate transpose of the observ-
able Ô. From the property (4.14e), it follows immediately that the
eigenvalues of a Hermitian operator (or matrix) are real numbers.
Moreover, Hermitian operators have orthogonal eigenstates and
the eigenstates form a complete orthonormal basis. It will be
important to note that while physical observables are represented
by Hermitian operators, the converse is not true in general. In
other words, not all Hermitian operators correspond to physical
observables: in the same way in which we have built in this section
an observable by combining projectors, we can always build abstract
operators by combining physical observables, but it is not a priori
guaranteed that the result will correspond to a physical quantity.

Problem 4.2 Find the action of the observable Ô′ in Eq. (4.7) on
both the states |a⟩ and |a′⟩ in analogy with that of the projectors P̂a

and P̂a′ shown in Eq. (4.3). Check whether or not the eigenvalues are
different.

Problem 4.3 Check that the projectors P̂a and P̂a′ given by
Eq. (3.49) are Hermitian.

4.5 Different Bases and Superposition

Having chosen Hermitian operators (or matrices) as the represen-
tation of quantum observables has many surprising consequences.
We shall now begin to explore them. We have already seen that
observables can be single projectors and the combinations thereof.
This in turn reflects a general circumstance of quantum theory:
quantum states can be expanded in different bases, each of which, at
least in principle, represents the eigenbasis of a different observable.
Here by eigenbasis we mean the complete set of eigenstates of a
given observable, that is, those states that we could obtain if we
measured that observable. To be less abstract, let us consider the
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usual basis {|a⟩, |a′⟩} and the alternative polarization basis {|h⟩, |v⟩},
where |h⟩ denotes the state of horizontal polarization and |v⟩ the
state of vertical polarization. Instead, the state |ψ⟩ is as usual a
state of arbitrary polarization. We first note that |a⟩ and |a′⟩ are
eigenstates of the observable

Ô = P̂a − P̂a′ , (4.16)

where for the sake of convenience we have reversed the signs of
the eigenvalues in the previous example [see Eq. (4.7)]. On the
other hand, it can be shown that |v⟩ and |h⟩ are eigenstates of the
observable

Ô′ = P̂h − P̂v , (4.17)

where P̂h = |h⟩⟨h| and P̂v = |v⟩⟨v| are the projectors onto the
states |h⟩ and |v⟩, respectively. Since |h⟩ and |v⟩ are orthogonal and
exhaust the two possible results when measuring the polarization
of a photon, they also constitute a complete orthonormal basis [see
Section 3.4]. Therefore, they satisfy a completeness relation of the
form [see Eq. (3.63)]

P̂h + P̂v = Î . (4.18)

Then, the state |ψ⟩ can be written as [see also Eq. (3.1)]

|ψ⟩ = Î |ψ⟩

= ( P̂h + P̂v )|ψ⟩

= |h⟩⟨h|ψ⟩ + |v⟩⟨v|ψ⟩

= ⟨h|ψ⟩|h⟩ + ⟨v|ψ⟩|v⟩. (4.19)

Upon comparing Eq. (3.33) or (4.5) with Eq. (4.19), we find that the
same state |ψ⟩ can be expanded both in the basis {|a⟩, |a′⟩} and in
the basis {|h⟩, |v⟩} [see Figs. 3.2 and 4.2]. Therefore, if we send a
photon in the state |ψ⟩ to a polarization filter along the horizontal
direction, the photon will have a probability |⟨h|ψ⟩|2 to pass through
and a probability |⟨v|ψ⟩|2 to be blocked. The meaning of this result
is that given a photon in the state |ψ⟩, we are totally free to set the
polarization filter along any direction (represented by a basis state
vector of a certain basis). Each time we have a certain probability
that the photon will pass this test and a certain probability that it will
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Figure 4.2 Change of basis. The basis {|a⟩, |a′⟩} is obtained from the original
basis {|h⟩, |v⟩} by a counterclockwise rotation of 45◦.

not. These two outcomes are associated with the two different basis
states of a given basis. However, choosing a certain test amounts to
choosing a certain observable (and hence to choosing a basis that
is the eigenbasis of that observable). In other words, we are totally
free to measure any observable we may desire (although, as we
shall see later, we have no control on the possible outcomes them-
selves). The consequences of this circumstance are very deep and
surprising.

It is very important to understand that in the specific example
considered above, the basis state vectors |a⟩ and |a′⟩ can be
respectively written as superpositions of |h⟩ and |v⟩:

|a⟩ = 1√
2

(|h⟩ + |v⟩) and |a′⟩ = 1√
2

(|v⟩ − |h⟩) , (4.20)

as is evident by an inspection of Fig. 4.2. We recall the requirement
that |a′⟩ is orthogonal to |a⟩, and one way to fulfill that is to take
the state |h⟩ in |a′⟩ with an opposite sign (or a relative phase of π

as eiπ = −1). Moreover, as shown in Fig. 4.2 both superpositions are
symmetric (for the angle θ = 45◦). We can generalize this conclusion
as follows. Apart from the limiting and uninteresting case in which
|v⟩ or |h⟩ are orthogonal either to |a⟩ or to |a′⟩ (or, in other words,
each one coincides with |a′⟩ or |a⟩), we must conclude that |a⟩ and
|a′⟩ both are superposition of the states |h⟩ and |v⟩ (which are then
the basis state vectors).

Therefore, the main conclusion we may draw is that the concept
of superposition is not absolute but depends on the basis used.
Indeed, in the basis {|a⟩, |a′⟩} neither |a⟩ nor |a′⟩ are superpositions.
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It will be important to note that all bases are equally good for
expressing the state |ψ⟩ and that the choice of basis is only a matter
of convenience.

Problem 4.4 Find the action of the projectors P̂h and P̂v on the
state |ψ⟩ as expanded in Eq. (4.19), in analogy with that of the
projectors P̂a and P̂a′ shown in Eq. (4.3).

Problem 4.5 Why, although in the expansion of |a′⟩ in Eq. (4.20),
the coefficient of |h⟩ is negative, the probability of obtaining the
outcome associated with |h⟩ is equal to the probability of obtaining
the outcome associated with |v⟩?

4.6 Change of Basis as a Unitary Transformation

Before proceeding further, let us summarize the two main results in
the previous section:

(1) The same state can be expanded in different bases. The choice of
basis is only a matter of convenience (or of choice for selecting
certain measurement contexts).

(2) The basis state vectors of one basis are in general superposi-
tions of those of another basis.

We are now interested in understanding how to formulate the
relations between two different bases. Let us first rewrite, in all
its generality, the expansion of |ψ⟩ in the basis {|a⟩, |a′⟩} as [see
Eq. (3.32)]

|ψ⟩ = ⟨a|ψ⟩|a⟩ + ⟨a′|ψ⟩|a′⟩
= ca|a⟩ + ca′ |a′⟩, (4.21)

and similarly the expansion of the same |ψ⟩ in the basis {|v⟩, |h⟩} as

|ψ⟩ = ⟨h|ψ⟩|h⟩ + ⟨v|ψ⟩|v⟩
= ch|h⟩ + cv |v⟩. (4.22)

Our task is to find the relation between the two sets of coefficients
{ca , ca′} and {ch , cv}, and therefore the relation between the two
different bases, a transformation known as the change of basis.
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We shall consider here the change of basis from the basis
{|a⟩, |a′⟩} to the basis {|h⟩, |v⟩}. The reverse can be obtained in
a similar manner [see Problem 4.6]. Taking into account the
completeness relation for the projectors P̂a and P̂a′ [see Eq. (4.18)],
we have

⟨h|ψ⟩ = ⟨h| Î |ψ⟩
= ⟨h|

(
|a⟩⟨a| + |a′⟩⟨a′|

)
|ψ⟩ (4.23a)

and

⟨v|ψ⟩ = ⟨v| Î |ψ⟩
= ⟨v|

(
|a⟩⟨a| + |a′⟩⟨a′|

)
|ψ⟩, (4.23b)

which in turn allows us to write down the relation between the
coefficients {ca , ca′} and {ch , cv} as

ch = ⟨h|ψ⟩
= ⟨h|a⟩⟨a|ψ⟩ + ⟨h|a′⟩⟨a′|ψ⟩
= ⟨h|a⟩ca + ⟨h|a′⟩ca′ (4.24a)

and

cv = ⟨v|ψ⟩
= ⟨v|a⟩⟨a|ψ⟩ + ⟨v|a′⟩⟨a′|ψ⟩
= ⟨v|a⟩ca + ⟨v|a′⟩ca′ . (4.24b)

In matrix notation, the above expressions can be cast into a compact
form as [see Section 3.6]

(
ch

cv

)
=

[
⟨h|a⟩ ⟨h|a′⟩
⟨v|a⟩ ⟨v|a′⟩

] (
ca

ca′

)
, (4.25)

or equivalently,
(

⟨h|ψ⟩
⟨v|ψ⟩

)
=

[
⟨h|a⟩ ⟨h|a′⟩
⟨v|a⟩ ⟨v|a′⟩

] (
⟨a|ψ⟩
⟨a′|ψ⟩

)
. (4.26)

Let us denote the transformation matrix in Eqs. (4.25) and (4.26) by
Û , i.e.,

Û =
[
⟨h|a⟩ ⟨h|a′⟩
⟨v|a⟩ ⟨v|a′⟩

]
. (4.27)
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By expanding the basis vectors |a⟩ and |a′⟩ in the basis {|h⟩, |v⟩} as

|a⟩ = (|h⟩⟨h| + |v⟩⟨v|)|a⟩ = ⟨h|a⟩|h⟩ + ⟨v|a⟩|v⟩, (4.28a)

|a′⟩ = (|h⟩⟨h| + |v⟩⟨v|)|a′⟩ = ⟨h|a′⟩|h⟩ + ⟨v|a′⟩|v⟩, (4.28b)

we find that the matrix elements of Û are nothing but the expansion
coefficients of the original basis vectors |a⟩ and |a′⟩ in the new basis
{|v⟩, |h⟩}. The operator Û is our first example of the so-called unitary
matrices, which satisfy the condition

Û Û † = Û †Û = Î , (4.29)

where we recall that the matrix Û † is the conjugate transpose of the
matrix Û [see Section 4.4]. Indeed, using the expression (4.27), we
have [see also Problem 4.7]

Û Û † =
[
⟨h|a⟩ ⟨h|a′⟩
⟨v|a⟩ ⟨v|a′⟩

][
⟨h|a⟩∗ ⟨v|a⟩∗

⟨h|a′⟩∗ ⟨v|a′⟩∗

]

=
[
⟨h|a⟩⟨a|h⟩ + ⟨h|a′⟩⟨a′|h⟩ ⟨h|a⟩⟨a|v⟩ + ⟨h|a′⟩⟨a′|v⟩
⟨v|a⟩⟨a|h⟩ + ⟨v|a′⟩⟨a′|h⟩ ⟨v|a⟩⟨a|v⟩ + ⟨v|a′⟩⟨a′|v⟩

]

=
[
⟨h| (|a⟩⟨a| + |a′⟩⟨a′|) |h⟩ ⟨h| (|a⟩⟨a| + |a′⟩⟨a′|) |v⟩
⟨v| (|a⟩⟨a| + |a′⟩⟨a′|) |h⟩ ⟨v| (|v⟩⟨v| + |a′⟩⟨a′|) |v⟩

]

=
[
⟨h|h⟩ ⟨h|v⟩
⟨v|h⟩ ⟨v|v⟩

]

=
[

1 0
0 1

]

= Î . (4.30)

Therefore, the change of basis is a unitary transformation, i.e., a
linear transformation that satisfies the property (4.29). We note that
a square matrix Â is called invertible if there exists a square matrix
B̂ such that

Â B̂ = B̂Â = Î . (4.31)

If this is the case, then the matrix B̂ that is uniquely determined
by Â is called the inverse of Â and is denoted by Â

−1
. It follows

from Eq. (4.29) that a unitary operator Û is always invertible
and its inverse is given by Û −1 = Û †. As a result, a unitary
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operator represents in quantum mechanics the idea of a reversible
transformation, since the inverse of any unitary transformation will
bring back the transformed state to the original state.

It is important to note that any unitary operator can be
interpreted as a rotation in the Hilbert space. In particular, the
transformation from the basis {|a⟩, |a′⟩} to the basis {|h⟩, |v⟩} can be
thought of as a rotation of the basis vectors as shown in Fig. 4.2.
The second important point is closely related to the first one in
that being a rotation in the Hilbert space, the unitary operator
represents in quantum mechanics the transformation that preserves
the scalar products of state vectors (hence also preserves both the
probability amplitudes and probabilities). To understand this point,
let us consider two arbitrary state vectors |ψ⟩ and |φ⟩ and their
respective transformed state vectors |ψ ′⟩ and |φ′⟩ under a unitary
transformation represented by Û . Namely, we have

|ψ⟩ Û−→ |ψ ′⟩ = Û |ψ⟩ and |φ⟩ Û−→ |φ′⟩ = Û |φ⟩. (4.32)

The conjugate transpose of the ket |ψ ′⟩ is given by ⟨ψ ′| = ⟨ψ |Û †, so
the scalar product ⟨ψ |φ⟩ transforms under Û as

⟨ψ |φ⟩ Û−→ ⟨ψ ′|φ′⟩ = ⟨ψ |Û †Û |φ⟩ = ⟨ψ | Î |φ⟩ = ⟨ψ |φ⟩. (4.33)

Hence, the scalar product of the state vectors after the unitary
transformation Û is indeed the same as that of the state vectors
before the transformation.

In Chapter 2 we have considered the action of both BS1 and BS2
on the components |d⟩ and |u⟩ [see Eqs. (2.26) and (2.27)]. In the
bases {|d⟩, |u⟩}, we may write

|d⟩ =
(

1
0

)
and |u⟩ =

(
0
1

)
, (4.34)

and express the action of the beam splitter by means of a unitary
operator (also called the Hadamard operator) of the forma

Û BS = 1√
2

[
1 1
1 −1

]
. (4.35)

a(Cerf et al., 1998).
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Indeed, we can rewrite Eq. (2.26) as

Û BS|d⟩ = 1√
2

[
1 1
1 −1

] (
1
0

)

= 1√
2

(
1
1

)

= 1√
2

(|d⟩ + |u⟩). (4.36)

We are now in a position to fully understand also the result (2.27).
Indeed, we have

Û BS|u⟩ = 1√
2

[
1 1
1 −1

](
0
1

)

= 1√
2

(
1

−1

)

= 1√
2

(|d⟩ − |u⟩) . (4.37)

The unitarity of Û BS can be easily checked and is left as an exercise
for the reader [see Problem 4.8]. It is also noted that Û BS is also
Hermitian, which in turn means that Û BS is the reverse of itself, i.e.
Û BS = Û †

BS.

Problem 4.6 Derive the inverse change of basis by expressing the
coefficients ca and ca′ in terms of the coefficients cv and ch .

Problem 4.7 Prove that Û †Û = Î in analogy with the proof of
Û Û † = Î given by Eq. (4.30).

Problem 4.8 Check that the operator Û BS in Eq. (4.35) is both
Hermitian and unitary.

Problem 4.9 Obtain the state | f ⟩ in Eq. (2.29) by applying the
unitary operator Û BS in Eq. (4.35) to the state

1√
2

(|d⟩ + eiφ|u⟩).

Problem 4.10 Find the operator Ûφ representing the phase shifter
PS on the upper path that produces a phase shift φ to the state |u⟩,
and show that the operator Ûφ is unitary.
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4.7 Not all Operations Commute

An immediate consequence of the use of operators to describe
quantum mechanical observables is that some of them do not
commute with each other. Elementary algebra tells us that all (real
and imaginary) numbers commute, i.e., for arbitrary two numbers
a and b, we have ab = ba (the order of factors in a product is
irrelevant). This is not true of operators in general. Since, we have
suggested to interpret operators as describing operations, we would
like to introduce a very simple (classical) example of operations
for understanding this property. Suppose that we are driving and
executing following subsequent operations. First, we turn left and
then turn right. A quick reflection will show that inverting the order
of the operations (that is, turning first right and then left) will bring
us to a different place (we would therefore obtain a different result).
We can mathematically represent that by writing R̂ L̂ ̸= L̂R̂ , where
we have made use of the hat, as usual, to indicate operators. Here,
we also follow the usual convention to describe a succession of
operations by use of multiplication (where the second operation is
written to the left of the first one, and similarly for any subsequent
operation).

Let us now consider a quantum mechanical example. Suppose
that we have some photons all prepared in the following state along
an arbitrary polarization direction a [see Fig. 4.3(a)]:

|a⟩ = ch|h⟩ + cv |v⟩, (4.38)

and we let them pass through a vertical polarization filter described
by the projector

P̂v = |v⟩⟨v|. (4.39)

The action of the filter on the state |a⟩ is given by

P̂v |a⟩ = |v⟩⟨v| (ch|h⟩ + cv |v⟩) = cv |v⟩, (4.40)

since ⟨v|h⟩ = 0 (the horizontal and vertical polarization directions
are orthogonal). Therefore, only a fraction of the photons will pass
through the filter (because by the assumption ch , cv ̸= 0 and the
normalization condition, we have 0 < |ch|, |cv | < 1), and those
passed through the filter will be precisely in the state of vertical
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polarization filter

polarization filter

Figure 4.3 (a) An light beam in the polarization state |a⟩ along an arbitrary
polarization direction a is sent to the filter P̂v with vertical polarization
direction. After passing through the filter, the light beam is in the state |v⟩
(with a reduced intensity, since some photons have been blocked). Then,
no photon can pass through the filter P̂h whose horizontal polarization
direction is orthogonal to that of the photons in state |v⟩. (b) If a third
polarization filter P̂a′ is placed between the first and the last one, with an
arbitrary polarization direction a′ (different from a, v, and h), then some
photons will pass through the last filter. Adapted from (Auletta et al., 2009,
p. 62).

polarization |v⟩. Now, suppose also that we let those photons pass
through a subsequent filter with horizontal polarization, which is
described by the projector

P̂h = |h⟩⟨h|. (4.41)

It is easy to see that no photon will pass through the subsequent
filter since

P̂h (cv |v⟩) = cv⟨h|v⟩|h⟩ = 0, (4.42)

which follows from the fact that ⟨h|v⟩ = 0 (the horizontal and
vertical polarization directions are indeed orthogonal).

Let us now consider an alternative experimental setup, in which
we insert a third filter between the vertical polarization and the
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horizontal polarization ones [see Fig. 4.3(b)]. The inserted filter
is along the direction a′ (different from a, v, and h) and selects
polarization states in some superposition of |h⟩ and |v⟩ given by

|a′⟩ = c′
h|h⟩ + c′

v |v⟩. (4.43)

The projector describing this polarization filter can be written in the
basis {|h⟩, |v⟩} as

P̂a′ = |a′⟩⟨a′|
=

(
c′

h|h⟩ + c′
v |v⟩

) (
c′∗

h ⟨h| + c′∗
v ⟨v|

)

= |c′
h|2|h⟩⟨h| + c′∗

v c′
h|h⟩⟨v| + c′

v c′∗
h |v⟩⟨h| + |c′

v |2|v⟩⟨v|. (4.44)

It is easy to see that if we let photons prepared in the state given by
Eq. (4.40) pass through this filter, we have

P̂a′ (cv |v⟩) = cv |a′⟩⟨a′|v⟩
= cv

(
|c′

h|2|h⟩⟨h| + c′∗
v c′

h|h⟩⟨v| + c′
v c′∗

h |v⟩⟨h| + |c′
v |2|v⟩⟨v|

)
|v⟩

= cv
(

c′∗
v c′

h|h⟩ + |c′
v |2|v⟩

)
, (4.45)

which is a very remarkable expression. It reveals that the action of
the inserted filter on the state selected by the vertical polarization
filter is again a superposition of horizontal and vertical polarization.
Indeed, the numbers cv

∣∣c′
v

∣∣2 and cv c′∗
v c′

h are to be regarded simply
as coefficients and the outgoing photons will be in the polarization
state along the a′ direction. This can be understood as follows.
Taking into account that cv

∣∣c′
v

∣∣2 = cv c′
v c′∗

v , we can rewrite the last
line of the previous equation as

P̂a′ (cv |v⟩) = cv c′∗
v

(
c′

h|h⟩ + c′
v |v⟩

)
= cv c′∗

v |a′⟩, (4.46)

where in the last step we have made use of the expansion (4.43).
The above result means that we have photons in the state |a′⟩
as output but reduced by a factor cv c′∗

v , in accordance with the
analysis developed in Section 3.5. Now, if we let those photons pass
through the horizontal polarization filter (represented by P̂h), we
shall obtain

P̂h
(

cv c′∗
v |a′⟩

)
= cv c′∗

v |h⟩⟨h|
(

c′
h|h⟩ + c′

v |v⟩
)

= cv c′
hc′∗

v |h⟩. (4.47)

Hence, the probability that the photons will pass through the
horizontal polarization filter is now given by

∣∣cv c′
hc′∗

v

∣∣2 =
(

cv c′
hc′∗

v
) (

c∗
v c′∗

h c′
v
)

= |c′
v |2|c′

h|2|cv |2, (4.48)
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which is certainly different from zero. Note that putting the filter P̂a′

between the filters P̂v and P̂h actually means to have interchanged
the order of operations between P̂a′ and P̂h . Indeed, if we put P̂a′

after P̂h , we would not change the situation. This is because already
after P̂h (in the absence of a previous P̂a′ ) the output is zero (no
photon passes the test, as shown in Fig. 4.3(a)). Thus, putting the
filter P̂a′ before the filter P̂h is equivalent to interchanging their
positions. Therefore, we have proved that

P̂a′ P̂h ̸= P̂h P̂a′ . (4.49)
Consequently, we have also proved that quantum mechanical
observables do not necessarily commute. This property is in sharp
contrast with that of the classical quantities, which always commute.
As a result, we shall refer to quantities that always commute as the
c–numbers, while those not necessarily commute as the q–numbers.

We end this section by noting that non-commutativity of
observables can also be obtained in terms of matrices. Since we are
working in the basis {|h⟩, |v⟩}, we may write

|h⟩ =
(

1
0

)
and |v⟩ =

(
0
1

)
, (4.50)

and express the state vectors |a⟩ and |a′⟩ in this basis as

|a⟩ =
(

ch

cv

)
and |a′⟩ =

(
c′

h
c′

v

)
. (4.51)

The projectors P̂h , P̂v , and P̂a′ in the basis {|h⟩, |v⟩} are respectively
given by

P̂h =
(

1
0

)(
1 0

)
=

[
1 0
0 0

]
, (4.52)

P̂v =
(

0
1

)(
0 1

)
=

[
0 0
0 1

]
, (4.53)

and

P̂a′ =
(

c′
h

c′
v

)
(

c′∗
h c′∗

v

)
=

[∣∣c′
h

∣∣2 c′
hc′∗

v

c′∗
h c′

v

∣∣c′
v

∣∣2

]
. (4.54)

Now, we can obtain the same result by exchanging the order of the
projectors P̂h and P̂a′ acting on the state vector |v⟩. In particular, we
have

P̂a′ P̂h =
[∣∣c′

h

∣∣2 0
c′∗

h c′
v 0

]
̸=

[∣∣c′
h

∣∣2 c′
hc′∗

v

0 0

]
= P̂h P̂a′ . (4.55)
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Problem 4.11 Redo the above calculations in ket form by assuming
that |a′⟩ = cv |v⟩ − ch|h⟩.

Problem 4.12 Use the vector and matrix forms given by Eq. (4.50)–
(4.54) to prove that

P̂h
(

P̂v
(

P̂a′ |a⟩
))

= 0 and P̂h
(

P̂a′
(

P̂v |a⟩
))

̸= 0.

4.8 Features vs Properties

Now we face this amazing fact, which is classically inconceivable:
To add an additional filter (represented here by P̂a′ ) may enhance
the probability of having a detection. This is inconceivable because,
classically, to insert an obstacle will diminish, not increase the
probability of having a detection. Why do we have this extraordinary
result? Because the projector P̂a′ in Eq. (4.44) has some weird cross
terms, |h⟩⟨v| and |v⟩⟨h|, which allow to restore a superposition of
horizontal and vertical polarizations like that displayed by the state
vector |a′⟩ in Eq. (4.43). The consequence is that the photons that
pass through the inserted filter have a non-zero probability to pass
through the final horizontal polarization filter.

These cross terms do not exist classically. They express the
circumstances that quantum components (of a superposition, for
instance) are not independent of each other but allow a single non-
local state (we may recall here what has been said in Section 2.5).
Indeed, these cross terms describe characteristics of a state that
even contribute to determine the final detection probability. But
they are not properties of a quantum system. This is because any
property is by definition local and is a specific value that we attribute
to an observable in a determinate context, therefore it can even
be associated with an event and represented by a projector. To
distinguish them from properties, we shall refer to the specific
quantum mechanical characteristics that generate this kind of cross
terms as features.a

a(Auletta/Torcal, 2010). In (Olivier/Zurek, 2001) the concept of discord and
quantumness which hint at the same issue as feature have been introduced. We shall
consider the relation between these concepts in Chapter 11.
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4.9 Summary

In this chapter we have

• Seen the historical reasons that led to introduce the quantiza-
tion principle.

• Introduced the notion of quantum observables.
• Considered the mathematical representation of observables as

Hermitian operators.
• Seen that a state vector can be expanded in different orthonor-

mal bases.
• Computed the change of basis transformation from one ortho-

normal basis to another.
• Learned that quantum transformations are represented by

unitary operators.
• Understood that unitary transformations are reversible and

preserve probabilities.
• Considered beam splitting as a unitary transformation.
• Learned that quantum observables may not commute.
• Introduced the notion of quantum features, which are non-local

in nature and therefore are not properties.
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Chapter 5

Complementarity Principle

In this chapter we shall come back to the issue of the undulatory
nature of matter. Interferometer experiments with a blocked path
show that this character cannot be taken in a classical sense.
Indeed, quantum probabilities are deeply affected by the presence
of features. The possibility of measurements without interaction
shows that such probabilities have in quantum mechanics an
ontological import. We then state a complementarity between local
events and non-local features. Delayed choice experiments sets
these aspects in new and enlightening terms.

5.1 Undulatory Nature of Matter

In Section 2.1 we have recalled the path-breaking developments due
to de Broglie, showing that matter can assume undulatory nature.
This prediction was confirmed when it was experimentally verified
that electrons display a diffraction behaviora that is typically wave-
like. Moreover, in the previous chapter we have also discovered that
not only matter particles but also photons have a discontinuous

a(Davisson/Germer, 1927).
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nature like corpuscles. Even more stunning is the so-called Kapitza–
Dirac effect showing a characteristic reversal of the roles of matter
and light: wave-like electrons are here diffracted by laser beams,
where light is in a coherent state.a These results raise important
questions about the nature of quantum entities. How to account
for such a puzzling situation? The two understanding (wave-like
or particle-like) of quantum systems seem to contradict each other.
Indeed, classically they describe two completely different domains
of physics: The corpuscular treatment is specific to mechanical
systems and therefore to everything that is composed of matter.
Instead, the undulatory interpretation was confined to the treatment
of radiation (at least since the 19th century). This is both an
interesting situation and a puzzling one, since, on the one hand,
it seems to allow a unified treatment of any physical phenomenon
by wiping out the sharp classical segregation of radiation from
matter, and, on the other hand, it reintroduces such a dualism in the
treatment of the same entity (whether matter or light).

The first consequence is that these entrenched undulatory and
corpuscular characteristics of quantum systems cannot be inter-
preted in any classical sense. As a matter of fact, any quantum entity
can produce a self–interference, which no classical wave-like entity
can perform. Moreover, the discontinuities due to quantization are
very different from the classical treatment of matter, since they affect
the nature of the involved physical parameters (which can no longer
be described by continuous variables and functions thereof, instead
we need to introduce operators [see Section 4.3]).

5.2 Interferometry with a Blocked Path

To understand a little more, let us come back to the Mach–Zehnder
interferometer experiment [see Sections 2.3 and 2.6–2.8], but with
a very different situation.b We have purposedly inserted a screen
in the lower path, blocking in this way the lower component of the
incoming photon [see Fig. 5.1]. Let us consider how the state of the

a(Freimund et al., 2001).
b(Elitzur/Vaidman, 1993).



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

Interferometry with a Blocked Path 89

BS1

BS2

PS

M2

M1 

D2 

D1

LASER

S

Figure 5.1 Mach–Zehnder interferometer with the lower path blocked by
the screen S. The apparatus is shown in three dimensions with a top-lateral
view.

photon will evolve. When the photon passes BS1, we have precisely
the same situation of the experiment presented in Chapter 2. We
have therefore an analogue of the transformation (2.11), which we
rewrite here for the sake of convenience

|d⟩ BS1−−→ 1√
2

(|d⟩ + |u⟩) . (5.1)

Because of the presence of the screen S, it is evident that further
evolution of the state is reduced to the component |u⟩, so that we
have

1√
2

(|d⟩ + |u⟩) S−→ 1√
2

|u⟩

PS−−→ eiφ

√
2

|u⟩. (5.2)

Now, the crucial point is when the photon arrives at BS2. Since
the lower pathway is blocked, there is no longer interference here.
Hence we have

eiφ

√
2

|u⟩ BS2−−→ eiφ

√
2

(|1⟩ − |2⟩) . (5.3)

Therefore, the final state of the photon after it leaves the beam
splitter BS2, but before being detected at D1 or D2 is given by

| f ⟩ = eiφ

2
(|1⟩ − |2⟩) , (5.4)

instead of the state in Eq. (2.29).
We note that the prefactor eiφ in Eq. (5.4) is a global phase factor

(i.e., an overall complex factor with unit modulus) since it no longer
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shifts the relative phase between the two components |1⟩ and |2⟩,
which is always π independent of φ. Moreover, because

∣∣eiφ
∣∣2 = 1 for

arbitrary values of φ [see Eq. (2.23)], the global phase factor eiφ does
not change the probabilities (or the square moduli of the probability
amplitudes), and therefore state vectors differing by a global phase
factor only represent in fact the same physical state. Consequently,
Eq. (5.4) can be simplified to

| f ⟩ = 1
2

(|1⟩ − |2⟩) . (5.5)

It is easy to see that the final detection probabilities at D1 and D2
will be both 1

4 . This is a very important difference as compared with
the state in Eq. (2.29). Indeed, we had found that probabilities in
Eqs. (2.33) and (2.34) imply that either D1 or D2 never clicks when
the relative phase assumes certain limiting values [see Problem 2.8]
and that, in general, the probabilities of the two detections are
always different except for the case in which φ = π

2 . Here, on the
contrary, we have that both detectors click on average with the same
probability. Then, if we let several photons in the same initial state go
through the apparatus we can easily apperceive that one of the two
path is blocked by simply considering the final detection statistics.
By setting different values of the phase shift, we shall be strongly
confirmed in this supposition since there is no noticeable change in
the detection statistics.

Problem 5.1 Check that for the state | f ⟩ in Eqs. (5.4) and (5.5) the
final detection probabilities at D1 and D2 are both 1

4 .

Problem 5.2 Perform calculations that are similar to the above
ones but assuming that instead of the lower path it is the upper one
to be blocked. Compare the detection probabilities with those we
have derived above. Are they the same or not? What do these cases
tell you about the possibility to infer which is the blocked path?

5.3 Classical and Quantum Probability

This thought experiment shows two very important aspects of
quantum theory. The first and most evident one is that quantum
mechanical probabilities are inherently different from classical
probabilities. Quantum probability can be reduced to a classical
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probability for particles in the case we have considered in the
previous section, but it also can be a weird probability showing
a classically inconceivable interference phenomena like it happens
with the probabilities in Eqs. (2.33) and (2.34). The difference
between the two is determined by the absence or presence of
what we have called feature [see Section 4.8], that is, non-local
interdependence between components of a quantum system, whose
expression, when both paths are unblocked, is indeed represented
by the interfering components at BS2. This is evident when
considering that a theorem of classical probability theory is violated
by quantum mechanical probability.a

Indeed, classically, given any two events A and B , the probability
that they occur jointly is less than or equal to the sum of the
probabilities that they occur separately. That is, we have [see
Eqs. (2.2c) and (2.2d)]

℘(A , B) ≤ ℘(A) + ℘(B), (5.6)

where ℘(A) is the probability for the event A alone to occur, ℘(B)
is the probability for the event B alone to occur, and ℘(A , B) is the
joint probability for both events A and B to occur. This is evident,
since it is less probable that things occur jointly than they do not (if
we throw two dice, it is more probable that we get one six than two
of them). In the context of our quantum mechanical examination, we
can consider the following two events:

A: The photon takes the upper path and D1 clicks.
B: The photon takes the lower path and D1 clicks.

From our discussion in the previous section, we see immediately
that ℘(A) = 1

4 . To find ℘(B), we consider the alternative case in
which instead of the lower path it is the upper one to be blocked [see
Problem 5.2]. It can be shown either by symmetry arguments or by
explicit calculations that in this case the final detection probabilities
at D1 and D2 are both 1

4 as well. Hence we have ℘(B) = 1
4 . What is

the joint probability ℘(A , B), that is, the probability that the photon
takes both the upper and lower paths and D1 clicks? After a little
thought, we find that this is precisely the situation of the original
interferometer experiment with unblocked paths that is considered

a(Auletta et al., 2009, Section 1.4).
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in Sections 2.3 and 2.6–2.8. The reason for this is because the state
of the photon before entering BS2 is given by Eq. (2.25), which
is clearly a superposition of the states |d⟩ and |u⟩. Obviously, this
cannot happen classically but it is a good quantum analogue of a
joint probability for the model that we are considering here. Thus,
for the joint probability we have [see Eq. (2.33) and Problem 5.3]

℘(A , B) = 1
2

(1 + cos φ) . (5.7)

Collecting the above results, we conclude that the inequality (5.6) is
violated whenever ℘(A , B) is greater than 1

2 (since we always have
℘(A) + ℘(B) = 1

2 ). It is noted that maximum violation occurs when
φ = 0, for which ℘(A , B) = 1. The reason that quantum mechanical
probabilities differ inherently from the classical ones is that the
former are derived from the square moduli of the corresponding
probability amplitudes, which being complex numbers thus carrying
phase information allow for interference, while the latter are not.

A model using a screen that obviously reduces the final detection
probabilities by absorbing a part of the photons could be considered
a bias. Such an objection, although true does not catch the essence
of the above argument, since we have learned from the previous
chapter that, in a quantum mechanical context, to add an obstacle
does not necessarily reduce the probability to get some final
detection events. Indeed, as shown in Section 4.7, inserting a
polarization filter in the direction a′ between a vertical and a
horizontal filter amounts to having prepared the photons in the state
|a′⟩ [see Eq. (4.43)], instead of having projected the photons into
the state of vertical polarization |v⟩. However, as we have seen, the
probability of detecting a photon after the horizontal polarization
filter is higher in the first case. Therefore, the above objection only
takes into account the particular context in which we have argued,
but it is not a threat to its general conclusion.

This brings us to another important aspect of quantum theory.
The fact that the quantum detection statistics is altered by the sole
presence of an obstacle tells us that we can know in many cases that
there is an obstacle in one of the two paths without having a single
photon had interacted with it. Let us suppose that we set the phase
shifter PS so that D2 should never click if there is interference at BS2
(for instance, when φ = 0). Now, if there is an obstacle preventing
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such an interference, we have learned that D1 will click with a
probability of 1

4 (or an occurrence fraction of 1
4 if we send several

photons). This is amazing, since the photons that have been detected
are those that have taken the other path, that is the upper one,
avoiding the obstacle. In other words, we have here a measurement
without interaction, what is called an interaction-free measurement.
This was considered something impossible from a classical point
of view until the 1980s. Before that time it was assumed that in
order to detect something one needed to interact with it and so
at least to acquire a photon! The assumption that there could be
no measurement of an object without some kind of interaction is a
consequence of the idea that everything could be explained through
mechanical causes only [see Section 1.1].

The kind of thought experiment described in the previous
section has been also experimentally performed and represents a
new important development of quantum mechanics. The fact that
quantum mechanics allows for measurements without interaction
leads to new technological possibilities. We shall mention here one
of particular relevance. This is the possibility to see in the dark,a

that is, to take photographs of objects in full darkness. We may
indeed think of many parallel interferometer “dead” paths each one
leading to a point of the object of which we like to take a picture and
associated with a pixel of the final image. This kind of technology
can be particular useful for exploration in space and also for medical
purposes, when we need to take a picture of a tissue or an organ that
is particularly photosensitive.

Problem 5.3 Perform calculations by using the probabilities that
detector D2 clicks and show that the results are essentially the same
as those developed in this section.

5.4 Double Slit Experiment

There is a famous thought (also experimentally realized) experi-
ment, the so-called double slit experiment, which is a full analogue
of the Mach–Zehnder apparatus presented in Section 5.2. Let us first

a(Kwiat et al., 1996).
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(b)(a)

pellets detection
probability

detection
probability

waves

Figure 5.2 A schematic top view of the double slit experiment. (a) The
configuration corresponding to classical particles. (b) The configuration
corresponding to classical waves. The curve shows the mean of the
probability distribution.

consider the classical particle case in which we send macroscopic
pellets through an apparatus consisting of two slits and a screen
detecting their final positions [see Fig. 5.2(a)]. It is clear that in
this case when pellets are fired at random from the left, they will
enter the apparatus through one of the two slits and reach the
detection screen. On average they will have a maximum probability
to end in the two stripes that are right behind the slits. Indeed,
the probability curves are here represented by the bell-like shapes
(or, more accurately, the Poisson distributions) that feature a
diminishing probability when moving away from the center. The
two probabilities here superpose slightly in the center of the screen,
which is the situation that we shall expect when the two slits are
sufficiently near. However, when we increase their distance, the two
distributions no longer superpose.

Then we consider the classical wave case, for instance sending
light through the slits [see Fig. 5.2(b)], which corresponds to the
quantum mechanical case in which the two paths of an interferome-
ter are unblocked, we will have a completely different situation. The
two component waves going out of the two slits interfere, so now
the detection probability shows characteristic bumps even in the
places that no classical particles could reasonably reach. Quantum
mechanically, this setup corresponds to the detection of quantum
wave-like behavior, as displayed in Fig. 2.7. If we like to detect the
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complementary behavior, that is, the particle-like one, we need to
close one slit (which corresponds to the case in which one path
of the interferometer is blocked). In this case, there is no longer
interference and the photons are detected at the point in which we
would expect them also in the classical particle situation.

From the previous examination we draw two very important
consequences that we have already stated but without justifying
them until now. In classical physics, probabilities only express our
subjective ignorance about a system. Let us consider the flip of
a coin. The outcome of coin flipping is a random event since we
cannot predict whether it is a head or a tail. However, this is only
because it is very difficult to ascertain all the factors involved in the
occurrence of the event. However, from a classical-mechanical point
of view we can assume that we can build a very powerful machine
able to monitor the whole dynamics of the coin, included a perfect
knowledge of the wind, and we can further assume that we are able
to perfectly know the weight and even the smallest imperfections
of the coin; then, at least in principle, we can completely predict
the outcome. This is precisely what is inherently impossible in
quantum mechanics. The superposition state | f ⟩ in Eq. (5.1) implies
that both components |d⟩ and |u⟩ are present, although in terms
of the probability amplitudes, and it is therefore meaningless to
ask whether the photon has taken the lower or the upper path.
Therefore, quantum probabilities are irreducible and objective. They
are irreducible because there is no deterministic descriptions to
which quantum probabilities can be reduced. They are objective
since quantum probabilities express states of affairs and not states
of subjective ignorance or technological inability.

The crucial point is to understand which kind of objectivity
we are speaking about, a problem that will occupy us across the
book. Ultimately, we have to do with probability amplitudes, from
which the probabilities are derived. Is there any sense in which
they could be said to be real? In Section 4.8 we have introduced
the concept of features as those quantum factors responsible for
the typical quantum effects. As a matter of fact, if their presence
or absence determines different detection statistics, they cannot be
sort of ghosts lost in the borderline between being and not being. Or
are they?
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BS1 (T, R)

BS2

PS

M2

M1

D3

D4

 LASER

Figure 5.3 Mach–Zehnder interferometer with a variable beam splitter
BS1, showing a smooth complementarity between wave-like and particle-
like behavior.

Problem 5.4 Verify that the probabilities introduced in the previ-
ous section can be applied to the three cases considered here: (a)
the classical double slit particle experiment, (b) the classical (and
quantum) double slit wave experiment, and (c) the quantum (but
also classical) single slit particle experiment.

5.5 Path Predictability and Interference Visibility

To ascertain the problem raised at the end of the previous section, let
us consider the arrangement of the Mach–Zehnder interferometer
shown in Fig. 5.3. Compared with the previous experiments, the
novelty is that now we have the first beam splitter that is no longer
a 50–50 one. Instead, suppose that the beam splitter transmits and
reflects the incoming photon with probabilities given by T2 and R2,
respectively (we shall assume that the respective transmission and
reflection coefficients T and R are non-negative real numbers for the
sake of simplicity). We have also relabeled the states associated with
the lower and upper paths as |1⟩ and |2⟩, respectively (and the states
associated with the paths leading to the detectors as |3⟩ and |4⟩). In
this case, for a photon initially in the state |i⟩ (= |1⟩) the action of
BS1 and PS can be written as

|i⟩ BS1−−→ T|1⟩ + R|2⟩

PS−−→ T|1⟩ + eiφR|2⟩. (5.8)
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Making use of the following expressions for the action of BS2

|1⟩ BS2−−→ 1√
2

(|3⟩ + |4⟩) and |2⟩ BS2−−→ 1√
2

(|3⟩ − |4⟩) , (5.9)

we have

T|1⟩ + eiφR|2⟩ BS2−−→ 1√
2

[
T (|3⟩ + |4⟩) + eiφR (|3⟩ − |4⟩)

]
. (5.10)

Upon collecting the terms, we find the final state of the photon after
leaving BS2 is given by

| f ⟩ = 1√
2

[(
T + eiφR

)
|3⟩ +

(
T − eiφR

)
|4⟩

]
. (5.11)

Hence, the final detection probabilities at D3 and D4 are respectively
given by [see Problem 5.7]

℘3 = 1
2

(1 + 2TR cos φ) and ℘4 = 1
2

(1 − 2TR cos φ) . (5.12)

In obtaining the above expressions, we have used the condition T2 +
R2 = 1.

We may choose various values for the coefficients T and R of BS1
as well as for the phase shift φ of PS, provided that the condition
T2 + R2 = 1 is satisfied. Let us now introduce a simplification and
consider the case in which the phase shift φ = 0 (in radians). In
the limiting case in which T = 0 (and R = 1), the photon is totally
reflected and we know for sure that it has taken the upper path.
In this case, the first beam splitter behaves as an ordinary mirror.
In the opposite limiting case in which R = 0 (and T = 1), the
photon is fully transmitted and therefore it takes the lower path
with certainty. In this case it is as if we had taken the first beam
splitter away. It is evident that in these two limiting cases we have
situations with full predictability of the path followed by the photon,
which are analogous to the presence of an obstacle discussed in
the previous sections (since after passing BS1 the photon still has
a single component). We can mathematically quantify this path
predictability by the absolute value of the difference between the
probabilities for the photon to be reflected and transmitted, that is,

P =
∣∣T2 − R2

∣∣, (5.13)

where the absolute value is justified by the fact that we do not
know a priori which one of the probabilities (T2 or R2) is larger.
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The reason of the above formula is that P has the maximum value
1 when one of the two probabilities is 1 (and the other is 0), and
the minimum value 0 when the two probabilities are equal, that is,
T2 = R2 = 1

2 . Then, a pure particle-like (or local) behavior has P
maximized whereas a pure wave-like (or non-local) behavior has
P minimized. In other words, because of the presence of non-local
quantum feature [see Section 4.8], in order to localize the photon we
need to be able to discriminate between the two paths.

The previous equation can be easily derived as follows. Consid-
ering always the case where the phase shift φ = 0, the probability
amplitudes (up to a global phase factor) that the photon is detected
at D3 and D4 are respectively given by [see Eq. (5.11)]

ϑ3 = √
℘3 = 1√

2
|T + R|, (5.14a)

and

ϑ4 = √
℘4 = 1√

2
|T − R|. (5.14b)

The product of the two probability amplitudes gives

ϑ3ϑ4 = 1
2

|T + R||T − R| = 1
2

∣∣T2 − R2
∣∣, (5.15)

which, apart from the factor 1
2 , is equal to the path predictability

P in Eq. (5.13). Since the latter is maximum when one of the two
probabilities (either T2 or R2) is zero, so is the product of the two
probability amplitudes ϑ3ϑ4. This is again a peculiarity of quantum
probability since classically the product of two mutually exclusive
probabilities is maximum when the two probabilities are equal.

On the other hand, we can also introduce a complementary
parameter to quantify the visibility of interference fringes. Since the
path predictability is maximum when one of the two coefficients
(either T or R) is zero, the interference visibility should be
proportional to the product of the two coefficients. In other words,
interference fringes are visible only in the case in which the path
predictability is not maximum. Conventionally, the interference
visibility is defined by

V = 2TR, (5.16)

which, as we will see below, expresses precisely the presence of
quantum feature. Indeed, in the probabilities ℘3 and ℘4 in Eq. (5.12),
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the quantity V represents precisely the quantum feature that is
added to the purely classical part represented by the number 1

2 (in
the simplest case where φ = 0). It is interesting to see that the
interference visibility can be extracted from the difference between
the probabilities ℘3 and ℘4, that is,

℘3 − ℘4 = 1
2

[
(T + R)2 − (T − R)2]

= 2TR, (5.17)

where we have assumed again that φ = 0. This is understandable
since the purely classical part cancels out in the difference of the two
quantum probabilities.

From Eq. (5.16) we see that V has the maximum value 1 when
the two coefficients T and R are equal, that is, T = R = 1√

2
, and the

minimum value 0 when one of the two coefficients is 1 (and the other
is 0). This, together with the corresponding behavior of P , allows
us to conclude that the path predictability and the interference
visibility are complementary quantities in the sense that the path
predictability is gained at the expense of the interference visibility,
and vice versa. To put it another way, any distinguishability between
the paths of an interferometer destroys the visibility quality of the
interference fringes. Indeed, it is also easy to verify that

P2 + V2 = T4 + R4 − 2T2R2 + 4T2R2

=
(

T2 + R2)2

= 1. (5.18)

This important equation is called the Greenberger–Yasin equality,a

which means that the visibility of interference and the predictability
of path are complementary although strictly connected, and even
both present in most cases, apart from the limiting ones (in which
one of the quantities is zero). In other words, for a photon in an
interferometer between the two purely classical behaviors (when
T, R = 0, 1) there is continuous range of non-local quantum
mechanical behaviors (when 0 < T, R < 1).

The novel results that we have found so far can be summarized
as follows:

a(Greenberger/Yasin, 1988).
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(i) Quantum mechanically, there is continuous range of behaviors
for a photon in an interferometer that lies between a sort
of pure particle-like behavior (which has the maximum path
predictability) and a pure wave-like behavior (which has the
maximum interference visibility).

(ii) The wave-like and particle-like behaviors of a photon are
complementary.

Most people think that a particle going along a certain path is
undeniable real. If, however, this behavior is entrenched with
non-local feature that is responsible for the interference effects,
there is no particular reason not to assign also some status of
reality to the latter. Therefore, this examination suggests a smooth
complementarity between the wave-like and particle-like behaviors,
which we would like to posit with a complementarity principle.

Principle 5.1 (Complementarity Principle) Local events and non-
local features are complementary.

The exact meaning of the words local event and non-local feature
will be the object of a further thought experiment that we shall
discuss below. We also recall that the complementarity principle,
although with a different formulation, was communicated to the
physics community by Bohr during the Como Conference in 1927
and later on in a paper published in the journal Nature.a

Problem 5.5 Explain why we have imposed the requirement that
T2 + R2 = 1.

Problem 5.6 Make all the derivation above by making use of the
unitary transformation (4.35) for BS2, the result of Problem 4.10,
and the following transformation for BS1

Û BS1 =
[

T R
R −T

]
, (5.19)

where T2 +R2 = 1. As usual, we have in component form |i⟩ = |1⟩ =(
1
0

)
and |2⟩ =

(
0
1

)
.

Problem 5.7 Derive the probabilities ℘3 and ℘4 in Eq. (5.12) and
compare them with the probabilities ℘1 and ℘2 in Eqs. (2.33) and
(2.34).

a(Bohr, 1928).
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Figure 5.4 In a delayed choice experiment we can choose at the last
moment whether to place the detectors before the beam splitter BS2 (as
DA and DB) or after the beam splitter BS2 (as DA′ and DB′ ).

Problem 5.8 Show that the operator Û BS1 in Eq. (5.19) is unitary.

5.6 Delayed Choice Experiment

Let us consider another variant of the interferometer experiments,
in particular the setup shown in Fig. 5.4. It is related to the
experiment we have considered in Section 5.5, so we only need
to grasp the general idea here. Suppose that we perform a usual
interferometer experiment like those reported several times in the
book until the photon’s components have been reflected by the two
mirrors and the upper one has passed the phase shifter. The novelty
comes in when we decide just before those components arrive at
the beam splitter BS2 whether to place the detectors in the usual
position after BS2 or to put them before it. We now consider each
case in turn.

• In the first case, we should detect the known interference
profile, provided that there is no obstacle in one of the paths
[see Fig. 2.7]. Here, we cannot predict which path the photon
has taken.

• In the latter position, we prevent the interference at BS2 and
are able to tell with certainty which path has been taken by the
photon (if it is detected at DA, it has taken the upper path; if it is
detected at DB, it has taken the lower path).
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To a certain extent this ideal experiment is a setup for testing
complementarity. However, there is another subtler aspect: there is
a certain time, i.e., between the photon passing through BS1 and
just before the photon reaching BS2 (or at least before we place
the detectors in one of the two alternative positions), in which no
(detection) event takes place. We have sent a photon (one at a time)
in the interferometer and the photon will be finally detected, no
matter how we place the detectors. The obvious conclusion is that
there must be some reality in the apparatus, since a photon cannot
be lost in the land of nothingness and come out again from this
obscure region. However, the problem is that here no event takes
place. So, what is the minimum kind of reality that we are allowed
to attribute to this situation? Certainly not the single components of
the photon (nor the possible paths it could take) since we have seen
that in the interference-like setup we can tell nothing about the path
(and so a fortiori nothing about the components themselves). The
only minimum reality is therefore the interdependence between the
two components themselves, what we have called feature, which we
can assume to be present in both alternative experimental setups
until the photon reaches a detector in one of the two setups. Since
features precisely consist in the long-range non-separability of the
superposition states, we are conclusively authorized to say that
they are deeply non-local, in accordance with our examination in
Sections 2.5 and 4.8. Therefore, we are forced to acknowledge that
the world is not only made up of local events but also of non-local
correlations, and the specific quantum mechanical characteristics
(the quantumness) of the latter are represented by features.

On the other hand, when we place the detectors before BS2 and
(apparently) destroy the quantum features, it is evident that this
gives rise to events that are local. Therefore, such local events are
incompatible with the presence of non-local features. It is true that
when we place the detectors after BS2, we are able to reconstruct
an interference profile. However, the single detection event always
reduces a superposition state of the photon to one of its component
states, so that also in this case it remains true that a (detection)
event is incompatible with the presence of quantum feature and
their manifestation (interference). Therefore, we have confirmed
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that local events can be taken to be (smoothly) complementary to
non-local features as stated by the complementarity principle.

Problem 5.9 Describe the delayed choice experiment in math-
ematical terms by making use of the formalism developed in
Sections 2.3–2.6. Distinguish between the case in which the
detectors are located after BS2 and the case in which they are
located before BS2. In the first case, take advantage of the discussion
in Section 2.7. In the second case, make use of the examination
developed in Section 5.2.

5.7 Summary

In this chapter we have

• Considered the Mach–Zehnder interferometer experiment with
a blocked path.

• Learned that quantum probabilities are inherently different
from classical probabilities.

• Interpreted the Mach–Zehnder interferometer experiment with
a blocked path as a case of measurement without interaction.

• Established the complementarity between path predictability
and interference visibility.

• Found out the complementarity between local events and non-
local features.

• Demonstrated the reality of non-local features through a
delayed choice experiment.
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Chapter 6

Position and Momentum

With this second part we shall start more formal developments
that allow us to improve our understanding of quantum theory.
In particular, we shall deal with the two most basic quantum
mechanical observables, position and momentum, which are crucial
for understanding the state and the dynamics of a quantum system.
Different from classical mechanics, quantum mechanics tells us that
it is not possible to measure both of the position and momentum
simultaneously. This is a consequence of the non-commutativity of
these two observables. Moreover, in this chapter we shall learn the
basic formalism of integration and differentiation, a fundamental
mathematical tool if one is really interested in understanding
quantum mechanics.

6.1 Position Operator: Discrete Case

Until now we have considered observables in general and mostly
treated examples dealing with photon polarization or with interfer-
ometer experiments. In the last chapter we also introduced the path
predictability P for a photon in an interferometer. However, we have
not considered the position operator (or position observable) in all
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its generality. Let us introduce its one-dimensional expression as x̂
(describing the position of a one-dimensional system along a certain
x axis). We first analyze the very elementary case represented
precisely by the path predictability, i.e., the case in which the
position observable can only occupy two positions: the upper or
lower path in an interferometer. In this case, we can associate the
upper path with a numerical value, say 1, and the lower path with
another numerical value, say −1.a For instance, we can conceive
the vertical parts of the upper and lower paths as the vertical lines
described by the equations x = 1 and x = −1, respectively
(obviously, the lengths of the paths have no meaning here). Then,
according to the discussion presented in Section 4.4, we can write
the position operator x̂ as

x̂ = |u⟩⟨u| − |d⟩⟨d|. (6.1)
It is easy to see that the states |u⟩ and |d⟩ are eigenstates of the
position operator x̂ with corresponding eigenvalues given by 1 and
−1, respectively. In other words, we have [see Eq. (4.4)]

x̂|u⟩ = |u⟩ and x̂|d⟩ = −|d⟩, (6.2)
where use has been made of the orthogonality condition ⟨u|d⟩ = 0.
Moreover, theaction of the position operator x̂ on a generic state
vector |ψ⟩ is given by [see also Eqs. (3.33) and (3.34)]

x̂|ψ⟩ = |u⟩⟨u|ψ⟩ − |d⟩⟨d|ψ⟩, (6.3)
where ⟨u|ψ⟩ and ⟨d|ψ⟩ are the probability amplitudes associated
with the probability of finding the system in positions |u⟩ and |d⟩,
respectively, when we perform a position measurement on the state
|ψ⟩.

In general cases, however, we expect that a certain quantum
system may occupy more than two positions, perhaps many. We
can generalize Eq. (6.1) to the case with n possible positions
x0, x1, . . . , xn−1 and write the position operator as [see Box 3.2]

x̂ = x0 |x0⟩⟨x0| + x1 |x1⟩⟨x1| + · · · + xn−1 |xn−1⟩⟨xn−1|

=
n−1∑

j=0

x j |x j ⟩⟨x j |. (6.4)

aWe note that this kind of association is completely arbitrary and that this particular
association can be realized by connecting the detectors DA and DB in Fig. 5.4 to a
computer, which is programed in such a way that its display shows 1 when DA clicks
and −1 when DB clicks.
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The real number x j is the eigenvalue of the position operator x̂ and
the state |x j ⟩ is the corresponding eigenstate since we have

x̂|x j ⟩ = x j |x j ⟩, (6.5)

where use has been made of the orthonormal condition [see
Eq. (3.29)]

⟨x j |xk⟩ = δ jk. (6.6)

It is evident that Eq. (6.5) is the eigenvalue equation of the
position operator in its generality [see again Eq. (4.4)]. If, through a
measuring device, the system is found to have a position x j , then the
position state of the system is given by |x j ⟩. Similarly, for an arbitrary
state of the system |ψ⟩ we have

x̂|ψ⟩ = x0 |x0⟩⟨x0|ψ⟩ + x1 |x1⟩⟨x1|ψ⟩ + · · · + xn−1|xn−1⟩ ⟨xn−1|ψ⟩

=
n−1∑

j=0

x j |x j ⟩⟨x j |ψ⟩, (6.7)

where again the scalar product ⟨x j |ψ⟩ represents the probability
amplitude of finding the system in position x j . These probability
amplitudes are the coefficients in the expansion of the state vector
|ψ⟩ in the eigenbasis {|x j ⟩} (where 0 ≤ j ≤ n − 1) of the position
operator x̂ [see Section 4.5]. Indeed, we have

|ψ⟩ =
n−1∑

j=0

⟨x j |ψ⟩|x j ⟩, (6.8)

where |ψ⟩ is again an arbitrary state vector of the system. Upon
interchanging the order of the bracket ⟨x j |ψ⟩ and the ket |x j ⟩ in each
term on the right-hand side of Eq. (6.8), we can rewrite the above
expression as

|ψ⟩ =
n−1∑

j=0

|x j ⟩⟨x j |ψ⟩, (6.9)

which implies that
n−1∑

j=0

|x j ⟩⟨x j | = Î . (6.10)

This is precisely the completeness relation for the (discrete) position
eigenstates.
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Finally, we note that the above results of Eqs. (6.4), (6.6), and
(6.10) are very general in nature and can be generalized to all
observables. For instance, we can consider an arbitrary observable Ô
with discrete eigenvalues o j and the corresponding eigenstates |o j ⟩
(where j is again some index labeling the eigenvalues). Obviously,
the eigenvalues o j need to be real numbers and the eigenstates |o j ⟩
satisfy the orthonormal conditions [see Eq. (3.29)]

⟨o j |ok⟩ = δ jk. (6.11)

Then, it can be shown that the following completeness relation
holds:

∑

j

|o j ⟩⟨o j | = Î . (6.12)

The orthonormal conditions (6.11) and completeness relation
(6.12) imply that the eigenstates |o j ⟩ constitute a complete
orthonormal basis. Moreover, the observable Ô can be expressed as

Ô =
∑

j

o j |o j ⟩⟨o j |. (6.13)

Since the set of all eigenvalues of an observable is called its
spectrum, the above expression is referred to as the spectral
decomposition of the observable Ô as well as Eq. (6.4) represents the
spectral decomposition of the one–dimensional position observable
in particular.

Problem 6.1 Consider a quantum system occupying four possible
positions, write down in component form the eigenbasis of the
position operator x̂ . Write down in component form an arbitrary ket
|ψ⟩ in terms of this eigenbasis.

6.2 From Summation to Integration

It is quite common that quantum systems may potentially occupy
many (or in fact infinite) positions in a continuous way. A typical
example is the so-called free particle, i.e., a particle that does not
interact with other systems or is not subject to external forces
[see Section 7.6]. This is a kind of confirmation in negative way of
Principle 4.1. In these cases, a summation will not work and we need
another mathematical tool, namely, integration.
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Figure 6.1 The integral of a function f (x) over x from a to b is the net
signed area bounded by the graph of f (x), the x axis, and the vertical lines
x = a and x = b. This area can be approximated by small rectangles.

Let us consider the function f (x) whose graph is shown in
Fig. 6.1. We would like to calculate the net signed area A that is
bounded by the graph of f (x), the x axis, and the vertical lines x = a
and x = b (with a < b). A region above the x axis is considered
positive area, while a region below the x axis is considered negative
area. A very intuitive way to do this is to partition this area in
very small rectangles. To this end, we first subdivide the interval
[a, b] into n equal subintervals by means of the intermediate points
x1, x2, . . . , xn−1 and set a = x0 and b = xn. The length in each
subinterval is given by the quantity /x = x j+1 − x j (where j =
0, 1, . . . , n − 1). If we consider the n rectangles of width /x and
height f (x j ), we shall approximate the area A by summing over the
area of the n rectangles, that is,

A ≈
n−1∑

j=0

f (x j )/x . (6.14)

The symbol ≈ means that the quantity on its left is approximately
equal to the quantity on its right. Evidently, the approximation
becomes better as we increase the number of subintervals, n. In the
limiting case in which n approaches infinity, the rectangles become
so tiny that their upper or lower sides coincide with the graph of
f (x). Hence we have precisely made a summation on the continuum
and obtained the area A as an infinite series [see Box 3.2], that is,

A = lim
n→∞

n−1∑

j=0

f (x j )/x , (6.15)
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where the notation lim
n→∞

denotes the limit as n approaches infinity.
It is a notational as well as a conceptual convenience to define the
infinite series on the right-hand side of Eq. (6.15) by an integral

A =
∫ b

a
f (x)dx , (6.16)

where the symbol
∫

can be understood as a stretched sigma (,),
hinting at continuity and the continuous variable x replace the
discrete parameter x j . The above expression precisely means that
we have performed the integral of the function f (x) over x from
a to b, where a and b are respectively the lower and upper limits
of the integration. In mathematical terms, the function f (x) that is
being integrated is called the integrand, the variable x is the variable
of integration, the closed interval [a, b] is the interval of integration
(which includes also the endpoints a and b of the interval), and dx
is the differential of x , which for the moment can just be thought
of as the continuum counterpart of /x and whose significance will
be clear below. It will be important to note that the variable of
integration x is a “dummy” variable in that the integral itself is not a
function of this dummy variable, but of the lower and upper limits it
takes. We could have written the integral in Eq. (6.16) as

∫ b

a
f (t)dt,

∫ b

a
f (x ′)dx ′, or

∫ b

a
f (y)dy. (6.17)

All of the above represent the same integral since they have the same
lower and upper limits.

There are many properties of integrals, here we summarize the
most basic ones. The first property is linearity, which means that

∫ b

a
[α f (x) + β g(x)]dx = α

∫ b

a
f (x)dx + β

∫ b

a
g(x)dx , (6.18)

where α, β are (real) constants. Another one is that reversing the
limits of integration changes the sign of the integral, that is,

∫ b

a
f (x)dx = −

∫ a

b
f (x)dx . (6.19)

This, together with setting a = b, implies
∫ a

a
f (x)dx = 0. (6.20)
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The third property states that if a < c < b, then we can decompose
the interval of integration [a, b] into two subintervals:

∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx . (6.21)

Moreover, integrals are invariant under translations, i.e.,
∫ b

a
f (x)dx =

∫ b+c

a+c
f (x − c)dx , (6.22)

where f (x − c) is the function obtained from f (x) under a
translation to the right by a distance c. Finally, integrals satisfy the
inequality

∣∣∣∣
∫ b

a
f (x)dx

∣∣∣∣ ≤
∫ b

a
| f (x)|dx , (6.23)

which is called the triangle inequality for integrals. We note that
all of the above properties can be proved by using the definition of
integral (6.15).

If the function f (x) is a continuous real-valued function, then
the integral in Eq. (6.16) may be readily calculated provided that
the primitive function (or indefinite integral [see Box 6.1]) of the
function f (x) is known. Let the latter be denoted by F (x), then we
have

∫ b

a
f (x)dx = F (x)

∣∣∣
x=b

x=a

= F (b) − F (a), (6.24)

where on the right-hand side of the first equality a long vertical bar
with a superscript and a subscript is a shorthand notation denoting
that the difference is taken between the primitive function evaluated
at the upper and lower limits of integration. In other words, the
integral of the function f (x) over x from a to b is calculated as
the difference of the primitive function F (x) evaluated at the upper
limit b (i.e. F (b)) and at the lower limit a (i.e. F (a)). The primitive
functions of some elementary functions are listed in Table 6.1. In
particular, from the primitive function for the power function we
have

∫ b

a
xαdx = xα+1

α + 1

∣∣∣∣
x=b

x=a
= bα+1 − aα+1

α + 1
(α ̸= −1) (6.25)



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

114 Position and Momentum

Table 6.1 Primitive functions of some elementary
functions

Type Function Primitive function

Constant 1 x

Power xα xα+1

α + 1
(α ̸= −1)

x−1 ln |x|
Exponential ex ex

Trigonometric sin x − cos x

cos x sin x

Box 6.1 Definite and indefinite integrals

The integral in Eq. (6.16) with definite lower and upper limits
is referred to as the definite integral. Since the definite integral
of a function f (x) is related to its primitive function F (x), we
can think of this relationship as an association between f (x) and
F (x). This leads to another kind of integral called the indefinite
integral. An indefinite integral of a function f (x) is written as

∫
f (x)dx , (6.26)

i.e., using an integral symbol with no limits. This association
however is not unique because a constant added to a primitive
function will still correspond to the same definite integral. Hence,
the indefinite integral of a function f (x) is often written in the
form

∫
f (x)dx = F (x) + c, (6.27)

where F (x) is the primitive function of f (x) and c is an arbitrary
constant known as the constant of integration. For this reason,
the primitive function F (x) is also called the indefinite integral of
the function f (x). We note that for the sake of convenience both
the definite and indefinite integrals are usually referred to simply
as the integral whenever no confusion may arise or the specific
meaning can be determined from the context.
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Figure 6.2 Plot of the exponential function ex .

and
∫ b

a

1
x

dx = ln |x|
∣∣∣

x=b

x=a
= ln |b| − ln |a| = ln

∣∣∣∣
b
a

∣∣∣∣ (ab > 0), (6.28)

where ln x is the logarithmic function with base e.a The above
result is important because power functions appear throughout
mathematics and physics. The exponential function ex is important
in part because it is the only function which is its own primitive.
Hence, we have

∫ b

a
ex dx = eb − ea . (6.29)

A plot of the exponential function is shown in Fig. 6.2 [see also
Box 2.4]. Moreover, the integrals of the sine and cosine functions can
be calculated in a similar manner, the results are given by
∫ b

a
cos xdx = sin b − sin a and

∫ b

a
sin xdx = −(cos b − cos a),

(6.30)
respectively.

The concept of integral can be generalized straightforwardly to
functions of several variables, for instance, f (x , y) or f (x , y, z).

aWe will discuss the logarithmic function in more detail in Section 9.6. By now, let us
take it as a particular kind of function having the properties ln x + ln y = ln(xy) and
ln x − ln y = ln

( x
y

)
.
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Box 6.2 Examples of integration

Equation (6.25) allows us to present some easy examples with
numbers. For instance, consider the following integral

I1 =
∫ 2

−2
x dx = x2

2

∣∣∣∣
x=2

x=−2
= 22

2
− (−2)2

2
= 0. (6.31)

This is a particular simple case since the graph of the function
f (x) = x is a straight line at 45 degrees, which allows us
to compute the area through traditional geometric means and
to make a comparison. Indeed, the area defined by the above
integral actually consists of two identical triangles, one lies above
the x axis and the other lies below. Since for each triangle the base
is 2 and the height is 2, its area is equal to 2 × 2/2 = 2. However,
for the triangle that lies below the x axis, its area picks up a minus
sign and hence is equal to −2. Therefore, the net signed area is
zero, which agrees with the result obtained by direct integration.
Another example is the following integral:

I2 =
∫ 3

1

√
x dx =

∫ 3

1
x

1
2 dx = 2x

3
2

3

∣∣∣∣
3

1
= 2

3

(
3

3
2 − 1

3
2

)
= 2

√
3−2

3
,

(6.32)
where for the sake of notational simplicity the superscript and
subscript of the long vertical bar have been simplified and use
has been made of the properties

a
1
2 =

√
a and a

3
2 =

√
a3 = a

√
a, (6.33)

which are valid for arbitrary a ≥ 0.

Integrals of a function of two variables are called double integrals,
and those of a function of three variables are called triple integrals.

Problem 6.2 Compute the following integrals:

1
4

∫ 3

−2
x3dx ,

∫ π

0
sin xdx , and

∫ t

0
ekx dx (k ̸= 0).

Problem 6.3 Evaluate the following integral:
∫ 1

0

3x
x2 + x − 2

dx .
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(Hint: Use partial fraction expansion and the property that integrals
are invariant under translations (6.22).)

6.3 Position Operator: Continuous Case

We can now go over from the discrete case of the position operator
discussed in Section 6.1 to the continuous case. Let us consider a
quantum system that may occupy infinite possible positions in the
interval −L ≤ x ≤ L in a continuous manner. Again, subdividing
the interval [−L, L] into n equal subintervals by means of the
intermediate points x1, x2, . . . , xn−1 and setting x0 = −L and xn = L,
we can approximately expand the state vector |ψ⟩ in a superposition
of the position eigenstates |x j ⟩ (with j = 0, 1, . . . , n − 1) as [see
Eqs. (6.8) and (6.14)]

|ψ⟩ ≈
n−1∑

j=0

|x j ⟩⟨x j |ψ⟩/x , (6.34)

where /x = x j+1 − x j . In the limit that n approaches infinity, we
recover the continuum limit and obtain that [see Eq. (6.15)]

|ψ⟩ = lim
n→∞

n−1∑

j=0

|x j ⟩⟨x j |ψ⟩/x , (6.35)

or in terms of integral [see Eq. (6.16)],

|ψ⟩ =
∫ L

−L
|x⟩⟨x|ψ⟩dx , (6.36)

where we recall that dx for the moment can be thought of as the
continuum counterpart of /x . In the above expression the state |x⟩
is the eigenstate of the position operator (or position eigenstate for
short) and its corresponding eigenvalue is given by x (where −L ≤
x ≤ L). That is, we have the eigenvalue equation

x̂|x⟩ = x|x⟩, (6.37)

which is a generalization of Eq. (6.5) to the continuous case. The
reader could now get confused by the fact that we have also used
kets of similar type, like |h⟩ and |v⟩, but for the discrete (two-
dimensional) case. How can we distinguish the latter kets from the
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kets like |x⟩? Actually, there is no problem here, since the kind of
(whether continuous or discrete) expansion of a state vector that is
allowed or even necessary depends on the problem at hand.

In the case of a free particle the interval of integration is in fact
the whole interval of real numbers from minus infinity (the limit of
the descending series of negative real numbers) to plus infinity (the
limit of the ascending series of positive real numbers). Upon taking
the limit that L approaches infinity, we can rewrite Eq. (6.36) as

|ψ⟩ =
∫ +∞

−∞
|x⟩⟨x|ψ⟩dx , (6.38)

which in turn implies the following completeness relation for the
(continuous) position eigenstates [see Eq. (6.10)]

∫ +∞

−∞
|x⟩⟨x|dx = Î . (6.39)

Likewise, the spectral decomposition [see Section 6.1] of the
position operator x̂ is given by

x̂ =
∫ +∞

−∞
x|x⟩⟨x|dx , (6.40)

whose validity will be justified shortly. It is noted that the scalar
product ⟨x|ψ⟩ in Eq. (6.38) is the continuous expansion coefficient
of the state vector |ψ⟩ in the position operator eigenbasis {|x⟩}
(where −∞ < x < ∞) and hence, for a given state vector |ψ⟩,
can be understood as a continuous function of the position operator
eigenvalue x . Indeed, the scalar product ⟨x|ψ⟩ is referred to as the
wave function in position space. Here by position space we mean the
real space as we know it. In other words, ⟨x|ψ⟩ describes the state of
a quantum system as a function of the position and therefore can be
written in the usual function form as

ψ(x) = ⟨x|ψ⟩. (6.41)

In terms of the wave function ψ(x), Eq. (6.38) can be rewritten as

|ψ⟩ =
∫ +∞

−∞
ψ(x)|x⟩dx . (6.42)

We note that, unlike the discrete case, the square modulus of the
probability amplitude |⟨x|ψ⟩|2 does not give the probability of
finding a quantum system at the position x . As a matter of fact, in
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the continuum limit such a probability is identically zero because
it requires infinite precision to exactly identify a real number (we
encounter here a first limitation to the assumption of error-free
measurement in classical mechanics [see Section 1.2]). Instead, we
speak of the probability of finding a quantum system in proximity of
the position x , or more precisely between x and x + dx , where dx
(which we have already met in an integral like that in Eq. (6.42))
is an arbitrarily small number called the differential of x . Such a
probability is instead given by the square modulus of the probability
amplitude multiplied by this arbitrarily small number, i.e., |ψ(x)|2dx .
Note that here we should take dx > 0 since the probability is always
non-negative. Therefore, in the continuous case the square modulus
of the wave function |ψ(x)|2 gives probability density instead of
probability. It is also important to note that the case in which
the position eigenvalue x lies between minus and plus infinity is
actually the most general situation in one dimension that goes far
beyond the free particle case. The special case in which a particle is
confined in a certain region can always be recovered by requiring
that the corresponding wave function vanishes identically outside
that region.

The orthonormal conditions of the position eigenstates |x⟩ are
given by

⟨x|x ′⟩ = δ(x − x ′), (6.43)
where δ(x − x ′) is the Dirac delta function (or delta function for
short), which is the continuous analogue of the Kronecker delta
[see Eq. (3.29)]. The definition and some of the most important
properties of the delta function can be found in Box 6.3. With the
help of the orthonormal conditions (6.43), we can now justify the
validity of Eq. (6.40) by using it to derive Eq. (6.37):

x̂|x⟩ =
(∫ +∞

−∞
x ′|x ′⟩⟨x ′|dx ′

)
|x⟩

=
∫ +∞

−∞
x ′|x ′⟩⟨x ′|x⟩dx ′

=
∫ +∞

−∞
x ′|x ′⟩δ(x ′ − x)dx ′

= x|x⟩, (6.44)
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Box 6.3 Delta function

The delta function δ(x) can be thought of as an infinitely high,
infinitely thin spike at the origin, with unit area under the spike.
Therefore, it has two defining properties:

δ(x) = 0 for all x ̸= 0, and
∫ +∞

−∞
δ(x)dx = 1. (6.45)

There are many properties of the delta function, here we
summarize the most important ones. The fundamental property
of the delta function is that

∫ +∞

−∞
f (x)δ(x − a)dx = f (a), (6.46)

where f (x) is a continuous function. It is noted that this property
is tantamount to the replacement

f (x)δ(x − a) = f (a)δ(x − a). (6.47)

The delta function also satisfies the following scaling property

δ(ax) = 1
|a|

δ(x), (6.48)

where a is a non-zero real number. In particular, the delta
function is an even function, in the sense that

δ(−x) = δ(x). (6.49)

A very useful integral representation of the delta function is given
by

δ(x − a) = 1
2π

∫ +∞

−∞
eik(x−a)dk. (6.50)

This expression is of great use when we discuss the eigenfunc-
tions of the momentum observable in Section 6.6.
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where the dummy variable of integration has been changed to x ′ so
as to avoid confusion with the position eigenvalue x , and use has
been made of Eq. (6.46).

Finally, let us consider the following expression

⟨x|x̂|ψ⟩ =
∫ +∞

−∞
x ′⟨x|x ′⟩⟨x ′|ψ⟩dx ′

=
∫ +∞

−∞
x ′δ(x ′ − x)⟨x ′|ψ⟩dx ′

= x⟨x|ψ⟩, (6.51)

where again we have used Eqs. (6.39), (6.43), and (6.46). We recall
that ⟨x|x̂|ψ⟩ is a shorthand notation for the scalar product of the
kets |x⟩ and x̂|ψ⟩, i.e., ⟨x|x̂|ψ⟩ = ⟨x|x̂ψ⟩, where |x̂ψ⟩ = x̂|ψ⟩ [see
Eq. (3.54)]. Since Eq. (6.51) is valid for arbitrary |ψ⟩, it follows that

⟨x|x̂ = x⟨x|, (6.52)

which we note can also be obtained by taking the conjugate
transpose of Eq. (6.37).

The meaning of Eqs. (6.37) and (6.52) is that when the position
eigenstates |x⟩ are used as the basis states, the action of the position
operator x̂ in this basis is just like that of a real number x . Here
and henceforth, the use of the position eigenstates as basis states
to represent operators and states is referred to as the position
representation. Similarly, the wave function ψ(x) = ⟨x|ψ⟩ is the state
|ψ⟩ expressed in the position representation. While there are other
representations in quantum mechanics, the position representation
is the most intuitive and hence the most often used one. Therefore,
whenever no confusion may arise, use of the latter in many cases
is implicitly assumed and in this way we can conveniently write
Eq. (6.51) as

x̂ψ(x) = xψ(x). (6.53)

It is noted that the scalar product ⟨x|x0⟩ for fixed x0 is called the
position eigenfunction, that is, the particular position eigenstate |x0⟩
expressed in the position representation. Writing ϕx0 (x) = ⟨x|x0⟩,
from the orthonormal conditions (6.43) we have

ϕx0 (x) = δ(x − x0). (6.54)
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The corresponding eigenvalue equation for ϕx0 (x) is given by

x̂ϕx0 (x) = x0ϕx0 (x), (6.55)

which can be obtained by right multiplying Eq. (6.52) by |x0⟩ and
then using Eq. (6.47).

The generalization to the three-dimensional case is straightfor-
ward. In Cartesian coordinates, the position operators r̂ is a three-
component vector operator

r̂ = (x̂ , ŷ, ẑ), (6.56)

which has been written here in the canonical row–vector formula-
tion that is also usual in classical mechanics. The position eigenstate
is now denoted by

|r⟩ = |x , y, z⟩, (6.57)

which satisfies the eigenvalue equation

r̂|r⟩ = r|r⟩, (6.58)

where the eigenvalues r = (x , y, z) (with −∞ < x , y, z < ∞)
represent the possible position (Euclidean) vectors that a quantum
system may potentially occupy. The use of the position eigenstates
|r⟩ as basis states to represent operators and states is the position
representation in three dimensions. In particular, we have

⟨r|r̂ = r⟨r|, (6.59)

namely, the action of the position operator r̂ in the position
representation is just like that of a spatial vector r. The scalar
product ψ(r) = ⟨r|ψ⟩ is the three-dimensional wave function, and
the position eigenfunction is given by

ϕr0 (r) = δ(3)(r − r0), (6.60)

where

δ(3)(r − r′) = δ(x − x ′)δ(y − y′)δ(z − z′) (6.61)

is the three-dimensional delta function. Moreover, the completeness
relation and orthonormal conditions are respectively given by

∫
d3r|r⟩⟨r| = Î and ⟨r|r′⟩ = δ(3)(r − r′), (6.62)
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where
∫

d3r =
∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ +∞

−∞
dz (6.63)

means the integral is taken over the whole three-dimensional space.

Problem 6.4 Show that in the position representation the
normalization condition ⟨ψ |ψ⟩ = 1 can be written in one dimension
and three dimensions as

∫ +∞

−∞
|ψ(x)|2dx = 1 and

∫
|ψ(r)|2d3r = 1,

respectively. Explain how the above equations justify that |ψ(x)|2

and |ψ(r)|2 give the probability density.

Problem 6.5 Suppose that a quantum system of a one-dimensional
particle is described by the wave function

ψ(x) = N e−λ|x|/! (−∞ < x < ∞),

where λ > 0 is a constant. Find the normalization constantN , which
can be chosen to be real and positive. (Hint: Use the normalization
condition and take advantage of the formula

∫ ∞
0 e−αx dx = 1

α
, where

α > 0.)

6.4 Derivatives: From Finite to Infinitesimal Quantities

We would like now to study the other fundamental basic observable
of quantum (and classical) mechanics called momentum.a In order
to deal with the concept of momentum, we need first to introduce
the mathematical notion of derivative. Loosely speaking, a derivative
can be thought of as a measure of how much a function is changing
in response to changes in its argument. For instance, as we will see
below, the derivative of the position of a moving object with respect
to time is the object’s instantaneous velocity and the derivative of
the latter with respect to time is the acceleration of the object.b

aIt would be appropriate for the reader to take a breath before proceeding further.
b(Cullerne/Machacek, 2008, pp. 6–9).
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Let us consider a function f (x) and we would like to know how
f (x) changes with respect to x . The simplest case is when f (x) is
a linear function of x , meaning that the graph of f (x) is a straight
line. In this case, we have f (x) = ax , where the constant a is the
slope of the line. Let /x and / f denote the change in x and the
corresponding change in f (x), respectively. Then the ratio of the
differences (or difference quotient) / f

/x is given by

/ f
/x

= f (x + /x) − f (x)
/x

= a(x + /x) − ax
/x

= a/x
/x

= a, (6.64)

which is precisely the slope of the line. It is noted that for the above
equation to be valid we must have /x ̸= 0. Moreover, in this simplest
case / f

/x is independent of both x and /x , meaning that the line
has a constant slope a so that / f is proportional to /x with the
proportional constant given by a.

Now comes the question of how to go beyond the simplest linear
case? Again, we consider the simplest non-linear case in which f (x)
is a quadratic function of x , namely, f (x) = ax2. The graph of
the function f (x) is a parabola as shown in Fig. 6.3. The difference
quotient / f

/x is given by

/ f
/x

= f (x + /x) − f (x)
/x

= a(x + /x)2 − (ax)2

/x

= 2ax/x + (/x)2

/x
= 2ax + /x . (6.65)

It is noted that / f
/x now depends on both x and /x . The dependence

on x is not unexpected, as a non-linear function does not possess
a constant slope but there are many tangents to the curve, as it is
evident by an inspection of Fig. 6.3. However, the dependence on
/x is troublesome since it means that in determining / f

/x there is
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tangent

secant

Figure 6.3 Geometrically, the derivative of a function at a point equals the
slope of the tangent line to the graph of the function at that point.

arbitrariness in the choice of /x (in other words, we could choose
an interval /x of any size). As a result, the quantity / f

/x cannot be
an intrinsic property of the function f (x). In order to get rid of
this unwanted dependence of /x , we take the limit in which /x
becomes smaller and smaller (but still remains nonzero). In this
limit we obtain an intrinsic property of the function f (x), called the
derivative of f (x) with respect to x . In mathematical terms, the latter
is defined by

d f
dx

= lim
/x→0

/ f
/x

, (6.66)

where the notation lim
/x→0

denotes the limit /x is so exceedingly small

that it is virtually zero (but is not exactly equal to zero). We note that
a quantity that is explicitly nonzero and yet smaller in absolute value
than any real positive quantity is called an infinitesimal. While the
use of the notation d f

dx to denote the derivative of f (x) with respect
to x seems at first obscure, its significance will be clear below. By
now, we remark that we have already met the quantity dx as the
limiting quantity of a finite interval /x [see comments to Eq. (6.16)].
We have also called dx the differential of x , i.e., the infinitesimal
limit of /x , when discussing the probability density [see p. 119].
Something similar also happens for the infinitesimal limit of / f , and
the resulting infinitesimal quantity d f is called the differential of the
function f . Therefore, as the notation suggests, the derivative d f

dx of a
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Table 6.2 Derivatives of some elementary functions.
It is noted that as can be seen clearly by comparing
with Table 6.1, differentiation is the inverse operation
of integration

Type Function Derivative

Power xα αxα−1

Exponential ex ex

Logarithmic ln x x−1

Trigonometric sin x cos x

cos x − sin x

function f (x) with respect to x can be thought of as the ratio of two
infinitesimal quantities d f and dx called the differentials.

If the limit on the right-hand side of Eq. (6.66) exists, then f (x)
is said to be differentiable at x . The process of finding a derivative
is called differentiation. From Eq. (6.65) and the above definition of
derivative, we find that the derivative of f (x) = ax2 with respect to
x is given by

d f
dx

= d(ax2)
dx

= lim
/x→0

(2ax + /x) = 2ax . (6.67)

Geometrically, the derivative of a function at a point equals the slope
of the tangent line to the graph of the function at that point [see
Fig. 6.3]. Since a point has dimension zero, we begin to grasp the
concept of infinitesimal. Note also that the derivative of a straight
line is its slope, in accordance with Eq. (6.64):

d(ax)
dx

= a. (6.68)

In general, the derivative of a power function is given by
d(axn)

dx
= naxn−1. (6.69)

The derivative of a function can, in principle, be computed from the
definition (6.66) by considering the difference quotient and comput-
ing its limit. In practice, once the derivatives of a few simple func-
tions are known, the derivatives of other functions are more easily
computed by using rules for obtaining derivatives of more com-
plicated functions from simpler ones. The derivatives of some
elementary functions are listed in Table 6.2. Special attention needs
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to be paid to the exponential function ex [see Fig. 6.2], which is the
only function whose derivative is itself. That is, we have [see again
Table 6.2]

dex

dx
= ex . (6.70)

The most basic derivative rules are summarized below.

• Constant rule: the derivative of a constant is zero, i.e.,
d f
dx

= 0 if f (x)=constant. (6.71)

• Sum rule: if f (x) and g(x) are differentiable functions, then

d
dx

(a f + bg) = a
d f
dx

+ b
dg
dx

, (6.72)

where a and b are constants.
• Product rule: if f (x) and g(x) are differentiable functions, then

d( f g)
dx

= d f
dx

g + f
dg
dx

. (6.73)

• Quotient rule: if f (x) and g(x) are differentiable functions with
g(x) ̸= 0, then

d
dx

(
f
g

)
= 1

g2

(
d f
dx

g − f
dg
dx

)
. (6.74)

• Chain rule: if y = f (u) and u = g(x) are differentiable functions,
then the derivative of the composite function y(x) = f (g(x))
with respect to x is given by

dy
dx

= dy
du

du
dx

. (6.75)

Two examples of the application of derivative rules can be found in
Box. 6.4.

What precedes shows that the procedure of differentiation can
be reiterated. The derivative of d f

dx , if it exists, is denoted by d2 f
dx2

and is called the second derivative of f (x). For instance, if 2ax is
the derivative of the function ax2, then 2a is its second derivative.
Similarly, the derivative of the second derivative of f (x), if it exists,
is denoted by d3 f

dx3 and is called the third derivative of f (x). These
repeated derivatives are called higher-order derivatives. For obvious
reason the derivative d f

dx is also referred to as the first derivative. For
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Box 6.4 Examples of differentiation

As specific examples, let us calculate the derivative of the
functions f (x) = x sin x2 and g(x) = sin x2

x . Using the product
rule (6.73), we have

d
dx

(x sin x2) = dx
dx

sin x2 + x
d

dx
sin x2

= sin x2 + x
d

dx
sin x2. (6.76)

To compute d
dx sin x2, we use the chain rule (6.75) by rewriting

sin x2 as a composite function of y = sin u and u = x2, and obtain

d
dx

sin x2 = du
dx

d sin u
du

= 2x cos u

= 2x cos x2, (6.77)

where in obtaining the last equality we have replaced u by x2.
Collecting the results, we find

d
dx

(x sin x2) = sin x2 + 2x2 cos x2. (6.78)

Similarly, we use the quotient rule (6.74) to obtain

d
dx

(
sin x2

x

)
= 1

x2

(
x

d
dx

sin x2 − dx
dx

sin x2
)

= 1
x2 (2x2 cos x2 − sin x2), (6.79)

where use has been made of Eq. (6.77). A few more examples can
be found at the end of this section as a problem and are left as an
exercise for the reader [see Problem 6.6].

the sake of notational simplicity, the derivative of a function f (x) is
often denoted by f ′(x). Similarly, the second and third derivatives
are denoted by f ′′(x) and f ′′′(x), respectively.

We are now in a position to reveal the significance of the notation
d f
dx as well as to make a direct connection between differentiation
and integration. As mentioned, the derivative d f

dx can be thought of
as the ratio of two infinitesimals d f and dx called the differentials.
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Let us consider an infinitesimal change dx in the variable x . The
corresponding infinitesimal change d f in the function f (x) is given
by

d f = d f
dx

dx . (6.80)

Integrating the above equation over x from a to b on the right-hand
side, and over f from the corresponding f (a) to f (b) on the left-
hand side, we obtain (by inverting the two sides)

∫ b

a

d f
dx

dx =
∫ f (b)

f (a)
1 d f = f (b) − f (a), (6.81)

where in the second equality we have used the fact that the primitive
function of unity is f when the latter is the variable of integration
(as it is evident from the first line of Table 6.1). Hence, we conclude
that the primitive function of d f

dx is f (x), or in terms of the indefinite
integral [see Box 6.1]

∫
d f
dx

dx = f (x). (6.82)

Since the integral of the derivative of a function is equal to the
function, we are authorized to conclude that the indefinite integral of
a function f (x) is a function F (x) [see Eqs. (6.24) and (6.27)] whose
derivative is equal to f (x), i.e.,

d F
dx

= f (x). (6.83)

We remark that since the derivative of a constant is zero (according
to the constant rule of derivatives), Eq. (6.27) easily follows.
Therefore, we have definitely established that differentiation is the
inverse operation of integration.

We recall that in classical mechanics, a linear function is used
to describe the distance traveled by an object moving at a constant
velocity and a quadratic function is used to describe the distance
traveled by an object moving at a constant acceleration. Specifically,
let us consider the one-dimensional case in which an object moves
along the x axis and has position x(t) at time t. The velocity v(t)
of the object is the derivative of x(t) with respect to t (or the time
derivative of position)

v(t) = dx
dt

. (6.84)
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In other words, the time derivative of position expresses how the
position of a certain object varies in time, which is precisely the
intuitive definition of velocity. If an object moves at a velocity v(t),
the displacement of the object between t = 0 and t is given by

x(t) − x(0) =
∫ t

0
v(t′)dt′. (6.85)

which for a constant velocity v(t) = v reduces to

x(t) = vt + x0, (6.86)

where x0 = x(0) is the initial position of the object at t = 0. We
note that in order to avoid possible confusion, the dummy variable
of integration in the time integral on the right-hand side of Eq. (6.85)
has been changed to t′. Moreover, the acceleration a(t) of the object
is the derivative of its velocity v(t) with respect to t (or the time
derivative of velocity)

a(t) = dv
dt

, (6.87)

which, together with Eq. (6.84), means that

a(t) = d
dt

(
dv
dt

)
= d2x

dt2 . (6.88)

Therefore, acceleration is the second time derivative of position. If
an object moves at an acceleration a(t), the change in the object’s
velocity between t = 0 and t is given by

v(t) − v(0) =
∫ t

0
a(t′)dt′, (6.89)

which for a constant acceleration a(t) = a reduces to

v(t) = at + v0, (6.90)

where v0 = v(0) is the initial velocity of the object at t = 0. Upon
substituting v(t) into Eq. (6.86), we obtain the familiar result

x(t) = 1
2

at2 + v0t + x0, (6.91)

which describes the position of an object moving at a constant
acceleration as a function of time (the factor 1

2 in the quadratic term
is due to mathematical reasons, see Box 6.5).

Problem 6.6 Compute the derivatives of the following functions:
√

x , x cos x ,
sin x

x
, and

1
1 +

√
x

.
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Box 6.5 Taylor series

The considerations at the end of Section 6.4 allow for a
generalization. In specific, a function can be represented by an
infinite series that are calculated from the values of the function’s
derivatives at a given point [see also Box 3.2]. The resulting series
is called the Taylor series (or Taylor expansion) of the function
about that point. In particular, the Taylor series of the function
f (x) about the point x = a is given by

f (x) = f (a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2

+ f ′′′(a)
3!

(x − a)3 + . . . =
∞∑

n=0

f (n)(a)
n!

(x − a)n, (6.92)

where n! = n×(n−1)×· · · 1 (with 0! = 1) denotes the factorial of
n and f (n)(a) denotes the nth derivative of f (x) evaluated at the
point x = a. For x −a ≪ 1 (i.e., for x −a much smaller than 1) we
may keep only the first few terms in the expansion and use the
resulting polynomial as an approximation for f (x). An important
example is the Taylor series for the exponential function ex about
x = 0:

ex = 1 + x + x2

2!
+ x3

3!
+ · · · =

∞∑

n=0

xn

n!
. (6.93)

The above expansion holds because, as can be seen in Table 6.2,
the derivative of ex with respect to x is also ex and e0 = 1. This
leaves xn in the numerator and n! in the denominator for each
term in the infinite sum. In the limit x approaches zero, we can
simply keep the lowest order term in the above expansion and
obtain

ex ≈ 1 + x for x → 0, (6.94)
which will be of great use in the discussion below for the
momentum operator [see Section 6.6]. Similarly, the trigono-
metric functions sin x and cos x in the limit x approaches zero
(measured in radians) can be approximated by

sin x ≈ x , cos x ≈ 1 for x → 0, (6.95)
which again will be of great use in our discussion below for the
angular momentum operator [see Section 8.1].



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

132 Position and Momentum

x

y

z

Figure 6.4 Partial derivative with respect to x of the function z = f (x , y),
whose graph is represented here by the surface in grey scale. The partial
derivative with respect to x with y = y0 held constant is the slope of the
tangent to the curve z = f (x , y0), which is the intersection of the plane
y = y0 and the surface z = f (x , y).

Problem 6.7 Use the Taylor series of the exponential function
(6.93) to verify that d

dx ex = ex .

6.5 Partial and Total Derivatives

The concept of derivative can be generalized to functions of several
variables, for instance, f (x , y) and f (x , y, z). This is a necessary
step for dealing with a three-dimensional treatment of quantum
systems (and therefore also with observables like the angular
momentum, as we shall see). In these cases, we distinguish between
total and partial derivatives. We shall first deal with the latter kind
and come back to total derivatives at the end of this section. In
specific, a partial derivative of a function of several variables is its
derivative with respect to one of those variables while the others
are held constant. Like ordinary derivatives, the partial derivative
also has a geometric representation as the slope of the tangent at a
given point. Suppose that f (x , y) is a function of two variables. The
graph of f (x , y) defines a surface z = f (x , y) in a three-dimensional
space as shown in Fig. 6.4. To every point on this surface, there is an
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infinite number of tangent lines. Partial differentiation corresponds
to selecting a particular one of these lines and finding its slope. For
the partial derivative of f (x , y) with respect x , we are considering
y as constant and x as variable, and for partial derivative with
respective to y, we are considering x as constant and y as variable.
In the former case, we are able to trace a curve z = f (x , y0) (in
other words, we are selecting a single curve out of a surface) and
the partial derivative ∂ f (x , y)/∂x taken at a certain point gives the
slope of the tangent to the curve at that point along the x direction
[see Fig. 6.4]. Similarly, in the latter case we are able to trace a
curve z = f (x0, y), and the partial derivative ∂ f (x , y)/∂y taken at a
certain point gives the slope of the tangent to the curve at that point
along the y direction. The rules for partial derivatives are the same
as those for ordinary derivatives, except that the variables that are
held constant are treated as ordinary constants. Higher-order partial
derivatives like ∂2 f/∂x∂y, ∂2 f/∂y∂x , ∂2 f/∂2x , ∂2 f/∂2 y, etc., can be
considered in a similar manner as for ordinary derivatives. A very
useful property of the mixed second partial derivatives is that

∂2 f
∂x∂y

= ∂2 f
∂y∂x

, (6.96)

provided that the mixed derivatives are continuous. An example of
partial differentiation can be found in Box. 6.6.

Gradient is a very important differential operator in mathematics
and physics. The gradient of a function at a point is the vector
that points in the direction of maximum rate of increase of the
function at that point, and whose magnitude is precisely that rate of
increase [see Fig. 6.5]. Examples are represented by the gravitational
potential (in this case the negative of the gradient points towards
the gravitational field) or the concentration of a chemical (here the
gradient points towards the maximum concentration). The gradient
of a function f (x , y, z) is denoted by ∇ f , where the symbol ∇
is called the gradient operator (or del, or nabla). The form of the
gradient ∇ f depends on the coordinate system used. In Cartesian
coordinates, it is defined in terms of partial derivative operators by

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
, (6.97)

where we recall that ex , ey , and ez are unit vectors in the x , y, and z
directions, respectively. In component form the gradient operator is
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Box 6.6 Example of partial differentiation

As an example of partial derivatives, let us consider the function

f (x , y) = x sin y + y2 cos xy.

In this case, we can compute the two partial derivatives

∂ f (x , y)
∂x

= sin y − y3 sin xy, (6.98a)

∂ f (x , y)
∂y

= x cos y + 2y cos xy − xy2 sin xy, (6.98b)

where the term −y3 sin xy in Eq. (6.98a) results from applying
the chain rule (6.75), while the last two terms in Eq. (6.98b) are
the result of the application of the product rule (6.73) and the
chain rule (6.75). Similarly, the mixed second partial derivatives
are given by

∂2 f (x , y)
∂y∂x

= cos y − 3y2 sin xy − xy3 cos xy, (6.99a)

∂2 f (x , y)
∂x∂y

= cos y − 2y2 sin xy − y2 sin xy − xy3 cos xy

= cos y − 3y2 sin xy − xy3 cos xy, (6.99b)

which clearly verify the property (6.96).

given by

∇ =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
, (6.100)

which is a row-vector formulation used also in classical mechanics.
Hence, the gradient ∇ f is a vector whose Cartesian components are
the partial derivatives of f (x , y, z), that is (again in the row-vector
formulation)

∇ f =
(

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂z

)
. (6.101)

The gradient, being itself a partial derivative operator, satisfies the
usual derivative rules discussed in Section 6.4. As a quick example,
the gradient of the function f (x , y, z) = x3 + 2xy + yz2 is given by

∇ f = (3x2 + 2y)ex + (2x + z2)ey + 2yzez.
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x

y

z
tangent plane

Figure 6.5 The gradient of a function f (x , y, z) at a certain point can be
visualized as the vector normal to the plane tangent at that point to the
surface f (x , y, z) = const. (represented here in grey scale). The gradient
points in the direction of the maximum rate of increase of f (x , y, z) at that
point, and whose magnitude is that rate of increase.

Another important differential operator closely related to the
gradient operator is the Laplacian, usually denoted by ∇2 (del
squared). In Cartesian coordinates, the Laplacian is defined in terms
of partial derivative operators by

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . (6.102)

The Laplacian of a function f (x , y, z) is given by

∇2 f = ∂2 f
∂x2 + ∂2 f

∂y2 + ∂2 f
∂z2 . (6.103)

The value of ∇2 f at a point can be thought of as the rate at which
a certain average value of f (x , y, z) over a sphere centered at that
point, deviates from the actual value of f (x , y, z) as the radius of the
sphere approaches zero.

Sometimes a function of several variables may depend on one of
its variables not only directly but also indirectly. For instance, the
function f (t, x(t)) depends on t directly as well as indirectly via the
variable x(t) [see Eq. (6.75)]. In this case, in addition to the partial
derivative of f (t, x(t)) with respect to t, for which the variable x(t)
is taken as constant, we can also consider the total derivative of
f (t, x(t)) with respect to t, for which the variable x(t) that depends
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on t is taken as variable as well. In other words, the total derivative
takes the indirect dependence of t into account and gives the overall
dependence of f (t, x(t)) on t. The total derivative of f (t, x(t)) with
respect to t is given by

d f
dt

= ∂ f
∂t

+ ∂ f
∂x

dx
dt

. (6.104)

Multiplying both sides of the above equation by the differential dt
and using the fact that dx = (dx/dt)dt, we obtain

d f = d f
dt

dt = ∂ f
∂t

dt + ∂ f
∂x

dx
dt

dt = ∂ f
∂t

dt + ∂ f
∂x

dx , (6.105)

where d f is called the total differential of f .

Problem 6.8 Compute the first and the mixed second partial
derivatives of the function

f (x , y) = x − y
x + y

.

Problem 6.9 Find the partial derivative ∂ f/∂t and the total
derivative d f/dt for the function

f (t, x) = t2 − 8tx − x2, where x(t) = sin t.

6.6 Momentum as Generator of Space Translations

After this mathematical parenthesis we can come back to physics. In
Section 6.4, we have discussed the concept of velocity in classical
mechanics [see Eq. (6.84)]. It is certainly an important physical
quantity. However, both in classical and in quantum mechanics
physicists prefer dealing with another physical quantity called
momentum. As we have already mentioned [see Section 1.1], in
classical mechanics the momentum of a particle is defined by the
product of the mass and velocity of the particle:

p = mv = m
dr
dt

, (6.106)

where m, r, v, and p are respectively the mass, position, velocity,
and momentum of the particle. Here we have considered the general
three-dimensional case. In other words, the position, velocity,
and momentum are expressed in Cartesian coordinates as three-
component spatial vectors r = (x , y, z), v = (vx , vy , vz), and
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p = ( px , py , pz), respectively (again the row-vector formulation has
been used). The momentum of a system of particles is the sum of the
momenta of the individual particles

p =
n∑

i=1

mi vi , (6.107)

where mi and vi are the respective mass and velocity of the i th
particle, and n is the number of particles in the system. Momentum
turns out to be related to the capability of a moving system to have
a certain dynamical impact on other systems. For instance, we have
already mentioned the circumstance that the heavier a car is or the
faster it is moving, the more damage it will cause during an accident.
Indeed, the net external force applied on an object is equal to the
time derivative of its momentum

F = d
dt

(mv), (6.108)

which, for an object of constant mass, is simply a reformulation of
Newton’s second law (1.2) [see also Eq. (6.87)].

It is very important that we understand what momentum means
from a fundamental point of view: momentum is a conserved
quantity in a closed system, i.e., a system that is not subject to
external forces [see Section 1.1]. Moreover, since the momentum
of a system is what describes its spatial translations (changes
of position), it can be understood as (or thought of as being
strictly related to) the generator of space translations, that is,
as the dynamical parameter or operator that is associated with
changes in the kinematic parameter represented by the position. To
understand what this means, let us first consider an infinitesimal
space translation in the x direction given by

x ε−→ x ′ = x + ε, (6.109)

where ε is an infinitesimal distance. The translated position x ′ can
be expressed in terms of the initial position x as

x ′ =
(

1 + ε D̂x
)

x , (6.110)

where D̂x = d
dx is the generator of space translations in the x

direction, which simply is the derivative operator with respect to x .
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To go over from an infinitesimal to a finite space translation in the x
direction

x a−→ x ′ = x + a, (6.111)

where a is an finite distance, we may think of the latter as a result
of an infinite number of repeated applications of the infinitesimal
translation (6.110). This is achieved by first subdividing the finite
distance a into n equal segments, each of length a/n, and then taking
the limit that n approaches infinity, namely, with a reversal of the
methodology that we have already applied when introducing the
formalism of differentiation [see Section 6.4]. Since the effect of
each infinitesimal translation is given by Eq. (6.110) and all of them
together constitute the finite displacement a, we can reiterate each
of these infinitesimal translations, that is, we can multiply these
infinitesimal displacement operations and express the translated
position x ′ in terms of the initial position x as

x ′ = lim
n→∞

total of n factors︷ ︸︸ ︷(
1 + a

n
D̂x

)
· · ·

(
1 + a

n
D̂x

)
x

= lim
n→∞

(
1 + a

n
D̂x

)n
x

= eaD̂x x , (6.112)

where in the last equality use has been made of the mathematical
formula

lim
n→∞

(
1 + x

n

)n
= ex . (6.113)

This formula is a consequence of the Taylor expansion (6.93).
Indeed, for fixed x , the ratio x

n becomes exceedingly small as n
approaches infinity, hence from Eq. (6.94) we can approximate 1+ x

n
by e

x
n and formula (6.113) follows since

(
e

x
n
)n = ex . The expression

eaD̂x denotes the exponential of the operator aD̂x , which is itself
an operator, called the space translation operator by a distance a
in the x direction. Having established a connection with the Taylor
expansion, we note that in general the exponential of an operator Â
is defined by [see Eq. (6.93)]

e Â = Î + Â + Â
2

2!
+ Â

3

3!
+ · · · =

∞∑

n=0

Â
n

n!
, (6.114)
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which allows us to finally write

eaD̂x = Î + aD̂x + a2

2
D̂2

x + · · · ,

= 1 + a
d

dx
+ a2

2
d2

dx2 + · · · . (6.115)

It is easy to check that when the operator eaD̂x is applied to x , i.e., to
the left-hand side of Eq. (6.111), we get its right-hand side because
only the constant term and the first derivative term in the expansion
(6.115) are different from zero. It is precisely in this sense that D̂x is
referred to as the generator of space translations in the x direction.
As a consequence, the momentum operator in quantum mechanics
is closely related to the derivative operator D̂x . We shall prove this
result below in an explicit way.

We confine by now the exposition to the one-dimensional case.
In the position representation, the one-dimensional momentum
operator takes the forma

p̂x = −i! ∂

∂x
, (6.116)

or more formally [see Eqs. (6.37) and (6.52)],

p̂x |x⟩ = −i! ∂

∂x
|x⟩ and ⟨x| p̂x = −i! ∂

∂x
⟨x|, (6.117)

which precisely express the required variation of the position x .
In the above expressions, ! is called the reduced Planck constant,
i.e., the Planck constant h divided by 2π [see Eq. (4.2)] and the
factor −i is there to ensure that as an observable the momentum
operator p̂x is a Hermitian operator. Analogous to what happens
for the position operator, there will also be eigenvalues px (where
−∞ < px < ∞) and the corresponding eigenstates |px⟩ of the one-
dimensional momentum operator p̂x determined by the eigenvalue
equation [see Eq. (4.4)]:

p̂x |px⟩ = px |px⟩. (6.118)

Likewise, the orthonormal conditions of the momentum eigenstates
|px⟩ are given by [see Eq. (6.43)]

⟨px |p′
x⟩ = δ( px − p′

x ), (6.119)

aWe use here the partial derivative ∂
∂x instead of the ordinary derivative d

dx in order
to remind the reader that the one-dimensional case is indeed a special case of the
three-dimensional one.
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and the completeness relation for the momentum eigenstates is
given by [see Eq. (6.39)]∫ +∞

−∞
|px⟩⟨px |dpx = Î . (6.120)

To find the momentum eigenfunction ϕp(x) = ⟨x|px⟩, i.e., the
counterpart for the momentum operator of what the position
eigenfunction is for the position operator [see Eqs. (6.54)–(6.55)],
we shall solve the eigenvalue equation (6.118) in the position
representation. Left multiplying both sides of Eq. (6.118) by ⟨x|
and using Eqs. (6.117) to rewrite the left-hand side in terms of the
momentum operator in the position representation, we obtain

p̂xϕp(x) = pxϕp(x), (6.121)
or equivalently,

−i! ∂

∂x
ϕp(x) = pxϕp(x). (6.122)

The above equation is our first example of the so-called differential
equation, that is, an equation that involves an unknown function as
well as its derivatives [see Box 6.7]. Differential equations play a
very important and useful role in mathematics, physics, and other
disciplines. Various techniques have been developed for finding the
solutions of differential equations. While this is a topic far beyond
the scope of this book, the basic methods of solving the simplest
differential equations can be found in Boxes 6.8 and 7.1. The
momentum eigenfunction, i.e., the solution to the above differential
equation, is given by [see Box 6.8]

ϕp(x) = ⟨x|px⟩ = 1√
2π!

e
i
! px x (−∞ < px < ∞), (6.123)

where the normalization constant 1√
2π! is there to fulfill the

orthonormal conditions (6.119) [see Eq. (6.50)]. The validity of the
solution can be verified by direct substitution into the eigenvalue
equation (6.122).

We note that the space translation operator eaD̂x in Eq. (6.112)
can be written in terms of the momentum operator p̂x asa

Û x (a) = e− i
! a p̂x , (6.124)

aThe careful reader may have noticed that there is a sign difference in the exponent
between the space translation operator in Eq. (6.124) and that in p. 138. This
seeming sign difference is due to the fact that the former is written as an active
transformation while the latter is written as a passive one. We will return to this
point in Section 7.4.
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Box 6.7 Differential equations

Differential equations can be classified into two types: an
ordinary differential equation (ODE) is an equation containing
a function of one independent variable and its derivatives,
and a partial differential equation (PDE) is an equation that
contains a multivariable function and its partial derivatives.
We shall discuss here only the ordinary differential equations,
which are further classified according to the order of the
highest derivative of the dependent variable with respect to
the independent variable appearing in the equation. The most
important cases for applications are first-order and second-order
ordinary differential equations.

An ODE is said to be linear if the unknown function and its
derivatives appear at most only once in each term of the equation.
For instance, a linear second-order ordinary differential equation
is of the form

a2(x) y′′(x) + a1(x) y′(x) + a0(x) y(x) = b(x). (6.125)

The function b(x) is called the source term, leading to two further
important classifications: If b(x) = 0 then the equation is
called homogeneous (i.e. it is a linear ODE which does not have
terms independent of the unknown function and its derivatives);
otherwise it is called nonhomogeneous. In general, an nth order
homogeneous linear ODE has n linearly independent solutions.
Furthermore, any linear combination of linearly independent
solutions is also a solution.

which is a unitary operator [see Section 4.6 and Problem 6.11]. As a
result, the momentum eigenstates |px⟩ are also eigenstates of Û x (a),
namely, we have

Û x (a)|px⟩ = e− i
! px a|px⟩. (6.126)

Let us consider the action of Û x (a) on the position eigenstate |x⟩

|x⟩ a−→ Û x (a)|x⟩. (6.127)



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

142 Position and Momentum

Box 6.8 Linear differential equations with constant
coefficients I

A very important class of linear differential equations are
the homogeneous ones with constant coefficients. Let us first
consider the basic equation with widespread application in
physical sciences (what is said in this box is also true for partial
differential equations):

dy
dx

+ ky = 0, (6.128)

where k is a constant. It is a first order homogeneous linear
differential equation. Indeed, the expression (6.70) allows us to
write

y(x) = e−kx . (6.129)

Since the differential equation (6.128) is homogeneous, it follows
that if y is a solution so is a constant multiple of y. Therefore, the
general solution is given by

y(x) = ce−kx , (6.130)

where c is some constant.

By inserting the identity operator (6.120) between Û x (a) and |x⟩,
we obtain

Û x (a)|x⟩ =
∫ +∞

−∞
Û x (a)|px⟩⟨px |x⟩dpx

=
∫ +∞

−∞
⟨px |x⟩Û x (a)|px⟩

= 1√
2π!

∫ +∞

−∞
e− i

! px x e− i
! px a|px⟩dpx

= 1√
2π!

∫ +∞

−∞
e− i

! px (x+a)|px⟩dpx

=
∫ +∞

−∞
|px⟩⟨px |x + a⟩dpx

= |x + a⟩, (6.131)
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where use has been made of Eqs. (6.126), the first property of the
scalar product (3.21), which implies that ⟨px |x⟩ = ⟨x|px⟩∗, and
the fact that ⟨x|px⟩ is the momentum eigenfunction ϕp(x) given by
Eq. (6.123). The result means that under a space translation by
a distance a, the state |x⟩ transforms into the state |x + a⟩. This
definitively proves that momentum is indeed the generator of space
translations as advertised earlier.

Problem 6.10 Check that the Eq. (6.123) is a solution of Eq. (6.122).

Problem 6.11 Show that the space translation operator Û x (a) =
e− i

! a p̂x is a unitary operator.

Problem 6.12 Show that Û †
x (a)x̂Û x (a) = x̂ + a. (Hint: Use

Eq. (6.131) to express the matrix elements ⟨x|Û †
x (a)x̂Û x (a)|x ′⟩ in

term of those of x̂ .)

6.7 Momentum Representation

Like the position eigenstates, the momentum eigenstates also
constitute a complete orthonormal basis. The use of the momentum
eigenstates as basis states to represent operators and states is
referred to as the momentum representation. In other words, in the
momentum representation the momentum operator p̂x is simply
represented by the real number px , as it is clear by Eq. (6.118) or
its conjugate transpose [see Eq. (6.52) for position]

⟨px | p̂x = px⟨px |. (6.132)

Then, any state vector |ψ⟩ can be written as [see Eq. (6.38)]

|ψ⟩ =
∫ +∞

−∞
|px⟩⟨px |ψ⟩dpx , (6.133)

where use has been made of the completeness relation (6.120). The
scalar product ⟨px |ψ⟩ in the above equation is the state vector |ψ⟩
expressed in the momentum representation, and can be understood
as a continuous function of the momentum eigenvalue px , that is,

ψ̃( px ) = ⟨px |ψ⟩ (6.134)

which is called the wave function in momentum space. Here we
use the notation ψ̃( px ) rather than the somewhat confusing one
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ψ( px ) in order to highlight the fact that for a given state vector
|ψ⟩, the wave function in position space ψ(x) = ⟨x|ψ⟩ and the
corresponding wave function in momentum space ψ̃( px ) = ⟨px |ψ⟩
in general have different functional forms. Analogous to the wave
function in position space ψ(x) [see Eq. (6.41)], the wave function in
momentum space ψ̃( px ) is the probability amplitude whose square
modulus |ψ̃( px )|2 gives probability density in momentum space.
In other words, the probability of finding a quantum system with
momentum between px and px + dpx is given by |ψ̃( px )|2dpx .

We now have two representations that we may use to express
operators and states. In other words, for any state vector |ψ⟩ we can
either use the position or the momentum representation to expand
it. In the former case, we have the position space wave function ψ(x),
while in the latter case we have the momentum space wave function
ψ̃( px ). It will be important to note that both representations are
equally good for expressing the state vector |ψ⟩. In fact, the choice
between these two representations is only a matter of convenience,
and the wave functions ψ(x) and ψ̃( px ) are simple related by a
change of basis [see Section 4.6], but this time using integrals due
to the continuous nature of the observables involved. To find the
connection between ψ(x) and ψ̃( px ), and hence the connection
between these two representations, we left multiply Eq. (6.133) by
⟨x|, and Eq. (6.38) by ⟨px |, to obtain

ψ(x) = ⟨x|ψ⟩ =
∫ +∞

−∞
⟨x|px⟩⟨px |ψ⟩dpx =

∫ +∞

−∞
⟨x|px⟩ψ̃( px )dpx

(6.135a)
and

ψ( px ) = ⟨px |ψ⟩ =
∫ +∞

−∞
⟨px |x⟩⟨x|ψ⟩dx =

∫ +∞

−∞
⟨px |x⟩ψ(x)dx ,

(6.135b)
respectively. Using the fact that ⟨x|px⟩ is the momentum eigenfunc-
tion ϕp(x) given by Eq. (6.123) and the property that ⟨px |x⟩ =
⟨x|px⟩∗, we can rewrite the above equations as

ψ(x) = 1√
2π!

∫ +∞

−∞
ψ̃( px ) e

i
! px x dpx (6.136a)

and

ψ̃( px ) = 1√
2π!

∫ +∞

−∞
ψ(x) e− i

! px x dx . (6.136b)
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These equations are the sought connection between the position and
momentum representations and are called the Fourier transforms. In
general, quantities like position and momentum which are related to
each other by the Fourier transforms are called canonical conjugate
quantities. Moreover, as we will see in Section 6.8, such a connection
shows that the position and momentum observables of a quantum
system are to a certain extent complementary [see Chapter 5].

It is straightforward to generalize the above exposition to the
three-dimensional case, in which we need to consider each Cartesian
component separately and so to make use of partial derivatives.
The momentum operator in the position representation is given by
(here we use, as usual, the row-vector formulation when we have
expressions that have specific classical counterparts)

p̂ = −i!∇ = −i!
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
, (6.137)

or more formally,

p̂|r⟩ = −i!∇|r⟩, (6.138)

where ∇ is the gradient operator [see Eq. (6.100)]. The momentum
eigenstate is now denoted by

|p⟩ = |px , py , pz⟩, (6.139)

which satisfies the eigenvalue equations

p̂|p⟩ = p|p⟩, (6.140)

where the eigenvalues p = ( px , py , pz) (with −∞ < px , py , pz <

∞) represent the possible momentum vectors that a quantum
system may potentially have. The completeness relation and
orthonormal conditions are respectively given by

∫
d3 p|p⟩⟨p| = Î and ⟨p|p′⟩ = δ(3)(p − p′), (6.141)

where
∫

d3 p =
∫ +∞

−∞
dpx

∫ +∞

−∞
dpy

∫ +∞

−∞
dpz (6.142)

means the integral is taken over the whole three-dimensional
momentum space. Moreover, the scalar product

ψ̃(p) = ⟨p|ψ⟩ (6.143)
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is the three-dimensional momentum space wave function. In
particular, the three-dimensional momentum eigenfunction [see
Eq. (6.123)] is given by

ϕp(r) = ⟨p|r⟩ = 1
(2π!)3/2 e

i
! p·r, (6.144)

where p·r = xpx +ypy+zpz is the dot product of the spatial vectors p
and r [see Box 3.1]. The momentum eigenfunction ϕp(r) allows us to
write the following Fourier transforms between the wave functions
ψ(r) and ψ̃(p):

ψ(r) = 1
(2π!)3/2

∫
d3 p ψ̃(p) e

i
! p·r (6.145a)

and

ψ̃(p) = 1
(2π!)3/2

∫
d3r ψ(r) e− i

! p·r. (6.145b)

Last but not the least, the space translation operator by a
displacement a in three dimensions is given by

Û r(a) = e− i
! a·p̂, (6.146)

where a · p̂ = ax p̂x + ay p̂y + az p̂z.

Problem 6.13 Show that the normalization condition ⟨ψ |ψ⟩ =
1 can be written in the momentum representation as [see also
Problem 6.4]

∫ +∞

−∞
|ψ̃( px )|2dpx = 1.

Explain how the above equation justifies that |ψ̃( px )|2 gives the
probability density in momentum space.

Problem 6.14 For the rectangle wave function ψ(x) given by

ψ(x) =

⎧
⎨

⎩
1 0 ≤ x ≤ 1,

0 otherwise,

find the corresponding momentum space wave function ψ̃( px ).
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6.8 Commutation and Uncertainty Relations

During 1925 and 1926, with the help of the new mathematical tools
of matrices and operators developed by Heisenberg, an important
relation between the position and momentum was discovered.a

It was found that the quantum operators for the position and
momentum do not commute, i.e., x̂ p̂x ̸= p̂x x̂ [see Section 4.7].b

Later in 1927, Heisenberg realized that the non-commutativity of
position and momentum implies that these is a fundamental limit on
the accuracy with which the position and momentum of a particle
can be simultaneously known. Heisenberg’s uncertainty principle,
for which he is well known, is stated in his own words as follows.c

Principle 6.1 (Uncertainty Principle) The more precisely the
position is determined, the less precisely the momentum is known in
this instant, and vice versa.

We shall proceeds in three steps. First, we shall derive the so-
called commutation relations for position and momentum. Then,
we shall derive the uncertainly relations for arbitrary observables.
Finally, we shall formulate the uncertainty relation for position and
momentum. To see that the position and momentum observables
do not commute, let us consider the following expression (in the
position representation)

(x̂ p̂x − p̂x x̂) ψ(x) = x
(

−i! ∂

∂x

)
ψ(x) + i

∂

∂x
[xψ(x)]

= −i!x
∂

∂x
ψ(x) + i!x

∂

∂x
ψ(x) + i!ψ(x)

= i!ψ(x), (6.147)

where we have made use of the product rule for derivatives (6.73)
and the fact that the wave function ψ(x) is a function of the position
eigenvalue x while the momentum acts on it as the operator given by

a(Heisenberg, 1925), (Born/Jordan, 1925), (Born et al., 1926).
bThe patient reader who is not a physicist and has followed us thus far has shown

a remarkable determination. Arriving at this point already represents a significant
step. We would again suggest the reader to take a breath before moving on.
Moreover, when he or she shall arrive at the end of this chapter, we suggest to read
it again as many times as necessary to get a full understanding of this matter.

c(Heisenberg, 1927).
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Eq. (6.116). Since we have made no specific assumption on the wave
function ψ(x), we are allowed to say that for an arbitrary quantum
state we always have the relation

[x̂ , p̂x ] = i! Î , (6.148)

where the expression

[x̂ , p̂x ] = x̂ p̂x − p̂x x̂ (6.149)

is called the commutator of x̂ and p̂x [see Box 6.9]. A relation
between operators like that given by Eq. (6.148) is called the
commutation relation. We note that while the commutation relation
(6.148) is derived here in the position representation, it holds
true also in the momentum representation and in fact it is
representation independent. It is straightforward to check that
similar commutation relations hold true for the other Cartesian
components of the two observables while different Cartesian
components always commute. Indeed, we have

[x̂ , p̂x ] = [ŷ, p̂y] = [ẑ, p̂z] = i! Î (6.150a)

and

[x̂ , p̂y] = [x̂ , p̂z] = [ŷ, p̂x ] = [ŷ, p̂z] = [ẑ, p̂x ] = [ẑ, p̂y] = 0.
(6.150b)

Box 6.9 Properties of commutators

It is easy to check that commutator satisfies the following
properties:

[ Â, B̂] = −[B̂ , Â], (6.151a)

[α Â + β, B̂] = α[Â, B̂], (6.151b)

[α Â + β B̂ , Ĉ ] = α[Â, Ĉ ] + β[B̂ , Ĉ ], (6.151c)

[ Â B̂ , Ĉ ] = Â[B̂ , Ĉ ] + [B̂ , Ĉ ]Â, (6.151d)

[ Â, [B̂ , Ĉ ]] + [Ĉ , [Â, B̂]] + [B̂ , [Ĉ , Â]] = 0, (6.151e)

where α and β are complex numbers and the last equality
(6.151e) is known as the Jacobi identity.
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Because position and momentum are canonical conjugate quan-
tities, the commutation relations of position and momentum (6.150)
are also referred to as the canonical commutation relations.

Various commutation relations hold true for many quantum
mechanical observables (all those pairs that are not jointly
measurable or that do not have a common eigenbasis) and imply
very interesting consequences: the uncertainty relations. Since the
consequences are very general, it is convenient to generalize our
treatment to generic quantum observables [see Section 4.7]. To this
purpose, we introduce the useful concepts of expectation value,
variance, and uncertainty of a quantum observable. We recall that
the possible outcomes of a measurement are the eigenvalues of
the observable being measured, and that because of the inherent
probabilistic nature of quantum phenomena, the measurement
outcome of an experiment will generally not be the same if the
experiment is repeated several times [see Sections 3.2, 5.3, and
5.4]. Quantum mechanics does not, in fact, predict the results of
individual measurements, but only their statistical mean, i.e., the
weighted average of all possible measurement outcomes. Therefore,
this predicted mean value is called the expectation value of the
observable that is being measured. Let Ô be an observable with
eigenvalues o j ’s (which we take here as discrete for the sake of
simplicity) and corresponding eigenstates |o j ⟩’s (where j is some
index labeling the eigenvalues). If the observable Ô is measured on
a system in a state |ψ⟩, then the measured result will be one of its
eigenvalue o j and the probability of obtaining a given eigenvalue o j

is given by |⟨o j |ψ⟩|2. Hence, the expectation value of the observable
Ô for a quantum system in the state |ψ⟩, which is written as

〈
Ô
〉

ψ
, is

given by the statistical mean
〈

Ô
〉

ψ
=

〈
ψ

∣∣Ô
∣∣ψ

〉

=
∑

j

o j ⟨ψ |o j ⟩⟨o j |ψ⟩

=
∑

j

o j |⟨o j |ψ⟩|2, (6.152)

where use has been made of the spectral representation of the
observable Ô [see Eq. (6.13)]. For instance, consider the observable



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

150 Position and Momentum

Ô and the state |ψ⟩ given by

Ô = |h⟩⟨h| − |v⟩⟨v| and |ψ⟩ = 1√
2

(|h⟩ + |v⟩), (6.153)

respectively, where |h⟩ and |v⟩ are respectively the horizontal and
vertical photon polarization states. The expectation value of Ô in the
state |ψ⟩ will be

〈
Ô
〉

ψ
= 1

2
(
⟨h| + ⟨v|

)(
|h⟩⟨h| − |v⟩⟨v|

)(
|h⟩ + |v⟩

)

= 1
2

(
⟨h|h⟩⟨h|h⟩ − ⟨v|v⟩⟨v|v⟩

)

= 0. (6.154)

The generalization to observables with continuous eigenvalues is
straightforward, and Eq. (6.152) remains valid in the continuous
case. For the expectation value of the position operator x̂ , we have

⟨x̂⟩ψ = ⟨ψ |x̂|ψ⟩ =
∫ +∞

−∞
x |ψ(x)|2dx . (6.155)

A similar expression holds for the momentum operator p̂x , namely,

⟨ p̂x⟩ψ = ⟨ψ | p̂x |ψ⟩ =
∫ +∞

−∞
px |ψ̃( px )|2dpx . (6.156)

It is noted that since the eigenvalues of an observable (represented
by a Hermitian operator) are real, the expectation value of an
observable must also be real. The expectation value also satisfies the
following properties:

〈(
aÔ + b

)〉
ψ

= a
〈

Ô
〉

ψ
+ b, (6.157a)

〈(
aÔ1 + bÔ2

)〉
ψ

= a
〈

Ô1
〉

ψ
+ b

〈
Ô2

〉
ψ

, (6.157b)

where a and b are real numbers.
The variance of an observable is a measure of the spread of the

measurement results about its expectation value, taking account
of all possible results and their probabilities. The variance of the
observable Ô in the state |ψ⟩ is defined by

/2
ψ Ô =

〈(
Ô −

〈
Ô
〉

ψ

)2〉

ψ

=
〈
ψ

∣∣∣
(

Ô −
〈
ψ

∣∣Ô
∣∣ψ

〉)2∣∣∣ψ
〉

. (6.158)
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In other words, it is the expectation value of the squared deviation
of an observable from its expectation value with both taken on the
same state. Since Ô is a Hermitian operator (i.e., Ô = Ô†) and ⟨Ô⟩ψ
is real, the variance /2

ψ Ô can be thought of as the norm squared of
the following state [see Eq. (3.23)]

|ψ ′⟩ = (Ô − ⟨Ô⟩ψ )|ψ⟩, (6.159)

that is,

/2
ψ Ô = ∥|ψ ′⟩∥2 = ⟨ψ ′|ψ ′⟩ ≥ 0, (6.160)

where the equality holds if and only if |ψ ′⟩ = 0. This means that
the variance of an observable must be real and non-negative. The
uncertainty of the observable Ô in the state |ψ⟩ is defined by the
square root of its variance in that state (or as the norm of |ψ ′⟩), i.e.,

/ψ Ô =
√〈(

Ô −
〈

Ô
〉

ψ

)2〉

ψ
. (6.161)

Indeed, this explains the use of the notation /2
ψ Ô for the variance of

the observable Ô in the state |ψ⟩.
We now establish the uncertainty relation for non-commuting

observables. Let us consider two non-commuting observables Ô and
Ô′ and, without loss of generality, assume that the expectation values〈

Ô
〉

ψ
and

〈
Ô′〉

ψ
of the two observables in the state |ψ⟩ are both

equal to zero (this, however, does not imply that the expectation val-
ues in all states are zero). With these assumptions, the uncertainties
of the observable Ô and Ô′ in the state |ψ⟩ reduce to

/ψ Ô =
√〈

ψ
∣∣Ô2

∣∣ψ
〉

and /ψ Ô′ =
√〈

ψ
∣∣Ô′2

∣∣ψ
〉

. (6.162)

To proceed further, we consider the states

|ϕ⟩ = Ô|ψ⟩ and |ϕ′⟩ = Ô′|ψ⟩, (6.163)

which allow us to write /ψ Ô and /ψ Ô′ in terms of their norms:

/ψ Ô =
√

⟨ϕ|ϕ⟩ and /ψ Ô′ =
√

⟨ϕ′|ϕ′⟩. (6.164)

From a pure mathematical point of view, we always have the
inequality (known as the Cauchy–Schwarz inequality)

∣∣⟨ϕ|ϕ′⟩
∣∣ ≤

√
⟨ϕ|ϕ⟩

√
⟨ϕ′|ϕ′⟩, (6.165)
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since the scalar product of two arbitrary (normalized) states |a⟩ and
|b⟩ satisfies 0 ≤ |⟨a|b⟩| ≤ 1 and we always have ⟨a|a⟩ = ⟨b|b⟩ = 1
[see Section 3.4]. By substituting Eqs. (6.163) into the inequality
(6.165), we obtain

∣∣⟨ψ |Ô Ô′|ψ⟩
∣∣ ≤

√
⟨ψ |Ô2|ψ⟩

√
⟨ψ |Ô′2|ψ⟩ = /ψ Ô /ψ Ô′, (6.166)

where we have used Eq. (6.162) and the fact that Ô and Ô′ are
Hermitian operators. Obviously, a similar result can be obtained if
we interchange the positions of the two observables, that is,

∣∣⟨ψ |Ô′ Ô|ψ⟩
∣∣ ≤

√
⟨ψ |Ô2|ψ⟩

√
⟨ψ |Ô′2|ψ⟩ = /ψ Ô /ψ Ô′. (6.167)

Let us consider the last two equations. From the triangle inequality
(2.7c), it follows that if z1 and z2 are two complex numbers and a is a
real non-negative number such that |z1|, |z2| ≤ a, then we also have

|z1 − z2| ≤ 2a. (6.168)

This, together with the fact that the uncertainty of an observable is
real and non-negative, implies that

∣∣⟨ψ |Ô Ô′|ψ⟩ − ⟨ψ |Ô′ Ô|ψ⟩
∣∣ ≤ 2 /ψ Ô /ψ Ô′, (6.169)

or equivalently,

/ψ Ô /ψ Ô′ ≥ 1
2

∣∣∣
〈[

Ô, Ô′]〉
ψ

∣∣∣ , (6.170)

where is usually referred to as the generalized uncertainty relation.
Since this inequality is true for an arbitrary pair of observables
(if they commute the right-hand side vanishes and the inequality
is obviously satisfied), it must also be true for the position
and momentum observables. By taking into account again the
commutation relations (6.148), we finally obtain the uncertainty
relation for position and momentuma

/x /px ≥ !
2

. (6.171)

Here, we have dropped any reference to the state since this
conclusion is of general validity and does not depend on the specific
state we have chosen. This result means that we cannot get a perfect
determination of both position and momentum at the same instant.

a(Heisenberg, 1927).
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Every time we try to reduce the uncertainty in position, this is done
at the expenses of the increase of the uncertainty in momentum, and
vice versa.

Problem 6.15 Compute the commutators [x̂2, p̂x ], [x̂ , p̂2
x ], and

[x̂ p̂x , p̂x x̂].

Problem 6.16 Check the correctness of Eqs. (6.162).

Problem 6.17 Find the variance /2
ψ Ô for the observable Ô and the

state |ψ⟩ given by Eq. (6.153).

6.9 Conceptual Aspects of the Uncertainty Relations

The uncertainty relations have extraordinary conceptual conse-
quences. As we have stressed, all classical quantities commute. This
means that for a classical system we can in principle measure
perfectly both momentum and position simultaneously, or at least be
able to put together these two pieces of information in order to get a
full knowledge of the state of a classical system at a certain time. This
is very important since in classical mechanics the state of a system
is described by these two variables. Given that the two variables are
perfectly determined, they can be represented by a unique point
in the phase space (the Cartesian space whose axes are position
and momentum and in which all possible states of a system are
represented) as shown in Fig. 6.6(a). In other words, in accordance
with what we have explained in Chapter 1, classical systems are
assumed to be both perfectly determined and knowable. Another
way to say this is that it is assumed that the whole information that
is contained in the state of a classical system is perfectly accessible
and therefore acquirable by an observer, at least in principle.

Things are totally different when considering quantum mechan-
ics. Here, due to the uncertainty relation (6.171) the quantum
mechanical phase space can at best be thought of as being divided
into cells, each of an approximate area /x /px ≈ !/2, and the state
of a quantum system is roughly represented by an elliptical spot that
is bounded by the cell [see Fig. 6.6(b)]. Any attempt at reducing the
uncertainty /x will immediately induce a corresponding increase
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(a) (b)

Figure 6.6 (a) In classical mechanics, given the initial state of a system
(x(t0), px (t0)) at time t0, the state of the system (x(t), px (t)) at later time
t is uniquely determined [see Section 7.1]. The state of a classical system
at any given time is represented by a point in the phase space, and its time
evolution is represented by a trajectory. (b) According to the uncertainty
relation /x /px ≥ !/2, the quantum mechanical phase space can be
thought of as being divided into cells, each of an approximate area /x /px ≈
!/2, and the state of a quantum system is roughly represented by an
elliptical spot that is bounded by the cell. Because of the uncertainty
principle it is not possible to ascribe a definite phase space trajectory to a
quantum system. The most probable states of a quantum system can at best
be thought of as a fuzzy contour.

of the uncertainty /px , and vice versa, in accordance with the
uncertainty relation. In other words, although we are free in
the choice of the observable to measure, the consequences of
measurement are not controllable by us. If we decide to measure
the observable x̂ , we shall obtain a certain kind of information that
is contained in the state of the system. On the other hand, if we
decide to measure the observable p̂x , we shall obtain another kind
of information. The crucial problem is that we cannot put together
these two pieces of information, which shows that we cannot choose
to measure both the observables x̂ and p̂x , and therefore that we
are not completely free even in the single measurement act, at
least regarding its consequences that we cannot control, although
we can choose alternative experimental setups. How is it possible?
To a certain extent, both classically and quantum mechanically,
the experimental contexts for measuring position and momentum
are not compatible (classically, to measure momentum we need a
mobile device while for measuring position we need a fixed grid).
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Hence we cannot measure these two quantities jointly, instead
we need a succession of at least two measurements. In classical
mechanics, the assumption of continuity and the deterministic
character of classical laws [see Section 1.2] ensures us that we can
combine the information obtained through these two consecutive
measurements in order to fully reconstruct the state of the
system. However, this is precisely what cannot happen in quantum
mechanics. In Section 4.7, we have indeed learned that the order
in which we perform two or more measurements does matter
and therefore the decision to measure first, say, the position will
influence the final result. Moreover, since each measurement will
inevitably change the state of the system, we cannot cumulate the
information extracted from the subsequent measurements.

This implies that the observer of a quantum system is not a
detached spectator who can observe systems without determining
certain consequences on those systems. Knowledge is not a
contemplative activity but is deeply and dynamically involved
in what we call reality. This statement, which can sound quite
surprising and whose full meaning can be understood only later
on, seems to imply that also the uncertainty relations themselves
depend on certain measurements that we perform on quantum
systems. This operationist epistemology was also supported by
Heisenberg himself.a However, already in 1960 it was shown that
this is not necessarily the case.b This conclusion has been confirmed
by interaction-free measurements [see Sections 5.2 and 5.3] and
by the so-called non-demolition measurements.c The reason is that
uncertainty relations are a consequence of quantum features [see
Section 4.8] and not of the operations that we may perform on
a quantum system. On the contrary, the results we can obtain
through these operations are deeply conditioned and framed by
the constraints imposed by quantum features through uncertainty
relations (as we shall see, these constraints are not of traditional
physical kind), so that the results and their possible influences on
a subsequent measurement cannot be controlled by the observer.

a(Heisenberg, 1927).
b(Renninger, 1960).
c(Braginsky/Khalili, 1992).
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This again shows that we cannot avoid assigning a certain reality to
quantum features [see Section 5.6].

6.10 Summary

In this chapter we have

• Studied the position and momentum observables.
• Learned the mathematical operations of integration and differ-

entiation.
• Dealt with the continuum formulation of quantum mechanics.
• Shown that momentum is the generator of space translations.
• Learned the wave function in position and momentum spaces.
• Derived the position and momentum eigenfunctions.
• Introduced the position and momentum representations.
• Established the Fourier transform as the transformation from

the position representation to the momentum representation
(and vice versa with the inverse transformation).

• Derived the commutation and uncertainty relations for position
and momentum.

• Discussed some conceptual consequences of the uncertainty
relations.
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Chapter 7

Energy and Quantum Dynamics

In this chapter we shall deal with quantum dynamics and in
particular with the basic equation that governs quantum dynamics,
the Schrödinger equation. We shall consider two of the most
important model systems in quantum mechanics: the free particle
and the harmonic oscillator. Moreover, we shall deal with the density
matrix formalism and composite systems. Another crucial concept
that will be introduced here is that of entanglement, a particular
manifestation of quantum features.

7.1 Hamiltonian and Classical Dynamics

Dynamics is the study of how a system changes in time. Where
dynamics is involved, also force and energy are involved. A kind
of forces or fields called the conservative force is of particular
importance in classical mechanics. When a system is subject to a
conservative force and moving from one position to another, the
worka done on the system by the conservative force is independent

aThe work W done by a force F along a path C is the integral of its scalar tangential
component over the distance through which it acts, i.e.,

W =
∫

C
F · dr,

where r is the position vector that specifies the path.
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of the path taken by the system. As a consequence, if a system
travels in a closed loop and returns to the starting position, the net
work done by a conservative force is always zero. Therefore, we
can identify the negative of the work done by a conservative force
on a system from position a to position b as the difference in the
potential energy of the system at positions a and b. The gravitational
force, spring force, and electrostatic force (in a time-independent
magnetic field) are the most familiar examples of conservative
forces, while friction and air drag are classical examples of non-
conservative forces. In classical mechanics the total mechanical
energy E of a system is the sum of the kinetic energy T , which the
system possesses due to its motion and is therefore related to its
momentum, and the potential energy V , which is determined by the
force applied to it. For a conservative force, the potential energy of
a system depends only on its position and the force is given by the
negative gradient of the potential energy, namely, we have

F(r) = −∇V (r), (7.1)

where F(r) is the conservative force and V (r) is the corresponding
potential energy. Hence, the total mechanical energy of a system can
be written as

E = T (p) + V (r) = p2

2m
+ V (r), (7.2)

where m is the mass of the system and the form of the potential term
V (r) depends on the specific conservative forces involved. Moreover,
the law of conservation of mechanical energy states that if a system
is subjected only to conservative forces, the total mechanical energy
of the system remains constant in time.

It is very important that we understand what energy means
from a fundamental point of view. To this end, we introduce
the so-called Hamiltonian formulation of classical mechanics, in
which momentum and position are treated dynamically on an equal
footing. In the Hamiltonian formulation, Newton’s second law (1.2)
is reformulated as the Hamilton equations:

dr j

dt
= ∂ H (r, p)

∂pj
,

dpj

dt
= −∂ H (r, p)

∂r j
, (7.3)

where t is the time variable and j = x , y, z with rx corresponding to
x , ry to y, and rz to z. The quantity H (r, p) is called the Hamiltonian
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function (or Hamiltonian for short), whose value is the total energy
E of the system being described, given by Eq. (7.2). Given the
initial state of a classical system (r(t0), p(t0)) at time t0, the state
of the system (r(t), p(t)) at later time t is uniquely determined
through the Hamilton equations (7.3). As a result, the state of a
classical system at any given time is represented by a point in the
phase space, and its time evolution is represented by a trajectory
[see Fig. 6.6(a) for a one-dimensional case]. The equivalence of the
Hamilton equations and Newton’s second law can be established
rigorously. Here we shall illustrate the equivalence by considering
a simple example that a one-dimensional object of mass m moves in
a constant gravitational field. The Hamiltonian of the object is given
by [see Eq. (7.2)]

H (z, pz) = p2
z

2m
+ mgz, (7.4)

where pz is the momentum of the object, g is the acceleration of
gravity, and we have chosen the gravitational field pointing in the
negative z direction. The Hamilton equations can be found by direct
differentiation, yielding

dz
dt

= pz

m
,

dpz

dt
= −mg. (7.5)

Taking the time derivative of the first equation in the above
expression and using the second to eliminate dpz/dt, we find

d2z
dt2 = −g, (7.6)

which is precisely what would be obtained by using Newton’s second
law. Indeed, the Hamiltonian formulation provides not only a new
and equivalent way of looking at Newtonian mechanics, but also
a deeper insight that the dynamics of a system is governed by its
Hamiltonian (or total energy).

Problem 7.1 Find the Hamiltonian and the Hamilton equations for
a one-dimensional object of mass m attached to the end of a spring
with spring constant k.
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7.2 Schrödinger Equation

In quantum mechanics the total energy of a system is certainly a
physical observable, as is evident from the fact that the energy levels
of the hydrogen atom are responsible for the observed emission
spectrum of atomic hydrogen [see Section 4.2]. Thus, here comes
the question of how to construct the energy observable in quantum
mechanics. This is the fundamental content of the correspondence
principle,a which was stated by Niels Bohr in 1920, though he had
previously made use of it as early as 1913 in developing his model of
the atom.

Principle 7.1 (Correspondence Principle) For the limiting cases
of large energies and of orbits of large dimensions, quantum
mechanics passes over into classical mechanics.

The energy observable in quantum mechanics is referred to as
the Hamiltonian operator (or Hamiltonian for short). According to
the correspondence principle, we need only to replace position and
momentum in classical mechanics by the position operator r̂ and
the momentum operator p̂, respectively. As a result, the Hamiltonian
operator takes the form [see Eq. (7.2)]

Ĥ = p̂2

2m
+ V (r̂), (7.7)

where p̂2 = p̂2
x + p̂2

y + p̂2
z is the magnitude squared of the momentum

operator [see Eq. (3.19)]. Since both the momentum and position
operators are Hermitian operators, the Hamiltonian is a Hermitian
operator as well. In general, the sum of Hermitian operators is itself a
Hermitian operator, this however does not necessarily holds true for
the product of Hermitian operators. In the three-dimensional case
the Hamiltonian in the position representation can be written as [see
Eqs. (6.59) and (6.138)]

Ĥ = − !2

2m
∇2 + V (r̂), (7.8)

a(Bohr, 1920).
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where ∇2 is the Laplacian in the Cartesian coordinates [see
Eq. (6.102)]. Moreover, in the one-dimensional case the Hamiltonian
reduces to

Ĥ = p̂2
x

2m
+ V (x̂), (7.9)

which in the position representation takes the form [see Eqs. (6.52)
and (6.117)]

Ĥ = − !2

2m
∂2

∂x2 + V (x). (7.10)

We expect that, by analogy with the position and momentum
operators, for the Hamiltonian Ĥ there will be real eigenvalues
E and corresponding eigenstates |E ⟩, such that the following
eigenvalue equation holds:

Ĥ |E ⟩ = E |E ⟩. (7.11)

It is noted that the energy eigenvalues E represent the possible
values of the total energy of a quantum system and, like the position
and momentum eigenstates (as shown in the previous chapter), the
energy eigenstates constitute a complete orthonormal basis. The use
of the energy eigenstates as basis states to represent operators and
states is referred to as the energy representation.

Since the state of a quantum system is described by a state vector,
quantum dynamics is the study of how state vectors change in time.
To highlight this time dependence of state vectors, we will write a
generic state vector of a quantum system as |ψ(t)⟩ with t being the
time variable. In quantum mechanics, the time derivative of the state
vector |ψ(t)⟩ is governed by the Hamiltonian of the system through
the equation

i!
d
dt

|ψ(t)⟩ = Ĥ |ψ(t)⟩, (7.12)

where the time derivative d/dt is understood as the total time
derivative [see Section 6.5]. The above equation is known as the
Schrödinger equation and has a specificity distinct from all the
other equations written down so far precisely because it describes
the time evolution of a quantum system.a In other words, given

a(Schrödinger, 1926a)–(Schrödinger, 1926d).
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the quantum state at some initial time (say t0 = 0), we can
solve the Schrödinger equation to obtain the quantum state at
any subsequent time. Using the one-dimensional form for the
Hamiltonian in the position representation (7.10), we can write the
Schrödinger equation (7.12) in terms of the (now time-dependent)
wave function ψ(x , t) = ⟨x|ψ(t)⟩ as [see Section 6.3]

i!
∂

∂t
ψ(x , t) = − !2

2m
∂2

∂x2 ψ(x , t) + V (x)ψ(x , t). (7.13)

It is noted that in the above equation the total time derivative
has reduced to the partial time derivative because the position
eigenstates |x⟩, and consequently the position variable x , are
taken to be time independent. Similarly, the three-dimensional
counterpart can be easily written down as

i! ∂

∂t
ψ(r, t) = − !2

2m
∇2ψ(r, t) + V (r)ψ(r, t), (7.14)

where ψ(r, t) = ⟨r|ψ(t)⟩ is the three-dimensional time-dependent
wave function. Using the above equation, Schrödinger calculated
in late 1925 the energy levels of the hydrogen atom by treating
the electron as a de Broglie matter wave [see Section 2.1] moving
in a Coulomb potential created by the positively charged nucleus.
The result of Schrödinger’s calculation agreed accurately with the
observed emission spectrum of atomic hydrogen [see Section 8.5]
and subsequently created a revolution in quantum theory.

Problem 7.2 Write down the Schrödinger equation for a one-
dimensional particle of mass m in a constant gravitational field.

7.3 Time Evolution as a Unitary Transformation

We have seen that momentum is the generator of space translations
and therefore it is expressed as the partial derivative with respect
to space [see Section 6.6]. Similarly, since the Hamiltonian governs
the dynamics of a quantum system, it is the generator of time
translations in the sense that it transforms the state vector at a
given time to an infinitesimally later time, thus generating the time
evolution of quantum states. To elaborate on this point, we first note
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that the solution to the time-dependent Schrödinger equation (7.12)
is formally given bya

|ψ(t)⟩ = e− i
! Ĥ (t−t0)|ψ(t0)⟩, (7.15)

where |ψ(t0)⟩ is the state vector at some initial time t0 and t is
any later time. The validity of the solution (7.15) can be verified
straightforwardly by its direct substitution into Eq. (7.12) and by
using the derivative of the exponential function (6.70) and the chain
rule (6.75). It proves convenient to rewrite the above equation as

|ψ(t)⟩ = Û t(t − t0)|ψ(t0)⟩, (7.16)

where Û t(t − t0) is the time evolution operator

Û t(t − t0) = e− i
! Ĥ (t−t0). (7.17)

Note that since Ĥ is a Hermitian operator, Û t(t − t0) is a unitary
operator [see Section 4.6]. In other words, making use of a change
of variables τ = t − t0, we have

Û †
t (τ )Û t(τ ) = Û t(τ )Û †

t (τ ) = Î , (7.18)

where Û †
t (τ ) is the conjugate transpose of Û t(τ ), namely,

Û †
t (τ ) =

(
e− i

! Ĥ τ
)†

= e+ i
! Ĥ τ . (7.19)

As a consequence, time evolution in quantum mechanics is a unitary
transformation and hence preserving the scalar products of state
vectors. In particular, we have

⟨ψ(t)|ψ(t)⟩ = ⟨ψ(t0)|Û †
t (τ )Û t(τ )|ψ(t0)⟩ = ⟨ψ(t0)|ψ(t0)⟩ = 1,

(7.20)
where the unitarity property (7.18) has been used. Moreover,
multiplying both sides of Eq. (7.16) by

Û †
t (τ ) = Û t(−τ ), (7.21)

and using the unitarity property of Û t(τ ), we obtain

|ψ(t0)⟩ = Û t(−τ )|ψ(t)⟩, (7.22)

aFor the sake of simplicity, we consider only the case in which the Hamiltonian does
not explicit depend on time. The case of an explicitly time-dependent Hamiltonian
can be treated accordingly by employing more involved mathematics and therefore
is beyond the scope of this book.
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namely, time evolution in quantum mechanics is reversible. This is
precisely what we expect from the unitarity of the transformation
[see Section 4.6]. In other words, while Û t(τ ) is the “forward”
time evolution operator that brings the system from an initial state
|ψ(t0)⟩ to a final state |ψ(t)⟩ (with t > t0), Û †

t (τ ) is the “backward”
time evolution operator that brings the system from a final state
|ψ(t)⟩ to an initial state |ψ(t0)⟩.

Now, in order to deal with the general problem of the time
evolution of an arbitrary state vector, let us first consider the
simplest situation, namely, when the initial state |ψ(0)⟩ = |E ⟩
(where for the sake of simplicity we have set t0 = 0) is an eigenstate
of the Hamiltonian Ĥ with the corresponding eigenvalue given by E
[see Eq. (7.11)]. In this case, we can rewrite Eq. (7.15) as

|ψ(t)⟩ = e− i
! E t|ψ(0)⟩, (7.23)

where use has been made of the fact that the energy eigenstate |E ⟩
is also an eigenstate of the time evolution operator Û t(t) with e− i

! E t

being the eigenvalue. Note that the factor e− i
! E t on the right-hand

side of the above equation is a global phase factor (i.e., an overall
complex factor with unit modulus) and is therefore physically
irrelevant [see Section 5.2]. This shows that energy eigenstates do
not evolve with time, which allows us to write them without showing
time dependence. For this reason, energy eigenstates are usually
referred to as stationary states. Considering here the discrete case,
let us make use of some labeling index n to denote the nth energy
eigenstate by |ψn⟩ and the corresponding eigenvalue by En. Then,
we can reformulate the eigenvalue equation as [see Eq. (7.11)]

Ĥ |ψn⟩ = En|ψn⟩. (7.24)

This way of expressing the energy eigenvalues and energy eigen-
states is not only conventional but universally used. We recall that
since the energy eigenstates constitute a complete orthonormal
basis, an arbitrary initial state vector |ψ(0)⟩ can be expanded as a
superposition of the energy eigenstates |ψn⟩ as

|ψ(0)⟩ =
∑

n

cn(0)|ψn⟩, (7.25)

where cn(0) = ⟨ψn|ψ(0)⟩ are the coefficients of the expansion at
the initial time. The state vector |ψ(t)⟩ at a later time t > 0 can be
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found by utilizing the time evolution operator Û t(t) (since, having
set t0 = 0, we have τ = t). From Eq. (7.16) we obtain

|ψ(t)⟩ = Û t(t)|ψ(0)⟩

=
∑

n

cn(0)Û t(t)|ψn⟩

=
∑

n

cn(0)e− i
! Ent|ψn⟩, (7.26)

where used has been made of the fact that |ψn⟩ are stationary states
with energy En. It is noted that the factor e− i

! Ent in each term of
the summation is a relative phase factor and is therefore physically
relevant. Since |ψ(t)⟩ can also be expanded as a superposition of
the energy eigenstates |ψn⟩, the above expression implies that the
resultant expansion coefficients cn(t) = ⟨ψn|ψ(t)⟩ are given by

cn(t) = e− i
! Entcn(0). (7.27)

Similar expressions can be found for the continuous case, where we
need to use integration instead of summation.

In this way, if the energy eigenvalues and energy eigenstates of
a quantum system are known, then given the initial state of the
system and its probability amplitudes in the energy eigenstates, we
are able to follow the time evolution of the system and to obtain
the corresponding probability amplitudes at arbitrary later times.
In other words, the problem of studying the dynamics of a quantum
system is reduced to that of finding the energy eigenvalues and
energy eigenstates of the system. The latter are determined by the
eigenvalue equation (7.11), which in the position representation is
given by

− !2

2m
∂2

∂x2 ψE (x) + V (x)ψE (x) = EψE (x), (7.28)

where E is the energy eigenvalue and ψE (x) = ⟨x|E ⟩ is
the corresponding energy eigenfunction. Due to the mentioned
stationarity of energy eigenstates (or eigenfunctions), the above
equation is called the time-independent Schrödinger equation while
its time-dependent counterpart Eq. (7.13) is referred to as the time-
dependent Schrödinger equation. In three dimensions, the time-
independent Schrödinger equation takes the form

− !2

2m
∇2ψE (r) + V (r)ψE (r) = EψE (r), (7.29)
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where E is the energy eigenvalue and ψE (r) = ⟨r|E ⟩ is the corre-
sponding energy eigenfunction. Moreover, given the knowledge of
the initial state, since the same state can be expanded in different
bases corresponding to the different observables being measured
[see Section 4.5], thanks to Eq. (7.26) and the existence of quantum
features [see Section 4.8], we are able to compute the probability
amplitudes and therefore also the probabilities at any later time for
the measurement outcomes associated with any observable. This
clearly shows that quantum mechanics is full deterministic when
considering the laws that govern the dynamics, precisely as it is
the case for classical mechanics. The difference, however, is that in
quantum mechanics measurement outcomes as detection events are
random and therefore are not ruled by those laws [see Sections 5.4–
5.5 and 6.9]. What quantum laws govern are only the probabilities
for certain outcomes and not the outcomes themselves. It is a sort of
determinism of probabilities.a

Problem 7.3 Check the validity of the solution given by Eq. (7.15).

Problem 7.4 In terms of the orthonormal basis {|1⟩, |2⟩}, the
Hamiltonian Ĥ of a two-state system has eigenstates

|E1⟩ = 1√
2

(|1⟩ + |2⟩), |E2⟩ = 1√
2

(|1⟩ − |2⟩).

The corresponding energy eigenvalues are E1 and E2, respectively,
where E1 ̸= E2 are constants of energy dimension. Given that the
initial state at time t = 0 is |ψ(0)⟩ = |1⟩, compute the probability of
finding the system in the state |1⟩ as a function of t.

7.4 Active and Passive Transformations

In quantum mechanics we can consider the dynamics of a quantum
system from two alternative (but equivalent) points of view:
either by keeping the observables constant and considering the
time evolution of the state, or by keeping the state constant and

aWe suggest the reader to work out the problems at the end of this section and to take
a stop here for a while, reading again the previous pages. It is also suggested that the
reader takes again a pause after reading the next two sections and before going to
concrete examples of dynamics.
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considering the time evolution of the observables. In the first case it
is the state vector that undergoes the transformation (this is called
an active transformation); in the second we have the eigenstates of
the observable under consideration undergoing the inverse trans-
formation (this is called a passive transformation), in such a way that
the two transformations are equivalent. The active transformation
is also called the Schrödinger picture and was actually considered
in the previous two sections. The passive transformation is called
the Heisenberg picture, and it has been considered previously [see
Sections 4.5 and 4.6] although without a specific treatment.

To illustrate the active and passive transformations with a simple
example, let us introduce a two-state system and a generic observ-
able X̂ (which could be thought of as a kind of two-dimensional
position observable like the one considered in Section 6.1). The
eigenstates of the observable X̂ are given by |x1⟩ and |x2⟩ (with x1

and x2 denoting the corresponding eigenvalues). The observable X̂
that is under consideration is given by

X̂ = x1|x1⟩⟨x1| + x2|x2⟩⟨x2|. (7.30)

A certain initial state vector |ψ⟩ that makes an angle 75◦ with respect
to the basis state |x1⟩ can be written as

|ψ⟩ =
√

3 − 1
2
√

2
|x1⟩ +

√
3 + 1

2
√

2
|x2⟩. (7.31)

Indeed, the two coefficients above correspond to the cosine of 75◦

(≈ 0.2588) and the sine of 75◦ (≈ 0.9659), respectively, as shown
in Fig. 7.1(a). Let us write the basis states |x1⟩ and |x2⟩ as

|x1⟩ =
(

0
1

)
and |x2⟩ =

(
1
0

)
. (7.32)

We may now consider the following transformation in the active
sense

Û = 1√
2

[
1 1
1 −1

]
, (7.33)
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(b)(a)

Figure 7.1 Active and passive transformations. A transformation may be
considered from two equivalent viewpoints: (a) From the active point of
view, the state vector |ψ⟩ is transformed (here represented by a clockwise
rotation by an angle θ) into the state vector |ψ ′⟩ while the basis vectors |x1⟩
and |x2⟩ are kept fixed. (b) From the passive point of view, the basis vectors
|x1⟩ and |x2⟩ are transformed in a reverse manner (here represented by a
counterclockwise rotation by the same angle θ) to the basis vectors |x ′

1⟩
and |x ′

2⟩, respectively. Note that the state |ψ⟩ in the new basis {|x ′
1⟩, |x ′

2⟩}
is equivalent to the transformed state |ψ ′⟩ in the old basis {|x1⟩, |x2⟩}.

which induces a clockwise rotation of 45◦ on the state vector |ψ⟩
(and is structurally similar to beam splitting [see Eq. (4.35)]). Then,
the state vector |ψ⟩ is transformed into

|ψ ′⟩ = Û |ψ⟩

= 1√
2

1
2
√

2

[
1 1
1 −1

] (√
3 − 1√
3 + 1

)

= 1
2

(√
3

1

)
. (7.34)

In other words, we have

|ψ ′⟩ = Û |ψ⟩ =
√

3
2

|x1⟩ + 1
2

|x2⟩. (7.35)

Indeed, the coefficients
√

3
2 and 1

2 in the above expansion are the
cosine and sine of 30◦, respectively. This is precisely the transformed
state where the initial state vector |ψ⟩ ends after a clockwise
rotation of 45◦, as shown again in Fig. 7.1(a). Moreover, it is easy
to see that the sum of the respective probabilities is equal to 1, as
expected for a unitary transformation. We then consider the inverse



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

Active and Passive Transformations 169

of Û , i.e., a counterclockwise rotation of 45◦:

Û −1 = 1√
2

[
1 1
1 −1

]
. (7.36)

Note that in this particular case Û is indeed the inverse of itself.
This transformation brings the original basis {|x1⟩, |x2⟩} into the new
basis {|x ′

1⟩, |x ′
2⟩} [see Fig. 7.1(b)]:

Û −1|x1⟩ = 1√
2

[
1 1
1 −1

] (
1
0

)
= 1√

2

(
1
1

)
= |x ′

1⟩, (7.37a)

Û −1|x2⟩ = 1√
2

[
1 1
1 −1

] (
0
1

)
= 1√

2

(
1

−1

)
= |x ′

2⟩. (7.37b)

We recall that a transformation of a basis means a passive
transformation of the observable of which the basis is an eigenbasis.
Since the eigenvalues of the observable are not affected by the
transformation, the transformed observable is given by

X̂ ′ = x1|x ′
1⟩⟨x ′

1| + x2|x ′
2⟩⟨x ′

2|. (7.38)

From Eqs. (7.37), the above expression can be cast into the following
compact form

X̂ ′ = x1Û −1|x1⟩⟨x1|Û + x2Û −1|x2⟩⟨x2|Û
= Û −1 (x1|x1⟩⟨x1| + x2|x2⟩⟨x2|) Û

= Û −1 X̂ Û , (7.39)

or equivalently,

X̂ ′ = Û † X̂ Û , (7.40)

where use has been made of the unitarity of Û . An important
consequence of the expression (7.40) is that commutation relations
are invariant under a unitary transformation. In specific, we have
[see Problem 7.5]

[X̂ , Ŷ ] = Ẑ Û−−→ [X̂ ′, Ŷ ′] = Ẑ ′, (7.41)

where X̂ ′, Ŷ ′, and Ẑ ′ are respectively the transformed observables of
X̂ , Ŷ , and Ẑ under the unitary transformation Û .

Now we claim that the passive inverse transformation of the
basis (7.37) is equivalent to the active transformation of the state
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vector (7.35). While the above example is very elementary, our
conclusion is very general and remains valid for arbitrary unitary
transformations. First, let us consider the clockwise rotation on
the new basis {|x ′

1⟩, |x ′
2⟩} that brings it back to the original basis

{|x1⟩, |x2⟩}. Indeed, we have

Û |x ′
1⟩ = Û Û −1|x1⟩ = |x1⟩, (7.42)

Û |x ′
2⟩ = Û Û −1|x2⟩ = |x2⟩. (7.43)

Makinge use of these transformations, we can rewrite the expansion
(7.35) as

|ψ ′⟩ =
√

3
2

|x1⟩ + 1
2

|x2⟩

=
√

3
2

Û |x ′
1⟩ + 1

2
Û |x ′

2⟩

= Û

(√
3

2
|x ′

1⟩ + 1
2

|x ′
2⟩

)

= Û |ψ⟩, (7.44)

which implies

|ψ⟩ =
√

3
2

|x ′
1⟩ + 1

2
|x ′

2⟩, (7.45)

since the transformation Û −1 brings the state vector |ψ ′⟩ back to
|ψ⟩. In this way, a comparison between the previous equation and
Eq. (7.35) provides the first observation that the state vector |ψ⟩ in
the new basis {|x ′

1⟩, |x ′
2⟩} is equivalent to transformed state vector

|ψ ′⟩ in the old basis {|x1⟩, |x2⟩}. The second observation is that the
expectation value of the observable X̂ in the (actively) transformed
state vector |ψ ′⟩ is the same as that of the transformed observable
X̂ ′ in the state vector |ψ⟩, namely, we have [see Eq. (6.152)]

⟨ψ ′|X̂ |ψ ′⟩ = ⟨ψ |X̂ ′|ψ⟩. (7.46)

The proof of the above equality is straightforward and is left
as an exercise for the reader [see Problem 7.6]. We note that
the left-hand and right-hand sides of the above equation are the
same expectation value (of the observable that is being measured)
calculated respectively from the active and passive viewpoints of
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the same transformation. Therefore, the equality (7.46) provides
direct evidence for the equivalence between the active and passive
transformations.

Problem 7.5 Prove the relation given by Eq. (7.41), namely,
commutation relations are invariant under a unitary transformation.

Problem 7.6 Prove the equality ⟨ψ ′|X̂ |ψ ′⟩ = ⟨ψ |X̂ ′|ψ⟩ given by
Eq. (7.46).

7.5 Schrödinger and Heisenberg Pictures

Having discussed a concrete example, we can now deal with the
issue of active (Schrödinger) and passive (Heisenberg) transforma-
tions at a general level in the context of quantum dynamics. In what
follows when we indicate an observable Ô and its eigenstates |o j ⟩
without time dependence, they are considered in the Schrödinger
picture and therefore correspond to the untransformed ones in
the Heisenberg picture. Reciprocally, when the state vector |ψ(t)⟩
carries time dependency, it is always considered in the Schrödinger
picture.

We can write down the expectation value of, for instance, the
position observable x̂ (that could be continuous or discrete) in the
state |ψ(t)⟩ at time t in the Schrödinger picture as ⟨ψ(t)|x̂|ψ(t)⟩ [see
Eq. (6.152)]. By making use of Eq. (7.16) with t0 = 0, we have

⟨ψ(t)|x̂|ψ(t)⟩ = ⟨ψ(0)|Û †
t (t) x̂ Û t(t)|ψ(0)⟩, (7.47)

which allows us to displace the action of the time evolution operator
from the state vector to the observable, and therefore to go over to
the Heisenberg picture. Define the position observable x̂(t) and the
state vector |ψ⟩ in the Heisenberg picture by [see Eq. (7.40)]

x̂(t) = Û †
t (t) x̂ Û t(t), (7.48a)

|ψ⟩ = |ψ(0)⟩ = Û †
t (t)|ψ(t)⟩, (7.48b)

respectively. The expectation value of the position observable x̂(t) in
the state |ψ⟩ at time t in the Heisenberg picture can be expressed in
terms of the observable and state vector in the Schrödinger picture
as

⟨ψ |x̂(t)|ψ⟩ = ⟨ψ(0)|Û †
t (t) x̂ Û t(t)|ψ(0)⟩. (7.49)
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Comparing Eqs. (7.47) and (7.49), we arrive at the important
relation

⟨ψ(t)|x̂|ψ(t)⟩ = ⟨ψ |x̂(t)|ψ⟩, (7.50)

which establishes the equivalence between the Schrödinger and
Heisenberg pictures and can be therefore considered the gener-
alization of Eq. (7.46) that we are looking for. In other words,
in accordance with what is discussed in the previous section,
the time evolution of an observable in the Heisenberg picture
is precisely expressed as the time evolution of the basis vectors
that constitute the eigenbasis of the observable. Moreover, this
generalization allows us to write the equivalent of the Schrödinger
equation in the Heisenberg picture by taking the time derivative
of x̂(t) and by making use of the following expression that can be
considered a reformulation of the Schrödinger equation (7.12) [see
also Eq. (7.17)]

dÛ t(t)
dt

= d
dt

e− i
! Ĥ t = − i

!
Ĥ Û t(t) = − i

!
Û t(t)Ĥ . (7.51)

Here, we have made use of the rules (6.70) and (6.75) in the
derivative of the exponential function, and the last equality in the
above equation is due to the fact that Ĥ and Û t(t) commute. From
Eqs. (7.48a) and (7.51), the time derivative of x̂(t) is found to be
given by

dx̂(t)
dt

= d
dt

[
Û †

t (t) x̂ Û t(t)
]

= dÛ †
t (t)

dt
x̂ Û t(t) + Û †

t (t) x̂
dÛ t(t)

dt

= i
!

Ĥ Û †
t (t) x̂ Û t(t) − i

!
Û †

t (t) x̂ Û t(t)Ĥ

= i
!

[
Ĥ x̂(t) − x̂(t)Ĥ

]
, (7.52)

where x̂ is treated as a constant (since it has no dependence in time)
and in the second line use has been made of the product rule (6.73).
By multiplying the above equation by i! and by expressing the last
line in terms of the commutator, we finally have

i!dx̂(t)
dt

=
[

x̂(t), Ĥ
]

, (7.53)
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where use has been made of the antisymmetric property of the
commutator [see Eq. (6.151a)]. The above equation is called the
Heisenberg equation for the position observable. These considera-
tions are obviously true for a generic quantum observable in the
Heisenberg picture, provided that the counterpart of the latter in
the Schrödinger picture does not depend explicitly on time. Let Ô
be a generic Schrödinger-picture quantum operator which does not
have explicit time dependence. The corresponding operator in the
Heisenberg picture Ô(t) is defined by

Ô(t) = Û †
t (t) Ô Û t(t), (7.54)

whose time evolution is governed by the Heisenberg equation

i! d
dt

Ô(t) =
[

Ô(t), Ĥ
]

. (7.55)

In classical mechanics there is no equivalent of the Heisenberg
picture. As a matter of fact, since states are treated as collections
of properties and therefore are considered observables from any
point of view [see Section 6.9], this necessity does not arise at all,
with the consequence that the time evolution of observables (or
variables) was traditionally not considered as such. It is the richness
and powerfulness of quantum mechanics to have thrown more light
on this issue from both a formal and a conceptual points of view. We
could say that it is a less “flat” theory than classical mechanics.

Before ending this section, we also mention that a third picture
is possible, which is called the Dirac picture (or interaction picture)
and is based on the split of the Hamiltonian into a part that depends
on the interaction with other systems and a part that does not. Such
a picture is especially useful when (time-dependent) perturbations
are involved, a subject that goes far beyond the scope of this book.a

Problem 7.7 Show that the Hamiltonian in the Heisenberg picture
is the same as that in the Schrödinger picture.

Problem 7.8 Let Ô = [Ô1, Ô2], where Ô, Ô1, and Ô2 are operators
in the Schrödinger picture (a commutator of operators can be itself
an operator). Show that in the Heisenberg picture we have Ô(t) =
[Ô1(t), Ô2(t)], where Ô(t), Ô1(t), and Ô2(t) are the corresponding
Heisenberg-picture operators.

aThe interested reader may have a look at (Auletta et al., 2009, Chapter 10).
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7.6 Free Particle

In this and the following section, we shall consider two specific
examples of one-dimensional quantum systems: the free particle
and the harmonic oscillator. Let us first determine the possible range
of the energy eigenvalue E for a generic one-dimensional quantum
system as described by the time-independent Schrödinger equation
(7.28),a which we rewrite as the eigenvalue equation

Ĥ |ψ⟩ = E |ψ⟩. (7.56)

Here the subscript E in the energy eigenstate |ψE ⟩ has been
suppressed for the sake of notational simplicity (provided that no
confusion may arise). By left multiplying this equation by ⟨ψ | and
using Eq. (7.9), we obtain

E = ⟨ψ |Ĥ |ψ⟩ = 1
2m

⟨ψ | p̂2
x |ψ⟩ + ⟨ψ |V (x̂)|ψ⟩, (7.57)

where use has been made of the fact that the energy eigenstate |ψ⟩ is
normalized, i.e., ⟨ψ |ψ⟩ = 1. The expectation value ⟨ψ | p̂2

x |ψ⟩ is non-
negative because it can be written as the norm squared of the ket
| p̂xψ⟩ = p̂x |ψ⟩, namely,

⟨ψ | p̂2
x |ψ⟩ = ⟨ p̂xψ | p̂xψ⟩ ≥ 0. (7.58)

While the expectation ⟨ψ |V (x̂)|ψ⟩ does not have a definite sign, it
does satisfy the inequality

⟨ψ |V (x̂)|ψ⟩ ≥ Vmin, (7.59)

provided that the potential energy V (x) has a minimum Vmin, i.e.,
V (x) ≥ Vmin for all values of x . This inequality can be easily derived
as follows. In the position representation we have

⟨ψ |V (x̂)|ψ⟩ =
∫ +∞

−∞
dx|ψ(x)|2V (x) ≥ Vmin

∫ +∞

−∞
dx|ψ(x)|2 = Vmin,

(7.60)
where in the first equality use has been made of the completeness
condition (6.39)—an operation that is always allowed regardless of
the specific meaning of |ψ⟩—while in the last equality use has been

aFor the sake of simplicity and of later application, we consider here the one-
dimensional case. Nevertheless, the analysis can be generalized straightforwardly
to three dimensions.
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made of the fact that the energy eigenfunction ψ(x) = ⟨x|ψ⟩ is
normalized, i.e.,

∫ +∞
−∞ dx|ψ(x)|2 = 1. Collecting the results given by

Eqs. (7.57)–(7.60), we arrive at the following important property of
the energy eigenvalue for a one-dimensional system

E ≥ Vmin. (7.61)

Indeed, this property is not totally unexpected. Since the kinetic
energy of a system is always greater than or equal to zero, its total
energy (i.e., the sum of the kinetic energy and the potential energy
[see Section 7.1]) should be greater than or equal the lowest possible
potential energy.

A free particle is a particle that is not subject to external forces,
or equivalently, a particle moving in a region where its potential
energy is constant in space. Since the potential energy is defined
up to an additive constant, it is convenient to choose the constant
such that the potential energy vanishes. Therefore, we have V = 0
for a free particle. Then the time-independent Schrödinger equation
(7.28) reduces to

− !2

2m
∂2

∂x2 ψ(x) = Eψ(x), (7.62)

where E is the energy eigenvalue and ψ(x) is the corresponding
energy eigenstate. For the sake of notational simplicity, we have
again suppressed the subscript E in the energy eigenfunction. Since
we have V = 0, we also have Vmin = 0 and E ≥ 0. It proves
convenient to define a parameter called the wave number

k =
√

2mE
!

, (7.63)

which is real, non-negative, and of inverse length dimension. In fact,
we have k = 2π/λ, where λ is the wavelength associated with
the free-particle wave function ψ(x). Note that for a free particle,
the relation between the energy and momentum can be written
as E = p2

x /2m [see also Eqs. (7.8) and (7.9)]. This allows us
to rewrite Eq. (7.63) as k = px/!, from which the fundamental
relation px = h/λ follows for the one-dimensional case (it can be
easily generalized to the three-dimensional case as p = h/λ, where
p is the magnitude of the momentum vector p). This relation is
known as the de Broglie equation, which relates the momentum of
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a free particle (a particle-like property) to its wavelength (a wave-
like property). In terms of k the eigenvalue equation (7.62) can be
rewritten as

ψ ′′(x) + k2ψ(x) = 0, (7.64)

which is a homogeneous linear second-order ordinary differential
equation with constant coefficients [see also Eq. (6.128) although
being a first-order one]. The energy eigenfunctions, i.e., the solutions
to the above differential equation, are given by [see Box 7.1 and, in
particular, Eq. (7.71), and also Eq. (6.130)]

ψ(x) = 1√
2π!

e±ikx (k ≥ 0), (7.65)

Box 7.1 Linear differential equations with constant
coefficients II

A second order homogeneous linear differential equation with
constant coefficients can be written as

ay′′(x) + by′(x) + cy(x) = 0, (7.66)

where a, b, and c are real constants with a ̸= 0. From our
experience with the first order case, we expect at least some of
the solutions to be exponentials. So let us find all such solutions
by setting y(x) = e−rx , where r is a constant to be determined.
Substituting the expression into the differential equation (7.66),
we obtain after some algebra the characteristic equation of this
differential equation

ar2 + br + c = 0. (7.67)

This is a quadratic equation and has two solutions given by the
so-called quadratic formula

r = −b ±
√

b2 − 4ac
2a

. (7.68)

The quantity under the square root, b2 − 4ac, is called the
discriminant of the quadratic equation, whose sign determines
the nature of the roots. There are three cases to consider.
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(i) The discriminant is positive. In this case, the roots r1 and r2

are real and distinct. The corresponding solutions er1 x and
er2 x are linearly independent, therefore the general solution
is

y(x) = c1er1 x + c2er2 x , (7.69)

where c1 and c2 are constants.
(ii) The discriminant is zero. In this case, the roots are real and

identical (called a double root). If this double root is denoted
simply by r , then one of the solution is erx . It can be shown
that the other linearly independent solution is xerx . Hence,
the general solution is

y(x) = c1erx + c2xerx , (7.70)

where c1 and c2 are constants.
(iii) The discriminant is negative. In this case, the roots r1 =

α + iβ and r2 = α − iβ (with α and β being real) are distinct
complex conjugate numbers. The corresponding solutions
eαx eiβx and eαx e−iβx are linearly independent, therefore the
general solution is

y(x) = eαx (c+eiβx + c−e−iβx ), (7.71)

where c+ and c− are constants. The solution can be
equivalently expressed in terms of the sine and cosine
functions as [see Eqs. (2.16) and (2.18)]

y(x) = eαx (c1 cos βx + c2 sin βx), (7.72)

where c1 and c2 are constants.

where the constant 1/
√

2π! is there to ensure the usual normaliza-
tion condition. Recall that the set of all eigenvalues of an observable
is called its spectrum. Since for each k ≥ 0 there is a corresponding
E ≥ 0, the energy spectrum for a free particle is the continuous
interval E ≥ 0 [see also Section 6.2].

Moreover, from Eq. (6.123) it can be easily recognized that the
free-particle energy eigenfunctions corresponding to the energy
eigenvalue E > 0 are momentum eigenfunctions with eigenvalues
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px = !k and px = −!k. In other words, the energy eigenvalue
E > 0 is degenerate in the sense that there are two distinct
(i.e., orthogonal) eigenfunctions associated with each free particle
energy eigenvalues E > 0. Indeed, since a free particle only has
kinetic energy, it is clear that a moving free particle (hence with
E > 0) can move in either one of the two opposite directions
parallel to its (straight) trajectory. Let the energy eigenstate of the
free particle with energy E and momentum !k be denoted by |E , k⟩
and that with energy E and momentum −!k by |E , −k⟩. Then we
have

Ĥ |E , ±k⟩ = E |E , ±k⟩ and p̂x |E , ±k⟩ = ±!k|E , ±k⟩, (7.73)

where it is noted that the use of the plus–minus sign (±) is a
shorthand notation to present two equations in one expression,
in which the upper and lower signs are interrupted separately
and independently. Hence |E , ±k⟩ are common eigenstates of the
Hamiltonian Ĥ and the momentum observable p̂x . Indeed, it can
be shown that the necessary and sufficient condition that two
observables have common eigenstates is that they commute. In
such a case, these two observables are also jointly measurable
[see Section 6.8]. Therefore, the condition for a degenerate energy
spectrum is that there exists at least one nontrivial observable
that commutes with the Hamiltonian of the system. For the case
of the free particle, the observable is the momentum operator [see
Problem 7.9]. We note that this case is our first example of a
degenerate energy spectrum, another example will be discussed in
Chapter 8.

Problem 7.9 Verify that for a free particle the Hamiltonian and the
momentum operator commute.

7.7 Harmonic Oscillator

One of most important examples of quantum dynamics is provided
by the one-dimensional harmonic oscillator (about which we can
only provide here a very sketchy presentation). A classical oscillator
is a very simple system like a pendulum that swings back and
forth about the equilibrium point. The oscillation of a classical point
particle is represented in Fig. 7.2, which shows that the more it
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Energy

Figure 7.2 The potential energy V , kinetic energy T , and total energy E of
a classical harmonic oscillator are plotted as a function of position x . The
region |x| > x0, where the total energy is less than the potential energy and
in classical mechanics the oscillator cannot appear, is called the classically
forbidden region.

swings (farther distance from the equilibrium point located at the
origin), the more energy it has (higher level on the vertical energy
axis). Something similar applies to quantum oscillators (actually
electrons in an atom can be understood as sort of oscillators), with
the proviso that the energy levels are here quantized.

The potential energy of a classical harmonic oscillator features a
characteristic quadratic (or harmonic) form [again Fig. 7.2; see also
Fig. 6.3]

V (x) = 1
2

mω2x2, (7.74)

where m is the mass, ω = 2πν is the angular frequency of
the harmonic oscillator, and ν is the frequency, as usual. The
Hamiltonian of a quantum harmonic oscillator is given by [see
Eq. (7.9)]

Ĥ = p̂2
x

2m
+ 1

2
mω2 x̂2. (7.75)

With the above Hamiltonian, we obtain the time-independent
Schrödinger equation for the one-dimensional harmonic oscillator
[see Eq. (7.28)]

ψ ′′(x) + 2m
!2

(
E − 1

2
mω2x2

)
ψ(x) = 0, (7.76)

where for the sake of notational simplicity we have suppressed
the subscript E in the energy eigenfunction. However, following
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the convention already adopted in Eq. (7.24), we shall make
use of the (discrete) index n to label the energy levels and the
corresponding eigenfunctions and eigenvalues. Indeed, as already
mentioned, explicit calculation shows that only certain solutions
ψn(x) (i.e., the energy eigenfunctions) and the corresponding
discrete energy eigenvalues En are allowed, where n = 0, 1, 2, . . .
is called the quantum number of the harmonic oscillator.

It is very interesting and instructive to realize that the harmonic
oscillator problem can be solved by exploiting only the resource of
the canonical commutation relations.a To see how this is possible,
let us introduce the annihilation (lowering) and creation (raising)
operators

â =
√

m
2!ω

(
ωx̂ + i

p̂x

m

)
, (7.77a)

â† =
√

m
2!ω

(
ωx̂ − i

p̂x

m

)
, (7.77b)

respectively. The specific meaning of these two operators will be
clear below. By now, let us say that the action of the annihilation
operator represents the emission (loss) of a “photon” (or an energy
quantum) while the action of the creation operator represents the
absorption (gain) of a “photon” (or an energy quantum).b From
the canonical commutation relation (6.148), it can be shown [see
Problem 7.10] that the annihilation and creation operators satisfy
the following important commutation relation

[â, â†] = Î . (7.78)

We note that the annihilation and creation operators are not
Hermitian operators (one is the Hermitian conjugate of the other)
and therefore they are not observables (we had already anticipated

a(Auletta et al., 2009, Section 4.4).
bWe note that actually photons do not have a mass but do possess a momentum. The

momentum of a photon is along its propagation direction and the magnitude of the
momentum p is given by the de Broglie equation p = h/λ, where λ is the wavelength
of the photon [see p. 175]. As a result, strictly speaking the expression p̂x /m is not
well-defined for photons. However, we can think of m as a small fictitious photon
mass that is introduced by hand solely for the purpose of analysis. This is perfectly
fine provided that the fictitious photon mass does not appear in the final results of
relevant physical quantities (like energy and the number of energy quanta).
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this possibility in Section 4.4). Instead, an observable is the operator
N̂ = â†â, which is Hermitian and can be expressed in terms of x̂ and
p̂x as

â†â = m
2!ω

(
ωx̂ − i

p̂x

m

)(
ωx̂ + i

p̂x

m

)

= m
2!ω

(
ω2 x̂2 + iω

m
x̂ p̂x − iω

m
p̂x x̂ + p̂2

x

m2

)

= m
2!ω

(
ω2 x̂2 + iω

m
[x̂ , p̂x ] + p̂2

x

m2

)

= 1
!ω

(
1
2

mω2 x̂2 + p̂2
x

2m

)
− 1

2
, (7.79)

where we have made use of the canonical commutation relation
(6.148). For the reason that will be clear below, the operator N̂ is
called the number operator. The term in the parentheses in the last
line of Eq. (7.79) is just the Hamiltonian of the quantum harmonic
oscillator (7.75). Therefore, we can write

Ĥ =
(

N̂ + 1
2

)
!ω =

(
â†â + 1

2

)
!ω. (7.80)

The name number operator is due to the fact that it represents the
number of “photons” or energy quanta present in a certain system
(for instance, the harmonic oscillator). Since the number of energy
quanta is an observable, this explains why the number operator is so
important. Its eigenvalue equation is given by

N̂|n⟩ = n|n⟩ (n = 0, 1, 2, . . . ), (7.81)

where |n⟩ is the nth (normalized) energy eigenstate and the
corresponding eigenvalue n is precisely the number of energy
quanta present. For the sake of notational simplicity we have
adopted the further simplified (and widely used) notation |ψn⟩ = |n⟩
for indicating the energy eigenstates. Indeed, from Eq. (7.80) it is
evident that the number eigenstate |n⟩ is also the energy eigenstate
(as it should be), namely, we have

Ĥ |n⟩ = En|n⟩ and En =
(

n + 1
2

)
!ω (n = 0, 1, 2, . . . ).

(7.82)
The first few values of En are displayed in Fig. 7.3. On the other hand,
we expect that the number operator is related to the annihilation
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Figure 7.3 Schematic representation of the first few energy levels of a
quantum harmonic oscillator as labeled by the quantum number n, which
indicates the energy of the harmonic oscillator. For transition from one level
to the adjacent level, an energy quantum of energy !ω needs to be either
emitted or be absorbed.

and creation operators since the latter determine respectively how
many energy quanta are released or acquired by a certain system. It
is therefore suitable to explore a little more their properties. To this
purpose, let us consider the action of N̂ on the state vector |ân⟩ =
â|n⟩

N̂â|n⟩ =
(

N̂â − â N̂ + âN̂
)
|n⟩

=
(

[N̂ , â] + âN̂
)
|n⟩

= −â|n⟩ + nâ|n⟩
= (n − 1)â|n⟩, (7.83)

where in the first line we have simply added and subtracted the
same quantity and in the third line we have made use of both
Eq. (7.81) and the following commutation relation [see Eqs. (6.151a)
and (7.78)]:

[N̂ , â] = [â†â, â] = [â†, â]â = −â. (7.84)

From Eq. (7.83) it follows that â|n⟩ = |ân⟩ is an eigenstate of N̂ with
eigenvalue n − 1, that is, we have:

N̂|ân⟩ = (n − 1)|ân⟩, (7.85)

but from Eq. (7.81) it follows that

N̂|n − 1⟩ = (n − 1)|n − 1⟩. (7.86)
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Since the eigenstates â|n⟩ and |n − 1⟩ correspond to the same
eigenvalue, they have to be proportional to each other. Hence we
have

â|n⟩ = cn|n − 1⟩, (7.87)

where cn is a proportional constant that is formally given by cn =
⟨n − 1|ân⟩. To find cn, we left multiply both sides of Eq. (7.87) by
⟨ân|, which is tantamount to taking the norm squared of the state
vector â|n⟩, to obtain

|cn|2 = ⟨n − 1|ân⟩⟨ân|n − 1⟩ = ⟨n|â†â|n⟩ = ⟨n|N̂|n⟩ = n. (7.88)

Therefore, we find cn =
√

n up to a global phase factor, which can be
absorbed into |n − 1⟩. In other words, we have

â|n⟩ =
√

n|n − 1⟩, (7.89)

A similar analysis shows that the state vector â†|n⟩ is an eigenstate
of N̂ with eigenvalue (n + 1) and that the following relation holds
[see Problem 7.11]:

â†|n⟩ =
√

n + 1|n + 1⟩. (7.90)

Equations (7.89) and (7.90) represent final mathematical justifica-
tion of why â and â† are called annihilation (lowering) and creation
(raising) operators, respectively. We may then interpret the set of
the harmonic oscillator eigenstates as rungs of a ladder, which the
oscillator may “climb” a level through â† or “descend” a level through
â. The minimum allowed value for n is zero (no photons are present)
and therefore we must have

â|0⟩ = 0, (7.91)

where |0⟩ is the lowest energy eigenstate, called the ground state.
Higher energy eigenstates can be obtained from the ground state by
repeatedly applying the creation operator on the latter, according
to Eq. (7.90), so that the general formula can be written as [see
Problem 7.12]

|n⟩ = (â†)n
√

n!
|0⟩. (7.92)

In the position representation we may write the energy eigenfunc-
tions as ψn(x) = ⟨x|n⟩. From Eqs. (7.77a) and (7.91) we find that
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the energy eigenfunction for the ground state ψ0(x) = ⟨x|0⟩ is
determined by the equation [see Problem 7.13]

dψ0(x)
dx

+ mω

!
xψ0(x) = 0. (7.93)

While the above differential equation is not of the constant
coefficient types that we know how to solve, a quick change of
variables will do the trick. Let us define the dimensionless variable
(that is, a quantity without an associated physical dimension or
a “pure” number, which conventionally always has the dimension
of 1)

ξ = mω

!
x2. (7.94)

Using the chain rule (6.75), we have

x
dψ0(x)

dx
= 2ξ

dψ0(ξ)
dξ

, (7.95)

hence we can perform a change of variables and rewrite Eq. (7.93)
in terms of the new variable ξ as

ψ ′
0(ξ) + 1

2
ψ0(ξ) = 0, (7.96)

where ψ ′
0(ξ) = dψ0(ξ)/dξ . The solution to the above equation is

given by [see Box 6.8 and Eq. (6.130)]

ψ0(ξ) = N e− ξ
2 , (7.97)

or equivalently expressed in terms of the original variable x as

ψ0(x) = N e− mω
2! x2

, (7.98)

where N is a normalization constant which can be determined by
imposing the usual normalization condition [see Problem 7.14]

∫ +∞

−∞
dx|ψ0(x)|2 = 1. (7.99)

After normalization we finally obtain the ground state energy
eigenfunction for the harmonic oscillator

ψ0(x) =
(mω

π!

) 1
4

e− mω
2! x2

. (7.100)

The simplest way to determine all the excited state wave functions
ψn(x) for n > 0 is by repeated application of the creation operator
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Box 7.2 Excited state eigenfunctions of the harmonic
oscillator

By repeated application of the creation operator â† [Eqs. (7.90)
and (7.92)] to the ground state wave function (7.100) we can
obtain the harmonic oscillator’s excited state eigenfunctions. We
formulate here the first two excited state wave functions. We start
from ψ0(x) and obtain ψ1(x) as

ψ1(x) =
√

m
2!ω

(
ωx − !

m
∂

∂x

)
ψ0(x)

= 1√
2

(mω

π!

) 1
4

2
√

mω

!
x e− mω

2! x2
, (7.101)

from which ψ2(x) is obtained as

ψ2(x) =
√

m
4!ω

(
ωx − !

m
∂

∂x

)
ψ1(x)

= 1√
8

(mω

π!

) 1
4
(

4
mω

!
x2 − 2

)
e− mω

2! x2
, (7.102)

etc. In general, we may find ψn(x) if ψn−1(x) is known thanks to
the relation

ψn(x) =
√

m
2!nω

(
ωx − !

m
∂

∂x

)
ψn−1(x). (7.103)

â† to the ground state wave function ψ0(x), as shown in Box 7.2. The
energy of the ground state and the excited states can be obtained
from Eq. (7.82). In particular, the ground state energy is called the
zero-point energy of the harmonic oscillator and is given by

E0 = 1
2

!ω. (7.104)

It is noted that the ground state energy E0 is different from zero,
which has been taken as the minimum value of the potential energy.
From the above discussion, it appears clearly that the quantity !ω

may be interpreted as the energy quantum for a harmonic oscillator
of angular frequency ω. The oscillator may “jump” from level j to
level k only when | j − k| energy quanta are either absorbed ( j < k)
or emitted ( j > k) [see Fig. 7.3].
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Equation (7.100) shows that the wave function for the ground
state of a quantum harmonic oscillator is a pure Gaussian (or a bell-
shaped curve), for which the uncertainty relation (6.171) is said to
be saturated, i.e., we have

(/ p̂x/x̂)ψ0 = !
2

. (7.105)

Moreover, as the Gaussian extends (but falls off quickly) towards
plus and minus infinity, it follows that there is a finite (albeit small)
probability of finding the oscillator appearing in regions far away
from the equilibrium point. This is in sharp contrast to the classical
case in which the oscillator is always confined in the region where
its total energy is greater than or equal to the potential energy [see
Fig. 7.2]. The region in which the classical oscillator cannot appear
is called the classically forbidden region. Therefore, the phenomenon
that a quantum particle appears in the classically forbidden region is
purely quantum mechanical and is referred to as quantum tunneling.
The phenomenon of tunneling has many important applications. For
instance, it describes a type of radioactive decay (called alpha decay)
in which a nucleus emits an alpha particle (a helium nucleus). It is
also the basic principle used in the scanning tunneling microscope
(or STM for short), which is an instrument for imaging surfaces at
the atomic level.

Problem 7.10 Prove Eq. (7.78). (Hint: Use the fact that any
observable commutes with itself and the property (6.151a).)

Problem 7.11 Derive Eq. (7.90). (Hint: Try to build a proof
analogous to the derivation of Eq. (7.89).)

Problem 7.12 Derive Eq. (7.92). (Hint: Assuming that the relation
holds for a given n, prove that it holds for n + 1 as well.)

Problem 7.13 Derive Eq. (7.93). (Hint: Take advantage of
Eqs. (6.52) and (6.117).)

Problem 7.14 The reader who has already acquired a certain
competency may try to derive the normalization constant N in
Eq. (7.100). (Hint: Use the mathematical formula

∫ +∞
−∞ dy e−ay2 =√

π
a .)
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Problem 7.15 (a) Evaluate the commutators [x̂ , Ĥ ] and [ p̂x , Ĥ ] in
the Schrödinger picture for the harmonic oscillator. (b) Using the
results of (a), find the time evolution of the position and momentum
operators x̂(t) and p̂x (t) in the Heisenberg picture with the initial
conditions x̂(0) = x̂ and p̂x (0) = p̂x . Part (b) is addressed to
more experienced readers. (Hint: Take advantage of Box 7.1 and in
particular Eq. (7.72).)

7.8 Density Matrix

A very useful formalism for treating many of the subsequent
problems is that of the density matrix, which can be considered
a generalization of the concept of projector. In particular, we are
now interested in the description of many quantum systems (for
instance, photons) prepared in some state. Let us first consider
the elementary example of photon polarization [see Section 3.1].
Suppose that we have prepared a large number of photons and all of
the photons are in the same polarization state. Denoting horizontal
polarization by |h⟩ and vertical polarization by |v⟩, we can write the
polarization state of the photons as a two-state superposition:

|ψ⟩ = ch|h⟩ + cv |v⟩, (7.106)

where ch and cv are probability amplitudes satisfying |ch|2 + |cv |2 =
1. The density matrix that describes the system, which in this case
coincides with the corresponding projector [see Eq. (4.44)], is given
by

ρ̂ = |ψ⟩⟨ψ |
= (ch|h⟩ + cv |v⟩)

(
c∗

h⟨h| + c∗
v ⟨v|

)

= |ch|2 |h⟩⟨h| + |cv |2 |v⟩⟨v| + c∗
v ch|h⟩⟨v| + cv c∗

h|v⟩⟨h|. (7.107)

Note that the third and fourth term in the third line are expression
of quantum features [see Section 4.8]. In the basis {|h⟩, |v⟩}, ρ̂ takes
the matrix form

ρ̂ =
[
|ch|2 chc∗

v

c∗
hcv |cv |2

]
. (7.108)

What these equations tell us is that all of the photons being
described are in the superposition state (7.106). Consider now
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the following situation that is quite common in physics. Suppose
that we have prepared a large number of photons, with some of
the photons in horizontal polarization and the others in vertical
polarization. The state of the photons in this system is totally
different from the superposition state |ψ⟩ given by Eq. (7.106) and
we need to represent it with two distinct projectors, namely, one
for describing the set of photons in horizontal polarization and the
other for describing the set of photons in vertical polarization. The
corresponding density matrix is given by

ρ̂ ′ = ℘h P̂h + ℘v P̂v , (7.109)

where ℘h +℘v = 1 with ℘h and ℘v being the respective probabilities
that we expect to find each photon in horizontal and vertical
polarizations. We note that the density matrix is no longer a
projector, but rather a weighted sum of projectors (where ℘h and ℘v

are those weights). In matrix form ρ̂ ′ is given by

ρ̂ ′ =
[
℘h 0
0 ℘v

]
, (7.110)

where only diagonal elements are nonzero. In other words, quantum
features are now absent. Quantum states described by density
matrices of the type in Eq. (7.107) are called pure states, while those
described by density matrices of the form in Eq. (7.109) are called
mixed states (or mixtures). In general, suppose a quantum system
may be found in the pure states |ψ j ⟩ with the probability ℘ j , where
j is some index labeling the pure states. Then, the density matrix for
this mixture is defined by

ρ̂ =
∑

j

℘ j |ψ j ⟩⟨ψ j | =
∑

j

℘ j P̂ j , (7.111)

where
∑

j

℘ j = 1. (7.112)

We stress that the pure states |ψ j ⟩ in which the system may be found
do not have to be mutually orthogonal. It it evident that pure states
are a special case of mixed states in which the system is found in one
pure state with probability one.



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

Density Matrix 189

The expectation value for any observable Ô in the mixed state ρ̂

is given by [see Section 6.8]

⟨Ô⟩ρ̂ = Tr(ρ̂ Ô)

=
∑

j

℘ j ⟨ψ j |Ô|ψ j ⟩. (7.113)

To put it in another way, the expectation value of Ô in the mixed state
ρ̂ is the sum of the expectation values of Ô in each of the pure states
|ψ j ⟩, weighted by the probabilities ℘ j . In the above expressions the
symbol Tr denotes the trace of a (square) matrix, i.e., the sum of the
diagonal elements of a matrix. In mathematical terms, we have

Tr Â =
∑

j

A j j , (7.114)

where Â is a matrix. In addition, the trace satisfies the following
basic properties:

Tr(Â + B̂) = Tr Â + Tr B̂ , (7.115a)

Tr(cÂ) = c Tr Â, (7.115b)

Tr(Â B̂) = Tr(B̂ Â), (7.115c)

where c is a constant. The third property (7.115c) is called the cyclic
property of the trace, from which it follows that

Tr(Û † ÂÛ ) = Tr(Û Û † Â)

= Tr(ÂÛ Û †)

= Tr Â, (7.116)

where Û is a unitary matrix. Therefore, the trace of a matrix (or an
operator) is invariant under any unitary transformation. The density
matrix satisfies the following important properties:

ρ̂† = ρ̂, (7.117a)

Tr ρ̂ = 1, (7.117b)

⟨ψ |ρ̂|ψ⟩ ≥ 0 for all |ψ⟩, (7.117c)

ρ̂2
pure = ρ̂pure. (7.117d)
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The first property means that the density matrix is Hermitian. This
is evident as the probabilities ℘ j are real (and non-negative) while
the projectors P̂ j are Hermitian. The proof of the second property is
left to the reader [see Problem 7.17]. The third property means that
the density matrix is positive semidefinite. This is also evident as the
expectation value ⟨ψ |ρ̂|ψ⟩ is precisely the probability of finding the
system in the pure state |ψ⟩, which is non-negative. The last property
provides a criterion to distinguish pure states from mixtures [see
Problem 7.18]. Since the density matrix for a pure state is a projector,
the square of a projector is the projector itself [see Eqs. (3.61)].

The dynamics of a quantum system can also be described by
making use of density matrices. In the Schrödinger picture, the state
vectors |ψ j (t)⟩ carry time dependence, and so does the density
matrix. By explicitly writing out the time dependence, we have

ρ̂(t) =
∑

j

℘ j |ψ j (t)⟩⟨ψ j (t)|. (7.118)

It is noted that the density matrix can be considered a peculiar
observable in that the usual observables in the Schrödinger picture
do not carry time dependence. We will discuss in detail about this
subtle point below. Using the Schrödinger equation (7.12), we find
that the time derivative of the density matrix is given by

d
dt

ρ̂(t) =
∑

j

℘ j
d
dt

(
|ψ j (t)⟩⟨ψ j (t)|

)

= − i
!

Ĥ
∑

j

℘ j |ψ j (t)⟩⟨ψ j (t)| + i
!

∑

j

℘ j |ψ j (t)⟩⟨ψ j (t)| Ĥ

= i
!

[
ρ̂(t)Ĥ − Ĥ ρ̂(t)

]
, (7.119)

which implies

i!
d
dt

ρ̂(t) =
[

Ĥ , ρ̂(t)
]

, (7.120)

where use has been made of the antisymmetric property of the
commutator [see Eq. (6.151a)]. The above equation is known as the
von Neumann equation. Just as the Schrödinger equation describes
how a pure state evolves in time, the von Neumann equation
describes how a density matrix evolves in time. For the case of a
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time-independent Hamiltonian that we have implicitly assumed, the
solution to von Neumann equation (7.120) is given by

ρ̂(t) = Û t(t)ρ̂(0)Û †
t (t), (7.121)

where Û t(t) is the time evolution operator given by Eq. (7.17) and
ρ̂(0) is the initial density matrix of the system at time t0 = 0.
The above result agrees with what will be obtained from direct
substitution of Eq. (7.16) into Eq. (7.118).

We note that while the von Neumann equation (7.120) and
the Heisenberg equation (7.55) are formally alike, an important
difference between the two equations is that the order of the
Hamiltonian and the observable under the commutator is inverted.
Another difference is that the eigenvalues of a density matrix are
the probabilities to obtain measurement outcomes in that basis.
The reason for these differences is that the density matrix is a
very peculiar observable, representing a quantum state. This seems
to contradict what we have said in Section 6.9. There, we have
affirmed that one cannot acquire the whole information contained
in a quantum state. Here, we are saying that a density matrix is an
observable, what seems to imply that, when measured, it provides
us with such an information. The crucial point to understand is
that the density matrix is a peculiar observable precisely because it
represents a quantum state. As we have seen, it either represents
a pure state (as a projector) or a mixture (as a weighted sum of
projectors). If it is a projector, by measuring it we are not able to
determine the state, since such a measurement corresponds to a test
through which we ask the system whether or not it is in that state
(or if at least it has a non-zero overlap with that state). We are not
asking what is the state of the system, which is precisely the kind
of question that would allow us to extract the whole information
from the system’s state. For instance, let us consider the projectors
given by Eq. (3.49). It is easy to see that the projector P̂a has two
eigenvectors (which are its two columns); the first one is the vector
|a⟩ itself and the other one is the zero vector. They correspond to the
two possible answers of this test: (i) yes, and here the eigenvalue is
1; (ii) no, and here the eigenvalue is 0. Similarly for the projector P̂a′

whose columns are the zero vector and the ket |a′⟩. To understand
this difference a classical example could be useful. It is much easier
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to ascertain whether or not a certain object is an apple (the answer
is here either yes or not) than to give a full description of the object
(here the answer takes the form of a list of properties). On the
other hand, if the density matrix describes a mixture, to measure a
single system would mean again to measure something described
by one of the projectors summed in the mixture. The outcome of
this measurement would only provide partial information. We have
therefore evidence that the state of a quantum system cannot be
determined through a single measurement, and, as a consequence,
we cannot distinguish between non-orthogonal states with a single
measurement. This is an issue closely related with the no-cloning
theorem, that will be dealt with in the third part of the book.a

In general, when measuring a certain observable, we only obtain
one of its eigenvalues but not the probability distribution of its
possible properties (connected with its eigenstates) in the state
being measured. The latter remains unknown to us through this
single outcome.

Problem 7.16 Show how we can derive the matrix form of the
density matrix ρ̂ given by Eq. (7.108) from Eq. (7.107).

Problem 7.17 Prove the second property (7.117b), i.e., Tr ρ̂ = 1 for
both pure and mixed states.

Problem 7.18 By making use of the expression (7.110), show that
in the case of mixtures it is not true that ρ̂2 = ρ̂. Show that it holds
true for the pure state given by (7.108).

7.9 Composite Systems

The formalism of the density matrix is very useful when dealing with
composite systems (or compound systems). Let us suppose to have a
system of two photons, both of which can be in horizontal or vertical
polarization (or in any superposition of the two polarization states).
Let H1 and H2 be the Hilbert spaces for the polarization states of

aSee, for instance, (D’Ariano/Yuen, 1996), where the authors proved that to measure
the state of single system with a single measurement would contradict the unitarity
of the quantum mechanical time evolution.
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photon 1 and photon 2, respectively, and H the Hilbert space for
the composite system of the two photons. In this case we have two
orthonormal bases

{|v⟩1, |h⟩1} and {|v⟩2, |h⟩2}, (7.122)

where the first is a basis in H1 and the second a basis in H2. It is
noted that while H1 and H2 are identical two-dimensional Hilbert
spaces, they are in fact two independent Hilbert spaces. When we
consider the two systems together, we need to deal with a basis in
the Hilbert spaceH of the composite system that is given by a certain
“product” of these two bases. This can be accomplished by means of
what is called the direct products of the basis vectors in H1 and H2.
A convenient basis in H can be obtained by taking the direct product
of the basis vectors in Hilbert spaces H1 and H2:

{|h⟩1 ⊗ |h⟩2 , |h⟩1 ⊗ |v⟩2 , |v⟩1 ⊗ |h⟩2 , |v⟩1 ⊗ |v⟩2}, (7.123)

where the symbol ⊗ denotes the direct product. Note that each basis
vector to the left of the symbol ⊗ pertains to the Hilbert space H1,
while each basis vector to the right pertains to the Hilbert space H2.

The Hilbert space H of the composite system is defined to be the
vector space spanned by the direct product basis (7.123), namely, an
arbitrary state |6⟩12 in H can be written as

|6⟩12 = chh|h⟩1 ⊗ |h⟩2 +chv |h⟩1 ⊗ |v⟩2 +cvh|v⟩1 ⊗ |h⟩2 +cvv |v⟩1 ⊗ |v⟩2.
(7.124)

Here and henceforth, whenever the notation becomes unwieldy we
shall drop the symbol ⊗ between the kets, condense the kets into
a single one, or both. For instance, the following expressions |h⟩1 ⊗
|h⟩2, |h⟩1|h⟩2, |h1 ⊗ h2⟩, |h1, h2⟩, and |h1h2⟩ all represent the same
direct product state. Likewise, here and henceforth, we shall use
the state vectors with uppercase greek letters (like |6⟩, |7⟩, etc.)
to denote the states of a composite system. Moreover, the scalar
product of state vectors in H is defined in terms of those in H1 and
H2 by

⟨ψ1 ⊗ ψ2|φ1 ⊗ φ2⟩ = ⟨ψ |φ⟩1⟨ψ |φ⟩2. (7.125)

Again for the sake of notational simplicity, here and henceforth, we
shall partially suppress the indexes 1 and 2 that respectively denote
systems 1 and 2 whenever no confusion may arise. With the above
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definition, it is evident that the direct product basis (7.123) is an
orthonormal basis. Therefore, the corresponding basis vectors can
be written in component form as

|h⟩1 ⊗ |h⟩2 =

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ , |h⟩1 ⊗ |v⟩2 =

⎛

⎜⎜⎝

0
1
0
0

⎞

⎟⎟⎠ ,

|v⟩1 ⊗ |h⟩2 =

⎛

⎜⎜⎝

0
0
1
0

⎞

⎟⎟⎠ , |v⟩1 ⊗ |v⟩2 =

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠ , (7.126)

which in turn implies that H is a four-dimensional Hilbert space.
In general, if dim(H1) = m and dim(H2) = n, then we have
dim(H) = mn, where the symbol dim denotes the dimension of
a Hilbert space. The resultant Hilbert space is referred to as the
direct product Hilbert space of the two Hilbert spaces H1 and H2.
In mathematical terms, we have H = H1 ⊗ H2.

We are interested in ascertaining which kind of relation, if any,
can exist between these two systems. Let us first suppose that the
two systems are separated [see Section 1.1] and each is in the state
of a polarization at 45◦ (or π

4 in radians) relative to the horizontal
polarization, that is, we have

|ψ⟩1 = 1√
2

(|h⟩1 + |v⟩1), |ψ⟩2 = 1√
2

(|h⟩2 + |v⟩2). (7.127)

Here by separated we mean that no action whatsoever performed
locally on one of the systems can have effects on the other
one. This implies that every possible combination of the allowed
measurement outcomes of the two systems can occur or that the
probability distributions of the possible measurement outcomes
of the two systems are statistically independent. If there are
no additional constraints on the two systems, we shall expect
that, in measurements of a sufficient large number of identically
prepared systems, the composite system on average will have equal
probability of 1

4 to be found in the states described by the four
product basis vectors (7.123). Therefore, we may rewrite the latter
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state as

|6⟩12 = |ψ⟩1 ⊗ |ψ⟩2

= 1√
2

(|h⟩1 + |v⟩1) ⊗ 1√
2

(|h⟩2 + |v⟩2)

= 1
2

(|h⟩1 ⊗ |h⟩2 + |h⟩1 ⊗ |v⟩2 + |v⟩1 ⊗ |h⟩2 + |v⟩1 ⊗ |v⟩2) .

(7.128)

This implies, for instance, that if we find that system 1 is, say, in the
state of vertical polarization, the system 2 can be either vertically or
horizontally polarized, both possibilities having equal probability. In
general, if system 1 and system 2 are described by the state vectors
|ψ⟩1 and |ψ⟩2, respectively, and

|ψ⟩1 = ch|h⟩1 + vc|v⟩1, |ψ⟩2 = c′
h|h⟩2 + v ′

c|v⟩2, (7.129)

then the composite system is described by the state vector |6⟩ that
is the direct product of |ψ⟩1 and |ψ⟩2, namely, we have

|6⟩12 = |ψ⟩1 ⊗ |ψ⟩2

= chc′
h|h⟩1 ⊗ |h⟩2 + chc′

v |h⟩1 ⊗ |v⟩2

+ cv c′
h|v⟩1 ⊗ |h⟩2 + cv c′

v |v⟩1 ⊗ |v⟩2, (7.130)

which can be considered a reformulation of Eq. (7.124). We
now consider a completely different situation. Suppose that the
composite system at a certain time is described by the state vector

|7⟩12 = 1√
2

(|h⟩1 ⊗ |h⟩2 + |v⟩1 ⊗ |v⟩2). (7.131)

We immediately notice something extraordinary. According to the
above equation, when system 1 is in the state of horizontal
polarization so is system 2, and vice versa; similarly, when system 1
is in the state of vertical polarization, the same occurs for system 2,
and vice versa. In this case, the two systems are no longer separated.
As a matter of fact, they can no longer be considered independent
since a certain measurement outcome on system 1 allows a
prediction about system 2, and vice versa. However, this state tells
us even something more, namely, a measurement on system 1 will
project system 2 in one of the two alternative states. Indeed, the state
|7⟩12 tells us that system 2 can be in a state of vertical or horizontal



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

196 Energy and Quantum Dynamics

polarization before the polarization on system 1 is measured. But
after a measurement on system 1 is carried out, system 2 has to
be in either one or the other state according to the measurement
outcome on system 1. In other words, it seems that a local operation
on system 1 can have non-local effects on system 2, and vice versa.
We call such a state entangled. Such an extraordinary situation,
which is even puzzling from the point of view of special relativity
since it seems to imply the instantaneous transmission of signals,
will be further discussed in the third part of the book. By now,
let us consider the density matrix for the entangled state |7⟩12 in
Eq. (7.131), namely,

ρ̂12 = |7⟩⟨7|12

= 1
2

(|h⟩⟨h|1 ⊗ |h⟩⟨h|2 + |v⟩⟨v|1 ⊗ |v⟩⟨v|2

+ |h⟩⟨v|1 ⊗ |h⟩⟨v|2 + |v⟩⟨h|1 ⊗ |v⟩⟨h|2). (7.132)

Note that the components |h⟩⟨v|1 ⊗ |h⟩⟨v|2 and |v⟩⟨h|1 ⊗ |v⟩⟨h|2

represent features or the interference terms, not between states of
different systems but between different states of the same system.
Therefore, entanglement can be understood to a certain extent as
an extension of the concept of superposition to a composite system.
However, there is an important difference: superposition is relative
to the basis [see Section 4.5] while entanglement is intrinsic in the
state of the system and is therefore independent of the basis used.
As a matter of fact, entanglement combines the typical quantum
superposition with correlations that have a classical root. Both these
kind of classical correlations and quantum superposition factors
constitute entanglement [see Fig. 7.4].

Our conclusion could be put in question by pointing out that the
density matrix ρ̂12 in Eq. (7.132) has a particular form. As a matter
of fact, if take another kind of entanglement, e.g.,

ρ̂ ′
12 = 1

2
(|h⟩⟨h|1 ⊗ |v⟩⟨v|2 + |v⟩⟨v|1 ⊗ |h⟩⟨h|2

+ |h⟩⟨v|1 ⊗ |v⟩⟨h|2 + |v⟩⟨h|1 ⊗ |h⟩⟨v|2), (7.133)

where for the sake of simplicity we have put in the first row the
terms having a classical analogue while in the second row the
cross terms expressing features, things may appear different. It is



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

Composite Systems 197

legend
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classical correlations
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system X
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Figure 7.4 Particular case in which the entanglement of two degrees of
freedom is between two subsystems and each observable has only two
eigenstates. Although a particular case, the figure is very enlightening and
therefore also easily generalizable.

clear now that each time we have photon 1 polarized vertically,
photon 2 is polarized horizontally and vice versa. Therefore, the
two photon show a kind of anti-parallelism. However, as before also
the crossed term follow this rule as far as the relations between
the two subsystems are considered. On the contrary, when the
single subsystems are considered, we have precisely the same cross
terms in ρ̂ ′

12 as those in ρ̂12 [see Eq. (7.132)]. Therefore, the
typical quantum behavior, the quantumness of the features is here
connected with the superposition of the two subsystems rather than
with the relations between them.

Suppose now that we would like to describe one of the two
systems without considering the other one. This happens quite
commonly when we are interested only in one of the systems and
consider the other as the environment. Let us therefore start with
the density matrix in Eq. (7.132) and assume that we wish to omit
the consideration of system 2. This can be done by performing a
partial trace over system 2 (denoted by Tr2), that is, by summing
the diagonal elements with respect to system 2 only, or equivalently,
by summing the expectation values of ρ̂12 in a complete set of
orthonormal basis states of system 2. The resultant reduced density
matrix of system 1 contains information only about system 1 and is



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

198 Energy and Quantum Dynamics

given by

ρ̂1 = Tr2 ρ̂12

= ⟨h|ρ̂12|h⟩2 + ⟨v|ρ̂12|v⟩2

= 1
2

(|h⟩⟨h|1 + |v⟩⟨v|1). (7.134)

It is evident that the reduced density matrix ρ̂1 describes a mixture.
In other words, the reduced subsystem of a composite system
prepared in an entangled state is a mixture.

Problem 7.19 Compute the density matrix

ρ̂ ′
12 = |6⟩⟨6|12,

where |6⟩12 is given by Eq. (7.128). It is a long and tedious calcu-
lation that nevertheless can enlighten the meaning of separation of
the two involved systems.

Problem 7.20 Show that a system in the entangled state |7⟩12 given
by Eq. (7.131) will remain as an entangled state in other basis. You
may use the basis {|a⟩1 ⊗ |a⟩2, |a⟩1 ⊗ |a′⟩2, |a′⟩1 ⊗ |a⟩2, |a′⟩1 ⊗ |a′⟩2}
and the inverse of the transformation given by Eq. (4.20).

Problem 7.21 Compute the reduced density matrix ρ̂2 = Tr1 ρ̂12,
where the density matrix ρ̂12 is given by Eq. (7.132).

7.10 Summary

In this chapter we have

• Introduced the time-dependent Schrödinger equation that
describes the time evolution of a quantum system.

• Shown how to calculate the probability amplitudes as a
function of time given that we know the initial state and the
Hamiltonian of a quantum system.

• Explained the precise sense in which quantum mechanics can
be viewed as a deterministic theory about probabilities.

• Proved that the time evolution ruled by the Schrödinger
equation is unitary (and therefore reversible).
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• Presented the Schrödinger picture formulation and the Heisen-
berg picture formulation of quantum dynamics and proved
their equivalence.

• Given a very sketchy presentation of the free particle and the
harmonic oscillator in one dimension.

• Developed the density matrix formalism and distinguished
between pure states and mixtures.

• Introduced the concepts of entanglement and the reduced
density matrix.
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Chapter 8

Angular Momentum and Spin

In this chapter we shall treat two of the most important observables
of quantum mechanical systems: angular momentum and spin. We
shall argue that angular momentum is the generator of rotations. In
quantum mechanics, angular momentum is quantized in units of the
reduced Planck constant. The quantization of angular momentum
is dealt with by finding the angular momentum eigenvalues and
eigenstates. We shall then apply the theory of angular momentum
to study the hydrogen atom. Spin is an intrinsic angular momentum
of subatomic particles and therefore corresponds to an important
intrinsic degree of freedom. We shall discuss briefly how spin was
discovered and many of its important properties. Finally, we shall
also explore here some further subtleties of quantum theory.a

aThis chapter is without any doubt the most mathematically difficult in the book. We
suggest the reader to proceed even more carefully and to invest more time. Although
difficult, this chapter will constitute a very important preparation for understanding
the third part of the book. Nonetheless, the reader may skip some mathematical
derivations at a first reading and try to grasp the essential results.
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x
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Figure 8.1 A classical particle with mass m, velocity v, and position r in a
certain reference frame has an angular momentum L = r × p = mr × v.
Note that the vector L is orthogonal to both vectors r and p.

8.1 Angular Momentum as Generator of Rotations

When we consider quantum systems in two or three spatial
dimensions, we need to take into account also the effect of rotations.
In this case, we need to introduce a physical quantity called the
angular momentum, that is, the momentum induced by or connected
with rotations. In classical physics the angular momentum of a
particle about a given origin is defined by [see Fig. 8.1]

L = r × p, (8.1)
where r is the position vector of the particle relative to the origin, p is
the momentum of the particle, and the symbol × denotes the cross
product of two spatial vectors [see Box 8.1]. In three dimensions,
the position, momentum, and angular momentum are expressed in
Cartesian coordinates as three-component spatial (row) vectors r =
(x , y, z), p = ( px , py , pz), and L = (Lx , Ly , Lz), respectively; then,
according to Eq. (8.6) we have

Lx = ypz − zpy , Ly = zpx − xpz, Lz = xpy − ypx . (8.2)
The angular momentum of a system of particles is the sum of the

angular momenta of the individual particles

L =
n∑

i=1

ri × pi , (8.3)
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Box 8.1 Cross product of vectors

In mathematics, the cross product (or vector product) of two
Euclidean vectors a and b is denoted by a × b. It is a vector that is
perpendicular to both a and b, with a direction given by the right-
hand rule and a magnitude equal to the area of the parallelogram
that the vectors span. The right-hand rule states that the direction
of the cross product a × b is determined by placing a and b tail-
to-tail, flattening the right hand, extending it in the direction of
a, and then curling the fingers in the direction that the angle b
makes with a. The thumb then points in the direction of a × b
[see Fig. 8.2]. In other words, the cross product a × b is defined
by [see also Box 3.1]

a × b = ∥a∥ ∥b∥ sin θ . (8.4)
where ∥a∥ and ∥b∥ are the respectively magnitudes of vectors a
and b, 0 ≤ θ ≤ π is the angle between a and b, and n is a unit
vector in the direction given by the right-hand rule. Moreover, the
cross product satisfies the following properties:

a × a = 0, (8.5a)

a × b = −b × a, (8.5b)

a × (b + c) = (a × b) + (a × c), (8.5c)

(ka) × b = a × (kb) = k(a × b), (8.5d)

a × (b × c) + b × (c × a) + c × (a × b) = 0, (8.5e)

where k is a real number.
In Cartesian coordinates, the vector product of the vectors a =

ax ex+ayey+azez and b = bx ex+byey+bzez is given in component
form by

a×b = (aybz−azby)ex +(azbx −ax bz)ey +(ax by −aybx )ez, (8.6)

where ex , ey , and ez are unit vectors in the x , y, and z directions,
respectively. The above expression can be written in a shorthand
notation by using the determinant of a formal matrix

a × b =

∣∣∣∣∣∣

ex ey ez

ax ay az

bx by bz

∣∣∣∣∣∣
. (8.7)

In two dimensions, the analogue of the cross product for a =
ax ex +ayey and b = bx ex +byey is obtained by setting az = bz = 0
in the above expressions.
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(a) (b)

Figure 8.2 The right-hand rule. (a) The rule as defined in Box 8.1. (b) The
right-hand rule for establishing a system of Cartesian coordinates: here the
vectors a and b need to be orthogonal. Adapted from http://en.wikipedia.
org/wiki/File:Right-hand grip rule.svg and http://en.wikipedia.org/wiki/
File:Right hand rule cross product.svg.

where ri and pi are the respective position and momentum of the
i th particle, and n is the number of particles in the system. Just like
momentum to a moving system, angular momentum is related to the
capability of a rotating system to have a certain dynamical impact
on other systems. For instance, everyday experience tells us that
the heavier a circular saw is, the larger its radius is, or the faster
it is rotating, the more cutting power it will deliver. Indeed, the net
torque applied on a system is equal to the time derivative of its
angular momentum

τ = dL
dt

= dr
dt

× p + r × dp
dt

= v × p + r × F

= r × F, (8.8)

where the vector product of velocity and momentum is zero because
the two vectors are parallel. The above expression is simply a
reformulation of Newton’s second law (1.2) [see also Eq. (6.108)].

It is very important that we understand what angular momentum
means from a fundamental point of view. Angular momentum is
a conserved quantity in a closed system, i.e., a system that is not
subject to the action of external forces [see Section 1.1]. Moreover,
since the angular momentum of a system is what describes its
rotations, it can be thought of as being strictly related to the
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P
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Figure 8.3 An infinitesimal counterclockwise rotation about the z axis
brings a point P on the unit circle in the xy plane to a point P ′ on the unit
circle.

generator of rotations, that is, as the dynamical parameter or
operator that is associated with changes in the kinematic parameter
represented by the angular displacement. In the previous two
chapter we have already dealt with two other dynamical quantitates:
momentum, which is associated with changes in the kinematic
parameter position, and energy, which is associated with changes
of the kinematic parameter time. It is a theorem of both classical
and quantum mechanics (known as the Noether theorem) that
tells us that changes of a kinematic parameter is ruled by a
dynamical quantity that is the generator of that transformation.a

Then, by analogy with the case of momentum (the generator of space
translations), which has been discussed in Section 6.6, let us first
consider an infinitesimal rotation about the z axis that brings a point
P on the unit circle in the xy plane to a point P ′ on the unit circle
[see Fig. 8.3]. Here and henceforth, we follow the convention that
rotations occur in the sense prescribed by the right-hand rule [see
Box 8.1], i.e., counterclockwise about the z axis. The coordinates of
the points P and P ′ are related by(

x
y

)
=

(
cos φ

sin φ

)
ε−→

(
x ′

y′

)
=

(
cos(φ + ε)
sin(φ + ε)

)
, (8.9)

a(Arnold, 1978, pp. 88–89), (Auletta et al., 2009, Chapter 8).
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where ε is an infinitesimal angle measured in radians. For the sake
of presentational simplicity, in the above expression the Cartesian
coordinates of points have been written as column vectors and the
unaffected z components have been suppressed. Using the addition
formulas (2.22) and the approximations sin ε ≈ ε and cos ε ≈ 1 for
infinitesimal ε (measured in radians) [see Eq. (6.95)], we can rewrite
the above expression approximately as

(
x
y

)
ε−→

(
x ′

y′

)
≈

(
cos φ − ε sin φ

sin φ + ε cos φ

)
=

(
x − εy
y + εx

)
. (8.10)

Now, the rotated position
(

x ′

y′

)
can be expressed in terms of the

original position
(

x
y

)
as
(

x ′

y′

)
≈

(
1 + ε R̂z

) (
x
y

)
, (8.11)

where the operator (1 + ε R̂z) acts on each component of the column
vector

(
x
y

)
and R̂z is the generator of rotations about the z axis [see

Table 6.2]

R̂z = x
∂

∂y
− y

∂

∂x
. (8.12)

Again in order to go over from an infinitesimal rotation to a finite
rotation by an angle γ about the z axis, we may think of the
latter as a result of an infinite number of repeated applications
of the infinitesimal rotation (8.11). Following the same procedure
used in Section 6.6 by first subdividing the finite angle γ into n
equal partitions, each of angle γ /n, and then taking the limit for n
approaching infinity, we obtain

(
x ′

y′

)
= eγ R̂z

(
x
y

)
, (8.13)

where eγ R̂z is the rotation operator by an angle γ about the z axis.
As we will see below, the z component of the angular momentum
operator in quantum mechanics is closely related to the generator of
rotations about the z axis.

Problem 8.1 Check that applying the transformation (1 + ε R̂z) to
x and y, where R̂z is given by (8.12), we obtain x − εy and y + εx ,
respectively.
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8.2 Angular Momentum Operator

According to the correspondence principle [see Principle 7.1], the
classical definition of angular momentum (8.1) can be carried over
to quantum mechanics by reinterpreting position and momentum
in classical mechanics as the position and momentum operators in
quantum mechanics. Therefore, the angular momentum operator in
quantum mechanics is defined by

L̂ = r̂ × p̂. (8.14)

As a matter of fact, there are two types of angular momenta in
quantum mechanics. The type of angular momentum defined in the
above equation, which is a generalization of angular momentum in
classical mechanics and hence associated with the rotational (or
orbital) motion of a system in real space, is referred to as the
orbital angular momentum (or simply angular momentum whenever
no confusion may arise). The other type of angular momentum
which is a fundamental intrinsic property of subatomic particles and
has no analogue in classical mechanics is called the spin angular
momentum (or spin for short). We will first discuss the orbital
angular momentum and come back to the spin angular momentum
in Section 8.6.

From the expressions for the position and momentum operators
in the position representation in Eqs. (6.56) and (6.137), the three
Cartesian components of the angular momentum operator L̂x , L̂y ,
and L̂z in the position representation corresponding to the classical
counterparts (8.2) are respectively given by

L̂x = ŷ p̂z − ẑ p̂y = −i!
(

y
∂

∂z
− z

∂

∂y

)
, (8.15a)

L̂y = ẑ p̂x − x̂ p̂z = −i!
(

z
∂

∂x
− x

∂

∂z

)
, (8.15b)

L̂z = x̂ p̂y − ŷ p̂x = −i!
(

x
∂

∂y
− y

∂

∂x

)
. (8.15c)

From the above expressions, we see that the Planck constant has
the dimension of angular momentum. Indeed, as will be seen
below, the reduced Planck constant ! is the quantum of angular
momentum. It is also evident that the angular momentum operator
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is a Hermitian operator because each of its components is a
Hermitian operator. Moreover, the magnitude squared of the angular
momentum operator is defined by

L̂2 = L̂2
x + L̂2

y + L̂2
z , (8.16)

which is also a Hermitian operator. We are now in a position to
establish the relation between the angular momentum operator and
the generator of rotations. Upon comparing Eqs. (8.12) and (8.15c),
we have

L̂z = −i!R̂z, (8.17)

which shows clearly that the z component of the angular momentum
operator is the generator of rotations about the z axis (the factor
−i is there to ensure that as an observable the operator L̂z is a
Hermitian operator). Hence, the rotation operator about the z axis
by an angle γ (measured in radians) can be written in terms of L̂z as
the unitary operator

Û z(γ ) = e− i
! γ L̂z , (8.18)

which we note is understood as an active transformation [see
Section 7.4]. Similarly, the operators L̂x and L̂y are respectively the
generators of rotations about the x axis and y axis. As a consequence,
the rotation operator about an arbitrary direction n (which is
therefore a unit vector) by an angle γ is given by the unitary operator

Û n(γ ) = e− i
! γ n·L̂, (8.19)

where n · L̂ = nx L̂x + ny L̂y + nz L̂z with n2
x + n2

y + n2
z = 1. In other

words, under a rotation of angle γ about the direction n, the state of
a system |ψ⟩ transforms as

|ψ⟩ γ n−−→ |ψ ′⟩ = Û n(γ )|ψ⟩. (8.20)

Recall that the direction of a vector can be described by two angles:
the angle (now denoted by β) between the vector and the z axis, and
the angle (now denoted by α) of its orthogonal projection on the xy
plane measured from the x axis [see Fig. 1.1]. Therefore, a rotation in
three-dimensional space can be uniquely described by three angles
α, β , and γ . These angles are referred to as the Euler angles [see
Fig. 8.4].
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N

y

z
Z

X

Y

x

Figure 8.4 A rotation of angle γ about the Z axis can be uniquely described
by three Euler angles α, β , and γ , which define the relative orientation
between the fixed coordinate system xyz and the rotated coordinate system
X Y Z by three successive rotations. Here we use the so-called the zyz or
γ convention. The line N where the xy and X Y planes intersect is called the
line of nodes.

Since components of the position and momentum operators
satisfy the canonical commutation relations (6.150) and therefore
do not in general commute, components of the angular momentum
operator do not necessarily commute with one another. The com-
mutation relations between components of the angular momentum
operator can be calculated by using the canonical commutation
relations (6.150) and the properties of commutators (6.151). For
instance, using the expressions (8.15a) and (8.15b), we have

[
L̂x , L̂y

]
= [ŷ p̂z − ẑ p̂y , ẑ p̂x − x̂ p̂z]

= [ŷ p̂z, ẑ p̂x ] + [ẑ p̂y , x̂ p̂z]

= ŷ[ p̂z, ẑ] p̂x + x̂[ẑ, p̂z] p̂y

= x̂[ẑ, p̂z] p̂y − ŷ[ẑ, p̂z] p̂x

= i!(x̂ p̂y − ŷ p̂x )

= i!L̂z. (8.21)

Applying a similar but tedious procedure to the other components,
we finally obtain the following non-trivial commutation relations
[see Problem 8.2]

[
L̂x , L̂y

]
= i!L̂z,

[
L̂y , L̂z

]
= i!L̂x ,

[
L̂z, L̂x

]
= i!L̂y . (8.22)
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The above commutation relations imply that components of the
angular momentum are not jointly measurable [see Section 6.9].
This is due to the fact that the angular momentum is the generator
of rotations and that rotations in three dimensional space do not in
general commute. It also can be shown that each of the components
of the angular momentum operator commutes with its magnitude
squared, that is, we have [see Problem 8.3]

[
L̂j , L̂

2] = 0, (8.23)
where j = x , y, z and L̂2 is defined in Eq. (8.16). The commutation
relations (8.23) means that only the magnitude squared of the
angular momentum and one, and only one, of its components
are simultaneously measurable. This is because the magnitude
squared of a spatial vector is invariant under rotations. Moreover,
angular momentum in general does not commute with position and
momentum either. The non-trivial commutation relations of L̂z and
the components of position and momentum are given by
[L̂z, x̂] = i!ŷ, [L̂z, p̂x ] = i! p̂y , [L̂z, ŷ] = −i!x̂ , [L̂z, p̂y]=−i! p̂x .

(8.24)
Similar commutation relations hold true for L̂x and L̂y . The reason
for this is that while the magnitude squared of a spatial vector is
invariant under rotations, as is evident from Eq. (8.9) or (8.13), the
components of a spatial vector do change under rotations, also as
is evident from Eq. (8.9) or (8.13), even though they obey certain
transformation rules.

Problem 8.2 Using the canonical commutation relations, derive the
commutation relations [L̂y , L̂z] = i!L̂x and [L̂z, L̂x ] = i!L̂y .

Problem 8.3 Using Eq. (8.22), derive the commutation relation
[L̂j , L̂

2
] = 0.

Problem 8.4 Check the validity of Eq. (8.24) and derive the
corresponding expressions for L̂x and L̂y .

8.3 Quantization of Angular Momentum

In quantum mechanics, angular momentum is quantized, that is,
it cannot vary continuously but can only take discrete values.
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Quantization of angular momentum was first postulated by Niels
Bohr in his model of the atom [see Section 4.2].a Starting from
his angular momentum quantum rule, Bohr was able to calculate
the energies of the allowed orbits of the hydrogen atom and
other hydrogen-like atoms and ions. We now proceed to find the
eigenvalues and eigenstates of the angular momentum operator.
Recall that, as we have discussed in the previous section, only the
magnitude squared of the angular momentum and one, and only one,
of its components are simultaneously measurable. The convention
is to choose this component as the z component of the angular
momentum operator, L̂z. Mathematically, the commutation relation
[L̂z, L̂

2
] = 0 implies that the operators L̂z and L̂

2
have common

eigenstates. Let us denote their common eigenstates by |l , m⟩, where
l and m are (discrete) quantum numbers that are respectively
related to the eigenvalues of the operators L̂z and L̂

2
.

Let us postulate that the eigenvalue equation for L̂z has the
following form

L̂z|l , m⟩ = m!|l , m⟩, (8.25)
that is, the states |l , m⟩ are eigenstates of L̂z and the corresponding
eigenvalues are m!. The number m is called the magnetic quantum
number, whose value will be determined below. Since the expecta-
tion value of the square of an Hermitian operator is non-negative
[see Section 6.8], we have

m2!2 =
〈

l , m
∣∣L̂2

z

∣∣l , m
〉

=
〈

l , m
∣∣(L̂

2 − L̂2
x − L̂2

y)
∣∣l , m

〉
≤

〈
l , m

∣∣L̂2∣∣l , m
〉

,
(8.26)

where use has been made of Eq. (8.16) and the fact that the
eigenstates |l , m⟩ are normalized. The above inequality implies that
m2 is bounded by the eigenvalues of L̂

2
, hence we have

−l ≤ m ≤ l , (8.27)
where the eigenvalue l is the maximum value of m and is called the
azimuthal quantum number.

Our task now is to find the possible values of m and l . Since we
have a range of value of m for each fixed l , it proves convenient to
introduce the raising and lowering operators

l̂+ = l̂x + il̂ y , l̂− = l̂x − il̂ y , (8.28)

a(Bohr, 1913).
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respectively, where l̂ j = L̂j /! (with j = x , y, z). Obviously, they
satisfy

l̂+ = l̂†−, l̂− = l̂†+. (8.29)

We note that the operators l̂+ and l̂− are not observables because
they are not Hermitian operators but each is the Hermitian
conjugate of the other, as it happens for the annihilation and creation
operators â and â† of the harmonic oscillator [see Eqs. (7.77)]. Let us
now consider the action of L̂z on the state vector l̂+|l , m⟩

L̂zl̂+|l , m⟩ =
(

L̂zl̂+ − l̂+ L̂z + l̂+ L̂z
)
|l , m⟩

=
([

L̂z, l̂+
]
+ l̂+ L̂z

)
|l , m⟩

= !l̂+|l , m⟩ + l̂+ L̂z|l , m⟩
= !l̂+|l , m⟩ + m!l̂+|l , m⟩
= (m + 1)!l̂+|l , m⟩, (8.30)

where we have made use of Eq. (8.25) and of the commutation
relation [see Eq. (8.22)]

[
L̂z, l̂+

]
= 1

!
[

L̂z, L̂x + iL̂y
]

= 1
!

[
L̂z, L̂x

]
+ i

!
[

L̂z, L̂y
]

= iL̂y + L̂x

= +!l̂+. (8.31)

From Eq. (8.30) it follows that l̂+|l , m⟩ is an eigenstate of L̂z with
eigenvalue (m + 1)!. Since the eigenstates l̂+|l , m⟩ and |l , m +
1⟩ correspond to the same eigenvalue of L̂z, they have to be
proportional to each other. Hence we have

l̂+|l , m⟩ = c+
lm|l , m + 1⟩, (8.32)

where c+
lm is a proportional constant [see Problem 8.5]. A similar

analysis shows that the state vector l̂−|l , m⟩ is an eigenstate of L̂z

with eigenvalue (m − 1)! [see Problem 8.6]. Therefore, we have

l̂−|l , m⟩ = c−
lm|l , m − 1⟩, (8.33)

where c−
lm is a proportional constant [see Problem 8.7]. Now,

recalling that l and −l are respectively the maximum and minimum
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eigenvalues of the magnetic quantum number m, we must also have
[see also Eq. (7.91)]

l̂+|l , l⟩ = 0, l̂−|l , −l⟩ = 0. (8.34)

Hence, we can start with the eigenstate |l , l⟩ of L̂z and apply
repeatedly the lowering operator l̂− on that eigenstate to obtain the
other eigenstates |l , l −1⟩, |l , l −2⟩, . . . of L̂z. The process has to stop
after finite steps because l̂−|l , −l⟩ = 0. It is then possible to order
the eigenstates of L̂z in descending order of m as

|l , l⟩, |l , l − 1⟩, . . . , |l , −l + 1⟩, |l , −l⟩. (8.35)

Note that the same result can be obtained by starting with the
eigenstate |l , −l⟩ of L̂z and applying repeatedly the raising operator
l̂+ on that eigenstate. Hence, for each possible value of l , there are
2l + 1 possible eigenstates of L̂z. Moreover, since 2l + 1 must be a
positive integer, the value of l should be either a non-negative integer
or a positive half-integer (i.e., a number of the form n+ 1

2 , where n is a
non-negative integer). However, as we will see below, for the orbital
angular momentum currently under discussion that is associated
with the rotational or orbital motion of a system in real space, the
azimuthal quantum number l can only take integer values. The half-
integer values are exclusive for the spin quantum number that will
be discussed in Section 8.6. As a result, the possible values of the
azimuthal quantum number l are given by

l = 0, 1, 2, . . . . (8.36)

Therefore, the magnetic quantum number m takes integer values as
well. For a given l , the possible values of m are given in descending
order by

m = l , l − 1, . . . , −l + 1, −l . (8.37)

The group of the 2l + 1 states in Eq. (8.35) that are related by
the raising and lowering operators l̂+ and l̂− are called a multiplet.
Having determined the possible values of the quantum numbers
l and m, we can write down the orthonormal conditions and
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completeness relation for the angular momentum eigenstates |l , m⟩
as [see Eqs. (6.11) and (6.12)]

⟨l , m|l ′, m′⟩ = δll ′δmm′ and
∞∑

l=0

l∑

m=−l

|l , m⟩⟨l , m| = Î , (8.38)

respectively.
In order to find the eigenvalues of L̂

2
, we use the definitions of

the raising and lowering operators in Eq. (8.28) to write down the
following product:

l̂−l̂+ =
(
l̂x − il̂ y

) (
l̂x + il̂ y

)

= l̂2
x + l̂2

y + i
[
l̂x , l̂ y

]

= l̂
2 − l̂2

z − l̂z. (8.39)

Taking into account that (i) from the first identity in Eq. (8.34) and
the previous result we have

[
l̂
2 − l̂z

(
l̂z + 1

)]
|l , l⟩ = l̂−l̂+|l , l⟩ = 0, (8.40)

and (ii) from Eq. (8.25) it follows that

L̂z
(

L̂z + 1
)
|l , l⟩ = l(l + 1)!2|l , l⟩, (8.41)

where we do not need to consider global phase factor (recalling
the relation between lower-case and upper-case operators), we can
finally obtain

[
L̂

2 − l(l + 1)!2
]
|l , l⟩ = 0, (8.42)

or equivalently,

L̂
2|l , l⟩ = l(l + 1)!2|l , l⟩. (8.43)

Using the fact that L̂
2

commutes with l̂−, i.e., [L̂
2
, l̂−] = 0, we can

generalize the above result to other values of m and obtain

L̂
2|l , m⟩ = l(l + 1)!2|l , m⟩, (8.44)

which is the eigenvalue equation for the operator L̂
2

that we were
looking for. Therefore, the eigenvalue of the operator L̂

2
is l(l + 1)!2

instead of l2!2 as one would have expected. This is a peculiarity of
quantum mechanics in that the eigenvalue of L̂

2
is not the square

of the maximum eigenvalue of L̂z. As can seen from Eq. (8.39), it
is a direct consequence of the fact that components of the angular
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z

Figure 8.5 Quantization of angular momentum for the case of l = 2. The
vectors from top to bottom illustrate respectively the angular momentum
with Lz = +2!, +!, 0, −!, −2!. The magnitude of the angular momentum
is given by L =

√
2(2 + 1)! =

√
6!.

momentum operator do not commute with one another. Indeed, if
they would commute, the last term in the parentheses on the right-
hand side of Eq. (8.40) would be absent and the eigenvalue of L̂

2

would be equal to l2!2. The above discussion on the quantization
of angular momentum is illustrated in Fig. 8.5 for the case of
l = 2. In this case, there are five angular momentum eigenstates
in the multiplet, corresponding to Lz = +2!, +!, 0, −!, −2!,
respectively, and the magnitude of the angular momentum is given
by L =

√
2(2 + 1)! =

√
6!. Therefore, the angular momentum

and its z component can never be aligned (a consequence of the
uncertainty principle). Before ending this section, we note that since
it is up to us which space direction we call the z axis, the eigenvalues
of the component of the angular momentum in an arbitrary direction
are always quantized in the same way as in Eq. (8.37).

Problem 8.5 Using Eq. (8.39), show that
l̂+|l , m⟩ =

√
l(l + 1) − m(m + 1) |l , m + 1⟩.

Problem 8.6 Show that [L̂z, l̂−] = −!l̂−, then use the commutation
relation to derive Eq. (8.33).
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Problem 8.7 Express l̂+l̂− in terms of L̂
2

and L̂z, then use the result
to show that

l̂−|l , m⟩ =
√

l(l + 1) − m(m − 1) |l , m − 1⟩.

Problem 8.8 Consider a system with orbital angular momentum
quantum number l = 1, which implies m = 1, 0, −1. Show that
in the basis {|1, 1⟩, |1, 0⟩, |1, −1⟩}, the operators L̂x , L̂y , and L̂z are
represented by the following 3 × 3 matrices:

L̂x = !√
2

⎡

⎣
0 1 0
1 0 1
0 1 0

⎤

⎦ , L̂y = !√
2

⎡

⎣
0 −i 0
i 0 −i
0 i 0

⎤

⎦ , L̂z = !

⎡

⎣
1 0 0
0 0 0
0 0 −1

⎤

⎦ .

(8.45)

8.4 Angular Momentum Eigenfunctions

While algebraically straightforward, the above approach to the
eigenvalues and eigenstates of the angular momentum is somewhat
conceptually abstract since we have not yet derived the specific
forms of the eigenstates according to particular values of l and
m. It therefore seems desirable to take a more concrete approach
to the same problem by considering eigenfunctions of the angular
momentum operator. However, a full treatment of the angular
momentum eigenfunctions is a mathematically challenging subject
to be dealt with here.a In the present context, we will limit ourselves
to a very sketchy presentation and bypass most of the details.

The three-dimensional angular momentum eigenfunctions
ψlm(r) are the angular momentum eigenstates |l , m⟩ represented in
the position eigenbasis {|r⟩}, that is,

ψlm(r) = ⟨r|l , m⟩. (8.46)

When dealing with angular momentum, because of the rotational
nature of the problem it is convenient to use spherical coordinates
instead of the usual Cartesian (rectangular) coordinates. In spherical
coordinates the position of a point P in three-dimensional space is
specified by three numbers (r, θ , ψ), where r is the radial distance
from the origin O to P (with 0 ≤ r < ∞), θ is the polar angle of the

aThe interested reader may have a look at (Auletta et al., 2009, Chapter 6).
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x

y

z

x

y

z

P

Figure 8.6 Relation between the Cartesian (rectangular) coordinates
(x , y, z) and the spherical coordinates (r, θ , φ) of a point P in three-
dimensional space. See text for details.

line segment O P measured from the z axis (with 0 ≤ θ ≤ π), and φ

is the azimuthal angle of the line segment O P measured from the x
axis to its orthogonal projection on the xy plane (with 0 ≤ φ < 2π)
[see Figs. 1.1 and 8.6]. The spherical coordinates (r, θ , φ) of a point
are related to its Cartesian coordinates (x , y, z) by

r =
√

x2 + y2 + z2, θ = arctan

√
x2 + y2

z
, φ = arctan

y
x

.
(8.47)

In the above expressions arctan denotes the inverse tangent
function. We recall that the tangent function is the ratio of the sine
function to the cosine function [see Box 2.3]. Just as the square
root function y =

√
x is defined such that y2 = x , the function

y = arctan x is defined such that tan y = x . Conversely, the Cartesian
coordinates (x , y, z) can be obtained from the spherical coordinates
(r, θ , φ) by

x = r sin θ cos φ , y = r sin θ sin φ , z = r cos θ . (8.48)

We note that relations like those in the above two expressions
that describe conversions between two coordinate systems of the
same space are called coordinate transformations. Some elementary
properties of the coordinate transformation between Cartesian and
spherical coordinates can be found in Boxes 8.2 and 8.3.
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Box 8.2 Spherical coordinates I

Ir is well known that in Cartesian coordinates the basis vectors
ex , ey , and ez, i.e., the unit vectors in the x , y, and z directions
are position independent [see Boxes 1.1 and 3.1]. However, this
in general is not true in spherical coordinates. The spherical
basis {er , eθ , eφ} can be expressed in terms of the Cartesian basis
{ex , ey , ez} as [see Fig. 8.6]

er = sin θ cos φ ex + sin θ sin φ ey + cos θ ez, (8.49a)

eθ = cos θ cos φ ex + cos θ sin φ ey − sin θ ez, (8.49b)

eφ = − sin φ ex + cos φ ey . (8.49c)

It is easy to check that {er , eθ , eφ} is indeed an orthonormal basis.
The inverse of the above transformation can be written as

ex = sin θ cos φ er + cos θ cos φ eθ − sin φ eφ , (8.50a)

ey = sin θ sin φ er + cos θ sin φ eθ + cos φ eφ , (8.50b)

ez = cos θ er − sin θ eθ . (8.50c)

Note that the cross products among the Cartesian basis vectors
are [see Box 8.1]

ex × ey = ez, ey × ez = ex , ez × ex = ey , (8.51)

while those among the spherical basis vectors are

er × eθ = eφ , eθ × eφ = er , eφ × er = eθ . (8.52)

Using Eqs. (8.49), we find that the coordinate derivatives of the
basis vectors er , eθ , and eφ are given by

∂er

∂r
= 0,

∂er

∂θ
= eθ ,

∂er

∂φ
= sin θ eφ , (8.53a)

∂eθ

∂r
= 0,

∂eθ

∂θ
= −er ,

∂eθ

∂φ
= cos θ eφ , (8.53b)

∂eφ

∂r
= 0,

∂eφ

∂θ
= eθ ,

∂eφ

∂φ
= −(sin θ er + cos θ eθ ). (8.53c)

In other words, er , eθ , and eφ are invariant under radial
translation (the first column in the above equations), but not
under rotation (the second and third columns in the above
equations).
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Box 8.3 Spherical coordinates II

Here we derive the useful relations between the differential oper-
ators in Cartesian coordinates and those in spherical coordinates.
From the transformation (8.47), we have [see Problem 8.9]

∂r
∂x

= sin θ cos φ ,
∂θ

∂x
= 1

r
cos θ cos φ,

∂φ

∂x
= −1

r
sin φ

sin θ
,

(8.54a)
∂r
∂y

= sin θ sin φ ,
∂θ

∂y
= 1

r
cos θ sin φ ,

∂φ

∂y
= 1

r
cos φ

sin θ
,

(8.54b)
∂r
∂z

= cos θ ,
∂θ

∂z
= −1

r
sin θ ,

∂φ

∂z
= 0, (8.54c)

where use has been made of the formula
d

dx
arctan x = 1

1 + x2 (8.55)

and the inverse transformation (8.48). Using the chain rule for
partial derivatives [see Eq. (6.75)], we can write ∂/∂x , ∂/∂y, and
∂/∂z in terms of ∂/∂r , ∂/∂θ , and ∂/∂φ as

∂

∂x
= ∂r

∂x
∂

∂r
+ ∂θ

∂x
∂

∂θ
+ ∂φ

∂x
∂

∂φ

= sin θ cos φ
∂

∂r
+ cos θ cos φ

r
∂

∂θ
− sin φ

r sin θ

∂

∂φ
, (8.56a)

∂

∂y
= ∂r

∂y
∂

∂r
+ ∂θ

∂y
∂

∂θ
+ ∂φ

∂y
∂

∂φ

= sin θ sin φ
∂

∂r
+ cos θ sin φ

r
∂

∂θ
+ cos φ

r sin θ

∂

∂φ
, (8.56b)

∂

∂z
= ∂r

∂z
∂

∂r
+ ∂θ

∂z
∂

∂θ
+ ∂φ

∂z
∂

∂φ

= cos θ
∂

∂r
− sin θ

r
∂

∂θ
. (8.56c)

The inverse relations can be obtained by solving the above
equations for ∂/∂r , ∂/∂θ , and ∂/∂φ. The relations (8.56) are of
great use in expressing the Cartesian components of the orbital
angular momentum L̂x , L̂y , and L̂z in terms of the spherical
coordinates r , θ , and φ [see Problem 8.10].
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In spherical coordinates the angular momentum eigenfunctions
are given by

ψlm(r, θ , φ) = ⟨r, θ , φ|l , m⟩. (8.57)

In order to find ψlm(r, θ , φ) we need to solve the eigenvalue
equations (8.25) and (8.44) in spherical coordinates (which is a
kind of position representation). From the expressions (8.15) for
the angular momentum components L̂x , L̂y , and L̂z in Cartesian
coordinates and the relations (8.56), after some tedious algebra [see
Problem 8.10] we can rewrite L̂z and L̂

2
in spherical coordinates as

L̂z = −i! ∂

∂φ
, (8.58a)

L̂
2 = −!2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
, (8.58b)

where extensive use has been made of the chain rule of partial
derivatives. Note that the above equations only depend on the angles
θ and φ. Indeed, the use of spherical coordinates is advantageous
because it allows the factorization of the angular momentum
eigenfunction ψlm(r, θ , φ) into the radial (depending on r) and
angular (depending on both θ and φ) parts as

ψlm(r, θ , φ) = f (r)Ylm(θ , φ). (8.59)

Collecting the results (8.58) and (8.59), we find that the eigenvalue
equations (8.25) and (8.44) in spherical coordinates reduce to

L̂zYlm(φ , θ) = m!Ylm(φ , θ), (8.60a)

L̂
2
Ylm(φ , θ) = l(l + 1)!2Ylm(φ , θ), (8.60b)

where it is noted that the radial part f (r) has been canceled
out in the above expressions. Therefore, angular momentum
eigenfunctions are actually independent of the radial coordinate r ,
which in turn allows us to rewrite the eigenfunctions in a simpler
form as

Ylm(φ , θ) = ⟨θ , φ|l , m⟩. (8.61)

We note that such a simplification is not unexpected, as we have seen
at the end of Section 8.2 that the magnitude squared of a spatial
vector (or, equivalently, the radial distance of a point) is invariant
under rotations.
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Since the eigenfunctions Ylm(φ , θ) represent the probability
amplitudes whose square moduli yield the angular probability
distributions of finding the system under consideration, the fact that
the latter should take unique values means that Ylm(φ , θ) be single-
valued functions of θ and φ. Mathematically, this is tantamount to
the requirement that l and m are integers. A detailed analysis of the
eigenvalue equations (8.60) shows the possible values of l and m are
given by

l = 0, 1, 2, . . . and m = l , l − 1, . . . , −l + 1, −l , (8.62)

which are the same results we have obtained in the previous section.
In mathematical terms the angular momentum eigenfunctions
Ylm(φ , θ) are known as the spherical harmonics [see Box 8.4], which
are important in many theoretical and practical applications in
physics and engineering.

The names s–states (or s–waves), p–states (or p–waves), d–
states (or d–waves), and f –states (or f –waves) are used to refer
to angular momentum eigenstates with quantum number l = 0,
1, 2 and 3, respectively. The symbols s , p, d, and f stand for the
terms sharp, principal, diffuse, and fundamental, respectively, which
are derived from the characteristics of their spectroscopic lines. The
rest angular momentum eigenstates with higher azimuthal quantum
numbers are named in subsequent alphabetical order.

Problem 8.9 The advanced reader may try to derive transforma-
tions (8.54). (Hint: This derivation is not easy. We suggest here a
simplified method that allows to derive the derivatives in Eqs. (8.54)
and (8.56). To this purpose, make use of derivatives of the form

∂

∂r j
= ∂r

∂r j

∂

∂r
+ ∂ cos θ

∂r j

∂

∂ cos θ
+ ∂ tan φ

∂r j

∂

∂ tan φ
,

where j = x , y, z with rx corresponding to x , ry to y, and rz to
z, and we have taken advantage of the following expressions r =√

x2 + y2 + z2, cos θ = z/
√

x2 + y2 + z2, and tan φ = y/x , which
can be obtained from Eqs. (8.47) and (8.48).)

Problem 8.10 The advanced reader may try to derive Eqs. (8.58).
(Hint: Start with the relations (8.56) and try to express the Cartesian
components of the orbital angular momentum L̂x , L̂y , and L̂z in terms
of the spherical coordinates r , θ , and φ.)
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Box 8.4 Spherical harmonics

The spherical harmonics are defined by

Ylm(θ , φ) = (−1)m

√
(2l + 1)(l − m)!

4π(l + m)!
P m

l (cos θ) eimφ , (8.63)

where P m
l (x) are the associated Legendre polynomials and

defined in terms of the Legendre polynomials Pl (x) by

P m
l (x) = (1 − x2)m/2 dm

dxm Pl (x), Pl (x) = 1
2l l!

dl

dxl (x2 − 1)l .
(8.64)

From the definition, we find the first few spherical harmonics
after some straightforward algebra [see Problem 8.11]. For l = 0
we have

Y0, 0(θ , φ) = 1√
4π

. (8.65)

For l = 1 we have

Y1, 0(θ , φ) =
√

3
4π

cos θ , Y1,±1(θ , φ) = ∓
√

3
8π

sin θ e±iφ .

(8.66)

Final, for l = 2 we have

Y2, 0(θ , φ) =
√

5
16π

(3 cos2 θ − 1), (8.67a)

Y2,±1(θ , φ) = ∓
√

15
8π

sin θ cos θ e±iφ , (8.67b)

Y2,±2(θ , φ) =
√

15
32π

sin2 θ e±2iφ . (8.67c)

It is noted that the use of the plus–minus sign (±) and the minus–
plus sign (∓) in Eqs. (8.66) and (8.67) is a shorthand notation
to present two equations in one expression, in which the upper
and lower signs are interrupted separately and independently.



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

Central Potential and the Hydrogen Atom 223

We summarize here some of the basic properties satisfied by the
spherical harmonics:

Ylm(π − θ , π + φ) = (−1)l Ylm(θ , φ), (8.68a)
∫ 2π

0

∫ π

0
Y ∗

lm(θ , φ)Yl ′m′ (θ , φ) sin θdθdφ = δll ′δmm′ , (8.68b)

∞∑

l=0

l∑

m=−l

Ylm(θ , φ)Y ∗
lm(θ ′, φ′) = δ(cos θ − cos θ ′)δ(φ − φ′).

(8.68c)

It is noted that the last two equations above are respectively a
reformulation of the orthonormal conditions and completeness
relation for the angular momentum eigenstates [see Eqs. (8.38)].

Problem 8.11 The advanced reader may try to derive the first few
spherical harmonics presented in Box 8.4.

8.5 Central Potential and the Hydrogen Atom

So far we have discussed (in Chapter 7) only examples of quantum
systems in one dimension. Equipped with the notion of orbital
angular momentum, we are now in a position to discuss models
of concrete quantum systems in three dimensions. An instructive
model is represented by a particle subject to a central potential.
In specific, we will consider an electron moving in the attractive
Coulomb potential of the proton in a hydrogen atom. What we would
like to do here is to give the reader a feeling of what happens in
the conceptual laboratory of a theory, how ad hoc approximations
are made in order that concrete physical problems are treatable at
all, how very abstract formulations can be translated in capability to
make true predictions, and how complex are the problems faced by
science. Obviously, this is only a feeling. We cannot present all the
very difficult mathematical developments that are employed here.
Therefore, we limit ourselves to a sketchy presentation as we already
did before. However, here, when dealing with the hydrogen atom
things acquire a new light and we hope that the reader will finally
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x

y

z

r

Figure 8.7 Pictorial representation of an electron (white circle) with
negative charge −e orbiting a proton (gray circle) with a positive charge +e
in a hydrogen atom, where e is the elementary positive charge. The electron
wave function is expressed in spherical coordinates as ψ(r, θ , φ), where r
represents the distance of the electron from the proton, whose position is
chosen as the origin, θ is the polar angle, and φ is the azimuthal angle [see
Fig. 8.6].

also enjoy the mathematical apparatus as a way to understand what
science is and does.

A potential energy that depends only on the distance between
particles is called a central potential. In other words, a central
potential for a system of two particles has the form V = V (r), where
r is the distance between the two particles. The hydrogen atom is
a bound state of a proton and an electron. Since the electron is far
less massive than the proton, the relative motion of the latter can be
largely neglected. This is tantamount to choosing the position of the
proton as the origin of the coordinate system [see Fig. 8.7]. Hence the
distance between the electron and the proton, r , is simply the radial
distance of the electron and the central potential V (r) possesses
spherical symmetry. Because of this spherical symmetry, it will
be convenient to solve the problem in spherical coordinates [see
Eqs. (8.47)]. We recall the general expression for the Hamiltonian
(7.8) in three dimensions, in which the Laplacian operator ∇2 [see
Eq. (6.102)] in spherical coordinates (r, θ , φ) can be rewritten as
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(see Problem 8.12, here we spare the reader the lengthy and tedious
derivation)

∇2 = 1
r2

[
∂

∂r

(
r2 ∂

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
.

(8.69)
It follows from Eq. (8.58b) that up to a factor of !2 the angular part of
the Laplacian is the minus of the magnitude squared of the angular
momentum operator. As a result, the three-dimensional Hamiltonian
for a central potential can be written as [see again Eq. (7.8)]

Ĥ = − !2

2m
∇2 + V (r)

= − 1
2m

[
!2

r2

∂

∂r

(
r2 ∂

∂r

)
− 1

r2 L̂
2
]

+ V (r)

= − !2

2mr2

∂

∂r

(
r2 ∂

∂r

)
+ L̂

2

2mr2 + V (r). (8.70)

It is straightforward to check that the operators Ĥ , L̂
2
, and L̂z are

mutually commuting and hence they have common eigenfunctions
(which represents another case of degenerate energy eigenvalues,
as discussed in Section 7.6). Together with the fact that the angular
momentum eigenfunctions are the spherical harmonics Ylm(θ , φ),
this allows us to write the energy eigenfunction ψ(r, θ , φ) in terms
of the spherical harmonics as

ψ(r, θ , φ) = f (r)Ylm(θ , φ), (8.71)

where we need now to consider the radial part f (r) of the energy
eigenfunction (that decoupled in the previous section). This is quite
understandable, since the energy levels obviously depend on the
distance r from the nucleus. However, the above expression allows
us still to factorize the time-independent Schrödinger equation
(7.29) into the angular and radial parts. According to what is
previously said, the angular part of the Schrödinger equation is
the eigenvalue equation for L̂2 in spherical coordinates given by
Eq. (8.60b), while the radial part of the Schrödinger equation takes
the form

− !2

2mr2

∂

∂r

(
r2 ∂

∂r

)
f (r) + l(l + 1)!2

2mr2 f (r) + V (r) f (r) = E f (r),

(8.72)
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where the three terms on the left-hand side correspond to the three
parts in the last line of Eq. (8.70). It may be noted that the square
of the angular momentum contribution (the second term) takes
the form of its eigenvalues l(l + 1)!2 times the parameter 1/2mr2.
Obviously, since the above expression represents the eigenvalue
equation of the Hamiltonian, we have the energy eigenvalue E on
the right-hand side. By performing now a change of variables

f (r) = ξ(r)
r

(r > 0), (8.73)

we can obtain a further simplification of the first term on the left-
hand side of the above equation:

1
r2

∂

∂r

(
r2 ∂

∂r

)
ξ(r)

r
= 1

r2

∂

∂r

(
r2 ∂

∂r
ξ(r)

r

)

= 1
r2

∂

∂r
(
rξ ′(r) − ξ(r)

)

= 1
r
ξ ′′(r) + 1

r2 ξ ′(r) − 1
r2 ξ ′(r)

= 1
r
ξ ′′(r), (8.74)

where ξ ′(r) = dξ(r)/dr , ξ ′′(r) = d2ξ(r)/dr2, and use has been
made of the product rule (6.73) and the quotient rule (6.74) for
derivatives. This result allows us to simplify Eq. (8.72) to

− !2

2m
ξ ′′(r) + !2l(l + 1)

2mr2 ξ(r) + V (r)ξ(r) = E ξ(r). (8.75)

We note that in term of ξ(r) the radial equation (8.75) is formally
identical to the one-dimensional Schrödinger equation (7.28) for a
particle moving in an effective potential given by

Veff(r) = V (r) + l(l + 1)!2

2mr2 . (8.76)

As mentioned, the additional term in the effective potential
originates from the orbital angular momentum of the electron. It is
called the centrifugal potential barrier and, being repulsive, prevents
the electron from reaching the center of the potential.

The previous formalism is fundamental when dealing with the
hydrogen atom. In this case, the parameter m is the election mass
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me = 9.109 × 10−31 kg and the potential energy V (r) is the
celebrated Coulomb potential

V (r) = − 1
4πϵ0

e2

r
, (8.77)

which represents the electrostatic interaction between a proton
with charge e and an electron with charge −e at a distance r from the
proton. In the above expression, while e is the elementary charge,
i.e., the electric charge carried by a proton, ϵ0 is the so-called vacuum
permittivity. Their values in SI units are given by

e = 1.602 × 10−19 C and ϵ0 = 8.854 × 10−12 F · m−1, (8.78)

where C is the symbol for the electric charge unit coulomb and F the
symbol for the capacitance unit farad. Using the Coulomb potential,
the radial equation (8.75), after rearrangement of the terms, can be
rewritten asa

ξ ′′(r) + 2me

!2

[
E + 1

4πϵ0

e2

r
− l(l + 1)!2

2mer2

]
ξ(r) = 0. (8.79)

Fig. 8.8(a) shows that the effective potential resulting from the sum
of the attractive Coulomb potential and the repulsive centrifugal
potential has a well shape. For E < 0 there are discrete bound
states, corresponding to a hydrogen atom in the ground state (i.e.,
the lowest energy state) and the various excited states. A look at
Fig. 8.8 shows that the ground state is when the principal quantum
n = 1, otherwise we have excited states [see also Section 7.7].
Moreover, for E > 0 there is a continuum of unbound states
(that is, the electron has escaped the attractive Coulomb potential
becoming a free particle [see Section 7.6]), corresponding to the
ionized hydrogen atom.

In physics it is always advisable to make equations dimensionless
(not depending on specific physical quantities but pure numbers)
by introducing natural units characteristic to the problem. In the

aOur analysis here assumes that the proton is infinitely massive with respect to the
electron. For actual proton mass mp ≃ 1836 me, the electron mass me that appears
in the Hamiltonian (8.70) should be replaced by the so-called reduced mass

m =
memp

me + mp
≃ 0.995 me,

which to an excellent approximation can be identified with the electron mass.
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Figure 8.8 (a) The effective potential Veff(r) resulting from the sum of
the attractive Coulomb potential and the repulsive centrifugal potential is
plotted schematically for azimuthal quantum number l = 0, 1, 2, and
3. For energy below zero there are discrete bound states, corresponding
to a hydrogen atom in the ground state and the various excited states.
The energies of the lowest four bound states (the ground state and the
first three excited states) are indicated by horizontal dashed lines for
reference. For energy above zero there is a continuum of unbound states,
corresponding to the ionized hydrogen atom. (b) Schematic representation
of the first four energy levels of the hydrogen atom as labeled by the
principal quantum numbers n (indicating the energy of the electron) and
the azimuthal quantum number l (indicating the orbital angular momentum
of the electron). The vertical line with an arrow represents an electron
transition from the n = 2 state to the n = 1 state, with emission of a photon
(illustrated by a wiggly line) of energy /E = E2 − E1 = −R∞/4 + R∞ =
3R∞/4 = 10.2 eV. Adapted from (Auletta, 2011a, p. 162).

present problem, let us first introduce two natural units that can be
built from the physical constants me, !, e, and ϵ0: the natural unit
of length is the Bohr radius a0, and the natural unit of energy is the
Rydberg unit of energy R∞. They are respectively defined by

a0 = 4πϵ0!2

mee2 = 5.29×10−11 m and R∞ = mee4

32π2ϵ2
0!2

= 13.6 eV,

(8.80)
where eV stands for electron volt and is a unit of energy equal to
approximately 1.60217653 × 10−19 J. The Bohr radius is equal to
the most probable distance between the proton and the electron in
a hydrogen atom in its ground state, while the Rydberg constant
measures the ionization energy of a hydrogen atom in its ground
state and hence is related to the ground state energy of the hydrogen
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atom. This allows us now to define the dimensionless variables r̃ and
the dimensionless constant Ẽ :

r̃ = r
a0

, Ẽ = − E
R∞

. (8.81)

In other words, these two quantities are multiples of the above
natural parameters that are therefore considered units of measure.
In what follows we limit ourselves to bound states for which E < 0
and therefore Ẽ > 0, thus the choice of the minus sign. Using the
expression

r2
0

d2

dr2 ξ(r) = d2

dr̃2 ξ(r̃), (8.82)

which is a result of the chain rule (6.75), we can perform a change of
variables and rewrite Eq. (8.79) in terms of the r̃ as

[
d2

dr̃2 − l(l + 1)
r̃2 + 2

r̃
− Ẽ

]
ξ(r̃) = 0. (8.83)

It is crucial in the following development to introduce the dimen-
sionless quantity n that is related to Ẽ by

n = 1√
Ẽ

. (8.84)

We will see below that n takes only positive integer values and is the
quantum number that labels the orbital levels [see Fig. 8.8]. Since it
is always convenient to write the unknown function in a differential
equation in terms of an exponential multiplied by another function,
here we adopt the assumption that ξ(r̃) is of the forma

ξ(r̃) = r̃ l+1e− r̃
n W(r̃), (8.85)

from which we can obtain a reformulation of the radial equation in
terms of the function W(r̃) as [see Problem 8.14]

r̃W ′′(r̃) + 2
(

l + 1 − r̃
n

)
W ′(r̃) + 2(n − l − 1)

n
W(r̃) = 0. (8.86)

With another change of variables

η = 2r̃
n

, (8.87)

aWe note that the form of ξ (̃r) in Eq. (8.85) is actually an informed guess that is based
on the asymptotic behavior of ξ (̃r) for both small r̃ (i.e., r̃ → 0) and large r̃ (i.e.,
r̃ → ∞).
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we finally obtain the desired equation

ηW ′′(η) + [2(l + 1) − η]W ′(η) + (n − l − 1)W(η) = 0, (8.88)

where the derivatives of W(η) are now taken with respect to η. In
mathematically terms, the above equation is called the associated
Laguerre equation.

From the physical requirement that energy eigenfunction
ψ(r, θ , φ) should satisfy the normalization condition [see Eqs. (8.71)
and (8.68b) as well as Section 6.3]

∫
|ψ(r, θ , φ)|2d3r =

∫ ∞

0
| f (r)|r2dr = 1, (8.89)

we find that W(η) cannot grow faster than e
η
2 as η → ∞, which

in turn implies that n − l − 1 has to be a non-negative integer and
that W(η) is in fact a polynomial in η [see Box 8.5]. The resultant
polynomials are called the associated Laguerre polynomials. Since
the azimuthal quantum number l is a non-negative integer, it follows
that n must be a positive integer, i.e., n = 1, 2, . . . , and that for n
fixed the allowed values of l cannot be greater than n − 1, i.e., we
have l ≤ n − 1.

Then, given the definitions (8.81) and (8.84), for each value of n
the corresponding energy eigenvalue En is given by

En = − R∞

n2 = −13.6 eV
n2 (n = 1, 2, 3, . . . ). (8.90)

The number n is called the principal quantum number, which as can
be seen from the above equation determines the energy eigenvalues
of the hydrogen atom. Therefore, the radial energy eigenfunction
are categorized by the quantum numbers n and l and denoted
by fnl (r), while the full energy eigenfunction are categorized by
the quantum numbers n, l , and m and denoted by ψnlm(r, θ , φ). In
physical terms, the quantum numbers n, l , and m correspond to
the electron’s energy, angular momentum, and angular momentum
component in an arbitrary direction (conventionally called the z
direction), respectively. We note that the energy eigenvalue En

does not depend on the azimuthal quantum number l and the
magnetic quantum number m. In other words, there may be
energy eigenstates with the same value of n but different values
of l and m that have the same energy eigenvalue En. These
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Box 8.5 Radial wave functions of the hydrogen atom

To find the solution of the associated Laguerre equation (8.88),
we assume that the solution W(η) can be represented by a power
series of the form

W(η) =
∞∑

j=0

c j η
j , (8.91)

where c j are coefficients to be determined. The derivatives of
W(η) with respect to η are given by

W ′(η) =
∞∑

j=1

j c j η
j−1, W ′′(η) =

∞∑

j=2

j( j − 1)c j η
j−2. (8.92)

Substituting the above expressions into Eq. (8.88), we find the
following recurrence relation between successive coefficients:

c j+1 = j + l + 1 − n
( j + 1)[ j + 2(l + 1)]

c j ( j = 0, 1, 2, . . . ). (8.93)

For instance, the first three coefficients are given by

c0, c1 = l + 1 − n
2(l + 1)

c0, c2 = l + 2 − n
2(2l + 3)

c1. (8.94)

If we arbitrarily fix c0, then all c j can be obtained from c0. For
j ≫ 1 (i.e., j is much greater than 1), we have

c j+1 ≃ 1
j

c j or c j ≃ 1
j !

c0, (8.95)

which leads to [see Eq. (6.93)]

W(η) ≃
∞∑

j=1

1
j !

η j ≃ c0eη . (8.96)

This implies that for η → ∞ we have [see Eq. (8.85)]

ξ(η) ≃ c0e−η/2eη ≃ c0eη/2, (8.97)

which fails to satisfy the normalization condition for ψ(r, θ , φ)
[see Eq. (8.89)]. The only way to avoid the exponential divergence
is to have the series (8.91) terminate at some integer j = k, which
could happen only if n = l + 1 + k, where k is a non-negative
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integer. In order to get an idea how the polynomial solution is
obtained, we consider the simplest case n = 1 and l = 0. From
Eq. (8.93), we have c j = 0 for j ≥ 1, which leads to W(η) =
c0 and ξ(r̃) = c0r̃e−r̃ [see Eqs. (8.91) and (8.85)] Therefore, we
obtain f10(r) = c e−r/a0 [see Eq. (8.73)], where the constant c
is fixed by the normalization condition (8.89). The solutions for
other values of n and l can be obtained in a similar manner [see
Problem 8.16].

energy eigenstates are referred to as degenerate energy eigenstates
and we say that the hydrogen atom’s energy levels have degeneracy
(as already anticipated). Moreover, since for fixed n the allowed
values of l are given by l = 0, 1, . . . , n − 1 and since for fixed l there
are 2l + 1 possible values for m [see Eq. (8.37)], it follows that there
are n2 degenerate energy eigenstates corresponding to the energy
eigenvalue En [see Problem 8.15].

The energy eigenfunctions ψnlm(r, θ , φ) are usually called the
atomic orbitals. Orbitals with the same value of n are said to
comprise an electron shell. Hence the quantity n2 indicates the
number of orbitals in the nth shell. The ground state (i.e., the lowest
energy state) of the hydrogen atom is categorized by n = 1 and l = 0
and is non-degenerate. The first excited state is categorized by n = 2
and l = 0, 1 and has four-fold degeneracy. The energy level diagram
of the hydrogen atom is schematically depicted in Fig. 8.8(b). Unlike
the energy levels of a harmonic oscillator, which are equally spaced,
the energy levels of the hydrogen atom become more and more
dense as n goes to infinity, i.e., as the energy approaches to the limit
E∞ = 0 This limiting value separates the discrete bound states
(with E < 0) of the hydrogen atom and the continuum unbound
states (with E > 0) of the ionized hydrogen atom, for which the
electron has escaped the electrostatic Coulomb force field of the
proton as it happens, for instance, with the photoelectric effect [see
Section 4.2]. The electron in a hydrogen atom can make a transition
from a higher energy state n to a lower energy state n′ by emitting
a photon of energy /E = En − En′ . The emitted electromagnetic
radiation constitutes the emission spectrum of the hydrogen atom.
The fact that only discrete quanta are allowed in such transitions
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is precisely what ensures the stability of the hydrogen atom by
avoiding the Larmor effect [see again Section 4.2]. Likewise, by
absorbing a photon of energy /E = En − En′ the electron can make
a transition from the lower energy state n′ to the high energy state n.
The absorbed electromagnetic radiation constitutes the absorption
spectrum of the hydrogen atom.

To give some concrete examples we write down the first few
radial eigenfunctions of the hydrogen atom:

f10(r) = 2
(

1
a0

) 3
2

e− r
a0 , (8.98a)

f20(r̃) = 1√
2

(
1
a0

) 3
2
(

1 − r
2a0

)
e− r

2a0 , (8.98b)

f21(r̃) = 1
2
√

6

(
1
a0

) 3
2 r

a0
e− r

2a0 . (8.98c)

A sketch of the derivation of the ground state radial eigenfunction
f10(r) is given in Box 8.5. It is important to understand that we are
considering here only the radial part and not the total eigenfunction.
We recall that the latter has the form given by Eq. (8.71), which now
can be written as

ψnlm(r, θ , φ) = fnl (r)Ylm(θ , φ). (8.99)

For n = 1 and l = m = 0, we obtain the ground state eigenfunction
[see Eq. (8.65)]

ψ100(r, θ , φ) = 1√
π

(
1
a0

) 3
2

e− r
a0 . (8.100)

Moreover, from the normalization condition (8.89) the probability
of finding the electron in the spherical shell enclosed between two
concentric spheres of radii r and r + dr is | fnl (r)|2 r2dr . Hence, we
deduce that the radial probability density is given by

℘nl (r) = | fnl (r)|2 r2. (8.101)

From ℘nl (r) we can determine for each orbital at which distance
from the proton the angular averaged probability of finding
the electron is maximum. The first few radial probability densities
of the hydrogen atom as a function of r are plotted in Fig. 8.9. As can
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Figure 8.9 Plot of the first few radial probability densities of the hydrogen
atom as a function of r̃ : ℘10(r) (solid line), ℘20(r) (dotted line), and ℘21(r)
(dashed line).

be seen in the figure, the most probable distance between the proton
and the electron in a ground-state hydrogen atom is indeed the Bohr
radius.

Problem 8.12 The advanced reader may try to derive Eq. (8.69),
i.e., the Laplacian operator in spherical coordinates. (Hint: Start with
Eq. (6.102) and the relations (8.56).)

Problem 8.13 Express the orbital angular momentum L̂ in spheri-
cal coordinates, that is, find the spherical components of the orbital
angular momentum L̂r , L̂θ , and L̂φ .

Problem 8.14 The reader who has truly assimilated the results so
far can try to derive Eq. (8.86).

Problem 8.15 Show that for the hydrogen atom there are n2 degen-
erate energy eigenstates corresponding to the energy eigenvalue En,
where n = 1, 2, 3, . . . is the principal quantum number.

Problem 8.16 The reader may try to derive the radial eigenfunc-
tions of the hydrogen atom f20(r) and f21(r) up to a normalization
constant.
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8.6 Spin Angular Momentum

One of the most amazing discoveries in quantum mechanics was
the purely quantum mechanical quantity called spin, which is
an intrinsic angular momentum of subatomic particles (like the
electron, proton, neutron, etc.) and therefore also plays an important
role in the hydrogen as well as in other atoms.a The experimental
evidence of spin was first discovered in a series of experiments
performed in 1922 by Stern and Gerlachb in spite of the fact that
they did not realize it was the quantity that we call today spin
that they have observed. In these experiments, a beam of silver
atoms is sent through a strongly inhomogeneous magnetic field
oriented in such a way that the gradient of the magnetic field
[see Section 6.5] is perpendicular to the beam axis. The silver
atoms have a single electron in their outermost shell, and thus the
magnetic moment of the atoms is essentially that of the unpaired
outer electron. As the atoms passed through the region of the
inhomogeneous magnetic field, the gradient of the field causes a
deflection of the atoms according to the orientation of their magnetic
moments. The silver atoms are then deposited on a collector plate
perpendicular to the incoming beam axis [see Fig. 8.10]. The result
showed that the field separates the beam into two distinct parts. This
is an experimental evidence for quantization of angular momentum,
indicating that the angular momentum and the associated magnetic
moment of the electron had two possible projections along the
direction of the external field. Not knowing the orbital angular
momentum of the silver atom is actually zero, Stern and Gerlach
erroneously attributed the twofold splitting to a quantized orbital
angular momentum of magnitude ! as presumed in the Bohr model.
In 1925, Goudsmit and Uhlenbeck postulated that the electron had
an intrinsic angular momentum, called the spin angular momentum,
which is independent of orbital characteristics and assume only two
discrete values.c This, together with the discovery in 1927 that the

aWe should have indeed already considered spin in our discussion of the hydrogen
atom, but a full treatment of the spin effects goes far beyond the scope of this book.
Nevertheless, a highly simplified treatment of the electron spin is provided in p. 239.

b(Gerlach/Stern, 1922a), (Gerlach/Stern, 1922b), (Gerlach/Stern, 1922c).
c(Uhlenbeck/Goudsmit, 1925), (Uhlenbeck/Goudsmit, 1926).
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Figure 8.10 Schematic setup of the Stern–Gerlach experiment. A beam of
silver atoms is sent through a strongly inhomogeneous magnetic field with
the gradient ∂ B/∂z perpendicular to the beam axis. The beam is separated
into two distinct parts on the collector plate due to quantization of the spin
angular momentum and the associated magnetic moment of the electron.
See text for details.

orbital angular momentum and the associated magnetic moment of
the silver atom is zero, eventually led to a reinterpretation of the
double splitting as really due to spin.a

The spin operator is denoted by Ŝ and its Cartesian components
by Ŝx , Ŝy , and Ŝz. Being an angular momentum, the spin operator Ŝ
satisfies the commutation relations that are also valid for the orbital
angular momentum operator L̂ [see Eqs. (8.22)], namely,

[
Ŝx , Ŝy

]
= i!Ŝz,

[
Ŝy , Ŝz

]
= i!Ŝx ,

[
Ŝz, Ŝx

]
= i!Ŝy . (8.102)

Similarly, the magnitude squared of the spin operator, defined by

Ŝ
2 = Ŝ2

x + Ŝ2
y + Ŝ2

z , (8.103)

commutes with each of the components of the spin operator, that is,
we have

[
Ŝ

2
, Ŝ j

]
= 0, (8.104)

where j = x , y, z. Analogous to the case of the orbital angular
momentum, let the common eigenstates of the operators Ŝ

2
and Ŝz

aFor a very readable historical account of the Stern–Gerlach experiment, see
(Friedrich/Herschbach, 2003).
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be denoted by |s, ms⟩, where s is the spin quantum number and ms

is the spin magnetic quantum number. Following the same analysis
presented in Section 8.3 by introducing the spin raising and lowering
operators

Ŝ± = Ŝx ± iŜy , (8.105)

we find that the eigenvalue equations for Ŝz and Ŝ
2

are respectively
given by

Ŝz|s, ms⟩ = ms!|s, ms⟩, (8.106a)

Ŝ
2|s, ms⟩ = s(s + 1)!2|s, ms⟩, (8.106b)

where

s = 0,
1
2

, 1,
3
2

, . . . and ms = s, s − 1, . . . , −s + 1, −s.
(8.107)

For the electron we have s = 1
2 and ms = ± 1

2 , corresponding the two
possible spin states observed in the Stern–Gerlach experiment.

The spin is an important intrinsic degree of freedom of subatomic
particles and it enters in a huge number of experimental and
theoretical problems. In the spin 1

2 case (i.e., for s = 1
2 ), it

is convenient to write the spin eigenstates | 1
2 , 1

2 ⟩ and | 1
2 , − 1

2 ⟩
respectively as |↑z⟩ and |↓z⟩, namely, we have

Ŝz|↑z⟩ = !
2

|↑z⟩, and Ŝz|↓z⟩ = −!
2

|↓z⟩. (8.108)

They are usually referred to as the spin up and spin down states in the
z direction, respectively. They also constitute an orthonormal basis
of the two-dimensional Hilbert space, called the spin 1

2 space, and
therefore can be written as

|↑z⟩ =
(

1
0

)
and |↓z⟩ =

(
0
1

)
. (8.109)

In the following we shall often omit the subscript referring to the
direction whenever no confusion may arise. In the basis {|↑z⟩, |↓z⟩},
the operators Ŝx , Ŝy , and Ŝz are represented by

Ŝx = !
2

σ̂x , Ŝy = !
2

σ̂y , Ŝz = !
2

σ̂z. (8.110)
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The matrices σ̂x , σ̂y , and σ̂z are called the Pauli matrices (or Pauli
operators)a

σ̂x =
[

0 1
1 0

]
, σ̂y =

[
0 −i
i 0

]
, σ̂z =

[
1 0
0 −1

]
. (8.111)

These matrices are both Hermitian and unitary, and therefore satisfy
the following important properties:

σ̂ 2
x = σ̂ 2

y = σ̂ 2
z = Î , (8.112a)

σ̂ j σ̂k + σ̂kσ̂ j = 2δ jk Î , (8.112b)

[σ̂x , σ̂y] = 2iσ̂z, [σ̂y , σ̂z] = 2iσ̂x , [σ̂z, σ̂x ] = 2iσ̂y , (8.112c)

where j, k = x , y, z and Î is the 2 × 2 identity matrix. It is
noted that Eqs. (8.112c) are a restatement of the commutation
relations (8.102) for s = 1

2 [see Problem 8.18]. The eigenvalues and
eigenstates of Ŝx and Ŝy satisfy the eigenvalue equations

Ŝx |↑x⟩ = !
2

|↑x⟩, Ŝx |↓x⟩ = −!
2

|↓x⟩, (8.113a)

Ŝy |↑y⟩ = !
2

|↑y⟩, Ŝy |↓y⟩ = −!
2

|↓y⟩, (8.113b)

where

|↑x⟩ = 1√
2

(|↑z⟩ + |↓z⟩) , |↓x⟩ = 1√
2

(|↑z⟩ − |↓z⟩) , (8.114a)

|↑y⟩ = 1√
2

(|↑z⟩ + i|↓z⟩) , |↓y⟩ = 1√
2

(|↑z⟩ − i|↓z⟩) . (8.114b)

When taking into account of the spin degree of freedom, the state
vector of (e.g., a spin 1

2 ) particle is generalized to

|ψ⟩ = |ψ↑⟩ ⊗ |↑z⟩ + |ψ↓⟩ ⊗ |↓z⟩, (8.115)

or in component form [see Eq. (8.109)]

|ψ⟩ =
(

|ψ↑⟩
|ψ↓⟩

)
. (8.116)

The corresponding wave function in position space ψ(r) = ⟨r|ψ⟩
can be expressed as a two-component spinor of the form

ψ(r) =
(

ψ↑(r)
ψ↓(r)

)
, (8.117)

a(Pauli, 1927).
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where ψ↑(r) = ⟨r|ψ↑⟩ and ψ↓(r) = ⟨r|ψ↓⟩ are the (spatial)
wave functions associated with the spin up and spin down states,
respectively. As a simple example let us go back to the problem of the
hydrogen atom discussed in the previous section. Since the Coulomb
potential is independent of spin, so is the energy eigenvalue En [see
Eq. (8.90) and comments]. Therefore, the energy eigenfunctions now
take the form [see Eq. (8.99)]

ψnlmσ (r, θ , φ) = fnl (r)Ylm(θ , φ)χσ , (8.118)

where σ = 1
2 , − 1

2 is the spin magnetic quantum number and χσ are
the spinors (which coincide with the vectors in Eq. (8.109))

χ 1
2

=
(

1
0

)
and χ− 1

2
=

(
0
1

)
. (8.119)

It is easy to see that for the hydrogen atom the inclusion of the
electron spin doubles the degeneracy of the energy eigenvalue En

from n2 to 2n2. In other words, the electron in the hydrogen atom
may flip its spin without changing its energy.a

Just as the orbital angular momentum is the generator of
rotations in real space, the spin angular momentum is the generator
of rotation in spin space. By analogy with Section 8.2, the rotation
operator in spin space about a direction n (which is a unit vector) by
an angle φ is given by the unitary operator [see Eq. (8.19)]

Û (s)
n (φ) = e− i

! φn·Ŝ, (8.120)

where s in the superscript denotes the spin quantum number and
n · Ŝ = nx Ŝx + ny Ŝy + nzŜz with n2

x + n2
y + n2

z = 1. For the spin 1
2 case,

we have

Û (1/2)
n (φ) = e− i

2 φn·σ̂

= cos
φ

2
Î − i sin

φ

2
n · σ̂ , (8.121)

aWe remind the reader that the actual energy levels of the hydrogen atom are much
more complicated and the degeneracy is “lifted” by effects due to the relativistic
motion of the electron, the proton spin, etc.
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where σ̂ = (σ̂x , σ̂y , σ̂z) and

n · σ̂ = nx σ̂x + nyσ̂y + nzσ̂z

= nx

[
0 1
1 0

]
+ ny

[
0 −i
i 0

]
+ nz

[
1 0
0 −1

]

=
[

nz nx − iny

nx + iny −nz

]
. (8.122)

In obtaining the second equality in Eq. (8.121), use has been made
of Eq. (2.18) and the identity

(a · σ̂ )(b · σ̂ ) = (a · b) Î + iσ̂ · (a × b), (8.123)

where a and b are spatial vectors. It is noted that this identity can be
derived from the properties (8.112a) and (8.112b). For a rotation of
angle φ about the z axis we have

Û (1/2)
z (φ) = cos

φ

2
Î − i sin

φ

2
σ̂z

=
[

cos φ
2 − i sin φ

2 0

0 cos φ
2 + i sin φ

2

]

=
[

e− i
2 φ 0

0 e
i
2 φ

]
, (8.124)

while for rotations about the x and y axes we have

Û (1/2)
x (φ) = cos

φ

2
Î − i sin

φ

2
σ̂x =

[
cos φ

2 −i sin φ
2

−i sin φ
2 cos φ

2

]
, (8.125a)

Û (1/2)
y (φ) = cos

φ

2
Î − i sin

φ

2
σ̂y =

[
cos φ

2 − sin φ
2

sin φ
2 cos φ

2

]
, (8.125b)

where we have used the Pauli matrices (8.111). Moreover, for φ = π

we find from Eq. (8.121) that

Û (1/2)
x (π) = −i σ̂x , Û (1/2)

y (π) = −i σ̂y , Û (1/2)
z (π) = −i σ̂z.

(8.126)
Therefore, for spin 1

2 , up to a global phase factor the Pauli matrices
σ̂x , σ̂y , and σ̂z are the respective rotation operators by an angle π

about the x , y, and z axis. For later convenience, the actions of the
Pauli matrices on the states |↑z⟩ and |↓z⟩ are tabulated in Table 8.1.
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Table 8.1 The actions of the Pauli matrices
on the spin up and spin down states in the
z direction

σ̂x |↑z⟩ = |↓z⟩ σ̂x |↓z⟩ = |↑z⟩

σ̂y |↑z⟩ = i|↓z⟩ σ̂y |↓z⟩ = −i|↑z⟩

σ̂z|↑z⟩ = |↓z⟩ σ̂z|↓z⟩ = −|↑z⟩

The rotation operator allows us to obtain the spin states in an
arbitrary direction n from those in the z axis by rotations that
align the z axis with n. A convenient choice that is consistent with
the Euler angles is to perform two successive rotations, namely, a
rotation about the y axis followed by a rotation about the z axis.
Let n be the unit vector in the direction specified by the angles θ

and φ in Fig. 8.6 (with er = n), i.e., in component form we have
n = (sin θ cos φ , sin θ sin φ , cos θ). Then the combined rotation that
aligns the z axis with n is given by a rotation of the angle θ about the
y axis followed by a rotation of the angle φ about the z axis, i.e.,

D̂(1/2)(θ , φ) = Û (1/2)
z (φ)Û (1/2)

y (θ)

=
[

e− i
2 φ 0

0 e
i
2 φ

] [
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]

=
[

e− i
2 φ cos θ

2 −e− i
2 φ sin θ

2

e
i
2 φ sin θ

2 e
i
2 φ cos θ

2

]
, (8.127)

which is called the rotation matrix for spin 1
2 . Hence, the spin up and

spin down states in the direction n are respectively given by

|↑n⟩ = D̂(1/2)(θ , φ)|↑z⟩

=
[

e− i
2 φ cos θ

2 −e− i
2 φ sin θ

2

e
i
2 φ sin θ

2 e
i
2 φ cos θ

2

](
1
0

)

=
(

e− i
2 φ cos θ

2

e
i
2 φ sin θ

2

)
, (8.128a)
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|↓n⟩ = D̂(1/2)(θ , φ)|↓z⟩

=
[

e− i
2 φ cos θ

2 −e− i
2 φ sin θ

2

e
i
2 φ sin θ

2 e
i
2 φ cos θ

2

](
0
1

)

=
(

−e− i
2 φ sin θ

2

e
i
2 φ cos θ

2

)
. (8.128b)

It is straightforward to check that the states |↑n⟩ and |↓n⟩ are
eigenstates of the operator

Ŝn = Ŝ · n = !
2

[
cos θ e−iφ sin θ

eiφ sin θ − cos θ

]
, (8.129)

and the corresponding eigenvalues are given by !/2 and −!/2,
respectively.

We end this section by showing that spin superposition states
can be built experimentally from the basis states |↑z⟩ and |↓z⟩. Let
us consider a Mach–Zehnder type interferometer experiment shown
in Fig. 8.11. A beam of spin 1

2 particles (say, neutrons) in the spin
up state in the z direction is split into two beams at the first beam
splitter BS1, a variable one with the respective transmission and
reflection coefficients given by T = cos θ

2 and R = sin θ
2 (where

0 ≤ θ ≤ π is some parameter) [see Section 5.5]. Then, a spin flipper
SF flips the spin of the upper beam to the spin down state in the z
direction. After reflections at two mirrors M1 and M2, a phase shifter
PS shifts the phase of the upper beam by a relative phase φ (where
0 ≤ φ < 2π). Finally, the two beams are recombined at the second
beam splitter BS2, which is a 50–50 one, and subsequently detected
at two detectors D1 and D2. The initial state of the particles may be
described by [see Eq. (8.109)]

|i⟩ = |d⟩ ⊗ |↑z⟩, (8.130)

where |d⟩ describes the spatial part (as that for the photon in the
usual Mach–Zehnder interferometer) and |↑z⟩ the spin part of the
particle’s state. The action of the first beam splitter BS1, the spin

a(Summhammer et al., 1983).
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BS1

BS2

PS

M2

M1

x

y

z

SF

D2

D1

Figure 8.11 Schematic setup for realization of spin superposition through
a Mach–Zehnder type interferometer. See text for details. For θ = π

2 and φ =
0, the spin of the outgoing particles is in the x direction as shown here. In
the actual experimental setup, spin superposition is realized through single-
crystal neutron interferometry.a

flipper SF, and the phase shifter PS can be written as [see Eq. (5.8)]

|i⟩ BS1−−→
(

cos
θ

2
|d⟩ + sin

θ

2
|u⟩

)
⊗ |↑z⟩

SF−→ cos
θ

2
|d⟩ ⊗ |↑z⟩ + sin

θ

2
|u⟩ ⊗ |↓z⟩

PS−−→ cos
θ

2
|d⟩ ⊗ |↑z⟩ + eiφ sin

θ

2
|u⟩ ⊗ |↓z⟩. (8.131)

The effect of the second beam splitter BS2 is to recombine
the two beams and therefore create superposition. From the
transformations (2.26) and (2.27) on |d⟩ and |u⟩ induced by BS2, we
find that the final state of the particles after they leave BS2 is given
by

| f ⟩ = 1√
2

[
cos

θ

2
(|1⟩ + |2⟩) ⊗ |↑z⟩ + eiφ sin

θ

2
(|1⟩ − |2⟩) ⊗ |↓z⟩

]
,

= 1√
2

[
|1⟩ ⊗

(
cos

θ

2
|↑z⟩ + eiφ sin

θ

2
|↓z⟩

)

+ |2⟩ ⊗
(

cos
θ

2
|↑z⟩ − eiφ sin

θ

2
|↓z⟩

)]
, (8.132)

where in the second equality we have rewritten the result in terms
of the spin superposition states. It is instructive to consider some
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representative values of the parameter θ and the phase shift φ. For
θ = π

2 and φ = 0 the final state is given by

| f ⟩θ= π
2 ,φ=0 = 1√

2

[
|1⟩ ⊗ 1√

2
(|↑z⟩ + |↓z⟩) + |2⟩ ⊗ 1√

2
(|↑z⟩ − |↓z⟩)

]

= 1√
2

(|1⟩ ⊗ |↑x⟩ + |2⟩ ⊗ |↓x⟩) , (8.133)

where we have use Eq. (8.114a). Similarly, for θ = φ = π
2 we have

| f ⟩θ=φ= π
2
= 1√

2

[
|1⟩ ⊗ 1√

2
(|↑z⟩ + i|↓z⟩) + |2⟩ ⊗ 1√

2
(|↑z⟩ − i|↓z⟩)

]

= 1√
2

(
|1⟩ ⊗ |↑y⟩ + |2⟩ ⊗ |↓y⟩

)
, (8.134)

where use has been made of Eq. (8.114b). Indeed, it can be seen from
Eqs. (8.128) that by tuning the parameter θ and the phase shift φ, we
are able to create spin superposition states (up to a global phase)
such that the spin of the outgoing particles is along an arbitrary
direction n.

Problem 8.17 Show that in the basis {|↑z⟩, |↓z⟩}, the operator Ŝ
2

is
given in matrix form by

Ŝ
2 = 3!2

4

[
1 0
0 1

]
.

Problem 8.18 Using the Pauli matrices given by Eq. (8.111), verify
the commutation relations (8.112c).

8.7 Addition of Angular Momenta

Very often we need to consider the total orbital angular momentum
L̂1 + L̂2 of a system of two particles (1 and 2), the total spin angular
momentum Ŝ1 + Ŝ2 of two particles (1 and 2), or the total angular
momentum L̂ + Ŝ of a particle with spin. In these situations we shall
deal with the problem of how to add two angular momenta. The
formalism of angular momentum addition is very general, so we will
follow the usual convention to denote a generic angular momentum
by Ĵ, which could be orbital (L̂), spin (Ŝ), or some combined quantity
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(e.g., L̂ + Ŝ). Consider the addition of two angular momenta Ĵ1 and
Ĵ2:

Ĵ = Ĵ1 + Ĵ2, (8.135)

where the respective angular momentum quantum numbers
( j1, m1) and ( j2, m2) associated with Ĵ1 and Ĵ2 are known (they can
therefore mean azimuthal quantum number and magnetic quantum
number, spin quantum number and spin magnetic quantum number,
or also any combination pair by pair). The operators Ĵ1 and Ĵ2
commute as they refer to two independent particles or two different
properties of the same particle. This implies that the components of
Ĵ obey the commutation relations (8.22) [see Problem 8.19]. Let us
denote the quantum numbers associated with Ĵ by ( j, m), then our
goal is to find the possible values of j and m in terms of j1, m1, j2,
and m2.

We first note that the common eigenstates of Ĵ
2
1, Ĵ 1z, Ĵ

2
2, and Ĵ 2z

are the product states

| j1, m1; j2, m2⟩ = | j1, m1⟩ ⊗ | j2, m2⟩. (8.136)

From Eq. (8.135), the z component of Ĵ is given by

Ĵ z = Ĵ 1z + Ĵ 2z, (8.137)

which upon acting on | j1, m1; j2, m2⟩ yields

Ĵ z| j1, m1; j2, m2⟩ = ( Ĵ 1z + Ĵ 2z)| j1, m1⟩ ⊗ | j2, m2⟩
= (m1 + m2)!| j1, m1⟩ ⊗ | j2, m2⟩
= (m1 + m2)!| j1, m1; j2, m2⟩. (8.138)

It is noted that Ĵ 1z acts only on | j1, m1⟩ and Ĵ 2z acts only on
| j2, m2⟩. Hence, the state | j1, m1; j2, m2⟩ is an eigenstate of Ĵ z with
the eigenvalue given by (m1 + m2)!. The generalization of this
examination is shown in Box 8.6.

Here, we consider the simplest (but a very important) case
j1 = j2 = 1

2 . This case corresponds to the total spin of two
spin 1

2 particles, and therefore we will change the notation to that
commonly used for spins. With the possible values of ms1 and
ms2 given by 1

2 , − 1
2 , we find that the total spin magnetic quantum

number ms can take four possible values, namely, ms = 1, 0, 0, −1,
where we note that the value zero appears twice [see Table 8.2]. This
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Table 8.2 Possible values of m
for j1 = j2 = 1

2

m1 m2 m

1
2

1
2 1

1
2 − 1

2 0

− 1
2

1
2 0

− 1
2 − 1

2 −1

in turn means that the possible values of the total spin quantum
number s are given indeed by s = 1, 0. For s = 1 we have ms =
1, 0, −1 and the common eigenstates |s, ms⟩ of Ŝ

2
and Ŝz are given

by [see Eq. (8.141)]

|s = 1, ms = 1⟩ = |s1, ms1 ; s2, ms2⟩ =
∣∣∣∣

1
2

,
1
2

;
1
2

,
1
2

〉

= |↑z⟩1 ⊗ |↑z⟩2, (8.139a)

|s = 1, ms = 0⟩ = 1√
2

(
|s1, ms1 ; s2, ms2⟩ + |s1, ms1 ; s2, ms2⟩

)

= 1√
2

(∣∣∣∣
1
2

,
1
2

;
1
2

, −1
2

〉
+

∣∣∣∣
1
2

, −1
2

;
1
2

,
1
2

〉)

= 1√
2

(|↑z⟩1 ⊗ |↓z⟩2 + |↓z⟩1 ⊗ |↑z⟩2) ,

(8.139b)

|s = 1, ms = −1⟩ = |s1, ms1 ; s2, ms2⟩ =
∣∣∣∣

1
2

, −1
2

;
1
2

, −1
2

〉

= |↓z⟩1 ⊗ |↓z⟩2. (8.139c)

For s = 0 we have ms = 0 and the common eigenstate |s, ms⟩ of Ŝ
2

and Ŝz is [see Eq. (8.141)]

|s = 0, ms = 0⟩ = 1√
2

(
|s1, ms1 ; s2, ms2⟩ − |s1, ms1 ; s2, ms2⟩

)

= 1√
2

(∣∣∣∣
1
2

,
1
2

;
1
2

, −1
2

〉
−

∣∣∣∣
1
2

, −1
2

;
1
2

,
1
2

〉)

= 1√
2

(|↑z⟩1 ⊗ |↓z⟩2 − |↓z⟩1 ⊗ |↑z⟩2) . (8.140)
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Box 8.6 Clebsch–Gordan coefficients

Let us denote the common eigenstates of Ĵ
2

and Ĵ z by | j, m⟩.a

From Eq. (8.138) and the superposition principle [see Principle
2.1] we can express | j, m⟩ as

| j, m⟩ =
∑′

− j1≤m1≤ j1
− j2≤m2≤ j2

C j, j1, j2
m, m1, m2

| j1, m1; j2, m2⟩, (8.141)

where the constants C j, j1, j2
m, m1, m2

are called Clebsch–Gordan coef-
ficients and a prime on the summation symbol means the
summation over m1 and m2 is subject to the constraint m1 +m2 =
m. So the relation between m1, m2, and m is given by

m = m1 + m2. (8.142)

This result implies that the number of possible values of m is the
product of those of m1 and m2, i.e., (2 j1 + 1)(2 j2 + 1). Since j is
defined to be the maximum of m, one would expect that j = j1 +
j2. This however is not correct because if it were the case then the
number of possible values of m would be 2 j + 1 = 2( j1 + j2) + 1,
instead of the actual number (2 j1+1)(2 j2+1). A detailed analysis
shows that the possible values of j are given by

j = j1 + j2, j1 + j2 − 1, . . . , | j1 − j2| + 1, | j1 − j2|, (8.143)

and to each value of j there are 2 j + 1 possible values of m given
by

m = j, j − 1, . . . , − j + 1, − j. (8.144)

The total number of possible values of m is then given by
j1+ j2∑

j=| j1− j2|
(2 j + 1) = (2 j1 + 1)(2 j2 + 1), (8.145)

which agrees with the result we obtained above.

aMore precisely, we should consider the common eigenstates | j1, j2, j, m⟩ of Ĵ
2
1,

Ĵ
2
2, Ĵ

2
, and Ĵ z. This however does not change our discussion and conclusions.

Therefore, | j, m⟩ can be thought of as a shorthand for | j1, j2, j, m⟩.
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For obvious reasons, the state with total spin s = 1 is called a triplet
state, while the state with total spin s = 0 is called a singlet state.
It is noted that the states |1, 0⟩ and |0, 0⟩ are entangled states [see
Section 7.9]. The spin entanglement is revealed by the fact that when
particle 1 is found in the spin up state, particle 2 is in the spin down
state and vice versa. These entangled states are of great importance
in the measurement problem and quantum information.

Problem 8.19 Using the fact that the two angular momentum
operators Ĵ1 and Ĵ2 commute, show that the total angular momentum
operator Ĵ = Ĵ1 + Ĵ2 qualifies as a true angular momentum because
its components obey the commutation relations [ Ĵ x , Ĵ y] = i! Ĵ z,
[ Ĵ y , Ĵ z] = i! Ĵ x , and [ Ĵ z, Ĵ x ] = i! Ĵ y .

Problem 8.20 Consider a system of two spin 1
2 particles that is in

the spin singlet state |6⟩ given by Eq. (8.140). An observer, called
Alice, will measure the spin of particle 1, while another observer,
called Bob, will measure the spin of particle 2.

(a) What is the probability for Alice to obtain S1z = !
2 when Bob

makes no measurement?
(b) Repeat (a) for for Alice to obtain S1x = !

2 .
(c) Bob measures the spin of particle 2 and obtains S2z = !

2 , then
Alice measures S1z of particle 1. What can we conclude about
the outcome of Alice’s measurement?

(d) Repeat (c) if Alice measures S1x = !
2 ?

8.8 Identical Particles and Spin

Until now, apart from the last section our focus has been on the
study of quantum mechanics of a single particle. For instance,
we have considered the dynamics of a free particle, a harmonic
oscillator, and the only electron in a hydrogen atom. However, most
physical systems involve interaction of many particles, e.g., electrons
in a solid, atoms in a gas, etc. In quantum mechanics, particles
of the same type cannot be distinguished from one another, even
in principle. This is because they have the same intrinsic physical
properties, such as mass, electric charge, and spin, and according
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to Heisenberg’s uncertainty principle [see Principle 6.1], it is not
possible to ascribe a definite trajectory to a quantum particle. The
indistinguishable particles are therefore referred to as identical
particles.

An important consequence of particle indistinguishability is that
the state vectors representing physical states of a system of identical
particles have to satisfy certain symmetry requirements. For the
sake of simplicity let us consider a system of two noninteracting
identical particles. Suppose that one particle is in the state |a⟩ and
the other is in the state |b⟩. Since the particles are indistinguishable,
we do not know which particle is in the state |a⟩ and which particle
is in the state |b⟩. Hence the two-particle system could be in the state
|a⟩1 ⊗ |b⟩2 or in the state |b⟩1 ⊗ |a⟩2, where the subscripts 1 and 2
denote particle 1 and particle 2, respectively. From the superposition
principle [see Principle 2.1], it follows that the state of the system
|ψ⟩ is a superposition state of the form

|ψ⟩ = α|a⟩1 ⊗ |b⟩2 + β|b⟩1 ⊗ |a⟩2, (8.146)

where α and β are coefficients with |α|2 + |β|2 = 1. Now consider
the situation that we could interchange the two particles and denote
the resultant state of the system by |ψ ′⟩, i.e.,

|ψ⟩ P̂12−−→ |ψ ′⟩ = α|b⟩1 ⊗ |a⟩2 + β|a⟩1 ⊗ |b⟩2, (8.147)

where P̂12 is the particle exchange operator which exchanges the
coordinates and spins of particle 1 and particle 2. Since identical
particles are indistinguishable, the exchange of them cannot be
detected by measurements. To put it another way, interchange of
identical particles does not alter the physical states of the system.
Therefore, the states vectors |ψ⟩ and |ψ ′⟩ differ only by a global
phase φ [see Section 5.2]. So we have

|ψ ′⟩ = eiφ|ψ⟩, (8.148)

or equivalently,

α = eiφβ and β = eiφα. (8.149)

The above coupled equations implies that

α = ±β. (8.150)
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For α = +β , we have the symmetric state vector

|ψ⟩S = 1√
2

(|a⟩1 ⊗ |b⟩2 + |b⟩1 ⊗ |a⟩2), (8.151)

which does not change sign under exchange of particles and is an
eigenstate of the exchange operator P̂12 with eigenvalue +1. For α =
−β , we obtain the antisymmetric state vector

|ψ⟩A = 1√
2

(|a⟩1 ⊗ |b⟩2 − |b⟩1 ⊗ |a⟩2), (8.152)

which changes sign under exchange of particles and is an eigenstate
of the exchange operator P̂12 with eigenvalue −1.

The above analysis can be generalized to systems of N identical
particles. Following the distinction between symmetric and anti-
symmetric state vectors, particles can be categorized into two main
groups according to their spin:

(i) Bosons, derived from the name of the Indian physicist Bose,a are
described by symmetric state vectors and have integer spin.

(ii) Fermions, derived from the name of the Italian physicist Fermi,b

are characterized by antisymmetric state vectors and have half-
integer spin.

All observed elementary and composite particles are either bosons
or fermions. Elementary bosons include the photon, gluons, and W
and Z bosons, and there are two types of elementary fermions:
quarks (of which protons and neutrons are composed) and
leptons (which include the electron and electron neutrino). To
date, all known matter is made up of elementary fermions while
the fundamental forces are mediated by elementary bosons [see
Box 8.7].

Composite particles can either be bosons or fermions depending
on their spins. From the addition rule of angular momenta [see
Eq. (8.143)], it follows that composite bosons are made up of
constituent bosons or an even number of constituent fermions,
and composite fermions consist of an odd number of constituent
fermions. For example, the proton and neutron each contains three
quarks and are fermions, and the pion and kaon each contains
two quarks (more precisely, one quark and one antiquark) and are

a(Bose, 1924).
b(Fermi, 1926).
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Box 8.7 Elementary particles

The observed elementary particles include elementary fermions
(six quarks and six leptons) and elementary bosons (three
kinds). The names and symbols of the observed elementary
particles are listed in the following table.

Fermions Bosons

Quarks (q) Leptons (l)

up (u), down (d) electron (e−), electron

neutrino (νe)

photon (γ )

charm (c), strange (s) muon (µ−), muon neutrino

(νµ)

W , Z bosons (W± , Z 0)

top (t), bottom (b) tau lepton (τ−), tau

neutrino (ντ )

gluons (eight types) (g)

The photon and gluons are massless, while the other
elementary particles all have mass. All leptons and quarks are
spin 1

2 particles, and all elementary bosons are spin 1 particles.
The electron, muon, and tau lepton all have a charge of −1 (in
units of the elementary charge [see Eq. (8.78)]), and all neutrinos
are electrically neutral. Quarks have fractional electric charge:
up, charm, and top quarks have a charge of + 2

3 , while down,
strange, and bottom quarks have a charge of − 1

3 . The elementary
bosons are force carriers: the photon carries electromagnetic
force, the W and Z bosons carry the weak force, responsible
for the radioactive decay, nuclear fission, and nuclear fusion, and
the gluons carry the strong force, responsible for the stability of
atomic nuclei. The photon, Z boson, and gluons are electrically
neutral, while the W+ and W− bosons have a charge of +1 and
−1, respectively.

For each elementary particles there is a corresponding
antiparticle with the same mass and spin, but opposite electric
charge. The photon, Z boson, and gluons are their own antiparti-
cles, and the W+ and W− bosons are particle and antiparticle of
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each other. Antiparticles of leptons are known as antileptons (l̄);
antiparticles of quarks are called antiquarks (q̄). For instance, the
antiparticle of the electron is the positron (e+), the antiparticle
of the electron neutrino is the electron antineutrino (ν̄e), the
antiparticle of the up quark is the anti–up quark (ū). However,
it is an open question whether the neutrinos are their own
antiparticles.

An elementary boson called the Higgs boson is hypothesized
to explain why other elementary particles have mass. It is
theorized to be a massive particle of spin 0. A huge experimental
effort has been devoted since 2009 to the search for the Higgs
boson at the Large Hadron Collider (LHC), located at the Eu-
ropean Organization for Nuclear Research (CERN) near Geneva,
Switzerland. In July 2012, CERN announced an observation of a
new particle consistent with the Higgs boson. Later on in March
2013, CERN confirmed that the new particle is a Higgs boson.a

Up-to-date information on the state of Higgs boson discovery can
be found at the web pages of the ATLASb and CMSc collaborations.

aThe 2013 Nobel prize in physics has been awarded to two physicists for their
work on the theory of the Higgs boson.

bhttp://atlas.ch
chttp://cms.cern.ch

therefore bosons. Moreover, the helium–4 (4He) atom, consisting
of two protons, two neutrons and two electrons is a boson, while
the helium–3 (3He) atom, made up of two protons, one neutron,
and two electrons is a fermion. Composite bosons are important in
superconductivity, superfluidity, and applications of Bose–Einstein
condensates.

Let us examine the situation if two fermions are placed in the
same state. By setting |a⟩ = |b⟩ in Eq. (8.152), we would obtain
|ψ⟩A = 0 identically, meaning that such a state cannot exist. This
result is an expression of the celebrated exclusion principle, which
was first formulated by Pauli in 1925.a

Principle 8.1 (Exclusion) No two identical fermions may occupy the
same quantum state.

a(Pauli, 1925).
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This principle is of fundamental importance and has profound
consequences in a wide variety of systems involving identical fermi-
ons, ranging from nuclear physics and atomic physics to condensed
matter physics and astrophysics. As a simple illustrative example, let
us consider a system of 2N noninteracting identical fermions of spin
1
2 trapped in a harmonic potential well. The Pauli exclusion principle
implies that each energy level of the harmonic oscillator can be occu-
pied at most by two fermions, one in the spin up state and the other
in the spin down state. Hence, the ground state of the system is the
state in which the lowest N energy levels of the harmonic oscillator
are all filled, while all higher energy levels are empty. In other words,
many of the fermions are forced into higher energy levels. When this
happens the fermions are said to be degenerate. The ground state
energy of the degenerate fermion system is given by

E0(N) = 2
N−1∑

n=0

(
n + 1

2

)
!ω = N2!ω, (8.153)

where ω is the angular frequency of the harmonic oscillator. On the
other hand, if the 2N particles were distinguishable, then the ground
state of the system would be the state in which all the particles
occupy the lowest energy level of the harmonic oscillator. In this case
the ground state energy of the system would become

2N
(

1
2

!ω

)
= N!ω, (8.154)

which for large N is much smaller than E0(N). This significant
increase in the ground state energy for systems of noninteracting
identical fermions gives rise to the so-called degeneracy pressure.
In fact, compact stars like white dwarfs and neutron stars are sup-
ported from further gravitational collapse by degeneracy pressure
of the electrons and the neutrons, respectively.

8.9 Summary

In this chapter we have

• Introduced the angular momentum as the generator of rota-
tions.
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• Derived the commutation relations for components of the
angular momentum.

• Studied in a very sketchy way the eigenvalues and eigenfunc-
tions of the angular momentum operator.

• Considered the problem of a particle in a central potential
and applied the formalism to study the energy eigenvalues and
eigenfunctions of the hydrogen atom.

• Introduced the new quantum observable spin and the associ-
ated quantum numbers.

• Learned rules for addition of angular momenta.
• Introduced the spin singlet state and spin triplet state.
• Discussed the relation between identical particles and spin.
• Introduced the concept of bosons and fermions, and formulated

the Pauli exclusion principle.
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Chapter 9

Measurement Problem

In this chapter we shall consider one of the most difficult problems
of quantum mechanics, that is, how it is possible that we have a
dynamics ruled by a reversible equation but we obtain random
irreversible events when measuring. Many different interpretations
have been provided for solving this puzzle. We will discuss some of
them by starting with the von Neumann’s projection postulate, one
of the first attempts to address the measurement problem and its
implications. The role played by the environment in the concept of
measurement is then emphasized. We shall also introduce entropy
as a measure of the average information content. Finally, the famous
Schrödinger’s cat paradox will be examined.

9.1 Statement of the Problem

As mentioned, the problem of measurement in quantum mechanics
is one of the most difficult and controversial ones, and shows many
subtleties that are puzzling even for the great minds of quantum
physics. However, it also raises so many fundamental and conceptual
questions of both physical and philosophical order that make this

Quantum Mechanics for Thinkers
Gennaro Auletta and Shang-Yung Wang
Copyright c⃝ 2014 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4411-71-4 (Hardcover), 978-981-4411-72-1 (eBook)
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subject fascinating. To understand what is the basic problem here,
let us consider a simple superposition of the kind [see Eq. (2.10)]:

|ψ⟩ = cd |d⟩ + cu|u⟩, (9.1)

where cd , cu are probability amplitudes with |cd|2 + |cu|2 = 1, and
|d⟩, |u⟩ are orthonormal states

|d⟩ =
(

1
0

)
, |u⟩ =

(
0
1

)
. (9.2)

It is always possible to prepare a system in this state, for instance
by using appropriate beam splitter or polarization filter, as shown
in the first part of the book [see, for instance, Sections 2.3 and
3.2]. We now desire to measure the observable whose eigenstates
(possible outcomes) are precisely |u⟩ and |d⟩. In other words, in the
case of interferometry, we wish to know whether the photon is in
either the upper or lower path, which is well possible with certain
experimental setups [see Section 5.6]. We know very well that we
can obtain the probabilities of finding |u⟩ or |d⟩ by computing the
square moduli of the respective amplitudes, that is, |cd |2 and |cu|2

[see Section 2.4]. Obviously, any difference in the probabilities is
due to a difference in the transmission and reflection coefficients
of the beam splitter [see Section 5.5], according to which kind of
experimental setup one chooses. However, we also know that the
results of our measurement themselves are, in any case, random,
which allows us to treat this problem in the most elementary terms.
So, suppose that we get the state |d⟩. The difficulty here is that there
is no unitary transformation such that

|ψ⟩ −→ |d⟩. (9.3)

This is a serious problem since, as we have seen in Chapter 7,
time evolution of quantum systems is unitary (and therefore also
reversible). We could have better said that the transition (9.3) is
not unitary apart from some very particular circumstances. Let us
examine again the action of the beam splitter as a unitary operator
[see Section 4.6]. As mentioned, we like to reduce the problem to the
most simple terms and therefore we shall assume that cu = cd =

1√
2

. With this assumption, now let us consider what happens if we
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perform the inverse transformation on a superposition state given
by Eq. (9.1), namely, on the state

|ψ⟩ = 1√
2

(
1
1

)
. (9.4)

In particular, we would like to know if we are able to recover the
state |d⟩. To this purpose, we need to use the conjugate transpose of
the unitary operator Û BS [see Eq. (4.35)], which here coincides with
the latter (i.e., Û †

BS = Û BS). Then, we obtain

Û BS|ψ⟩ = 1√
2

[
1 1
1 −1

]
1√
2

(
1
1

)

= 1
2

(
2
0

)
=

(
1
0

)

= |d⟩. (9.5)

Therefore, in some conditions we can obtain an eigenstate from
an initial superposition state through a unitary transformation.
However, we were able to do that here only because we know the
initial superposition state (i.e., the coefficients of the superposition)
and are therefore able to apply a suitable transformation. In the
general case, when there is an arbitrary superposition (which is
likely unknown, otherwise to measure the system makes no sense),
we cannot obtain such a result. This is evident by the fact that we
cannot use the same transformation Û BS to get the alternative output
|u⟩. In this case, we should have used instead the transformation

Û ′
BS = 1√

2

[
1 −1
1 1

]
, (9.6)

which is still unitary but different from the previous one. The reason
for this situation is simple. By having a look at Fig. 9.1, it is evident
that to bring the state |ψ⟩ to coincide with the state |d⟩ we need
a clockwise rotation by the angle θ . Even in the case in which the
superposition is 50–50, to bring the state vector |ψ⟩ to coincide
with the state vector |u⟩ we need a rotation with an opposite
sign (a counterclockwise one). The case is even worser when the
superposition is not 50–50 as it is the case for Fig. 9.1, that is, when
the angle between |ψ⟩ and |d⟩ is different from that between |ψ⟩ and
|u⟩. In other words, there does not exist a single unitary operation
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Figure 9.1 Unitary transformation of a state vector |ψ⟩ making and angle θ

with the state |d⟩.

that transforms an arbitrary superposition state into its component
states. Therefore, we are allowed to say that measurement in
quantum mechanics is not ruled by a unitary transformation, i.e.,
not by the Schrödinger equation [see Section 7.3], and therefore its
outcomes are random and unpredictable.

Problem 9.1 Which is the key factor in the chosen transformation
Û BS that allows us to obtain the result (9.5)?

Problem 9.2 Apply the unitary operator Û ′
BS to the state |ψ⟩ given

by Eq. (9.4) to obtain the state |u⟩.

Problem 9.3 Find the conjugate transpose of the operator Û ′
BS and

show that Û ′
BS is unitary.

9.2 Density Matrix and Projectors

The previous analysis raises the question of what kind of process
measurement is. Formally, the process of measurement can be
expressed in a very precise way by making use of a certain operation
on the density matrix. For the state vector |ψ⟩ given by Eq. (9.1), the
corresponding density matrix is ρ̂ = |ψ⟩⟨ψ |. Let us represent the
result of a measurement in the following way:

ρ̂ ′ = P̂d ρ̂ P̂d + P̂uρ̂ P̂u

= |d⟩⟨d|
(

cd|d⟩ + cu|u⟩
)(

⟨d|c∗
d + ⟨u|c∗

u
)
|d⟩⟨d|

+ |u⟩⟨u|
(

cd|d⟩ + cu|u⟩
)(

⟨d|c∗
d + ⟨u|c∗

u
)
|u⟩⟨u|

= |cd|2|d⟩⟨d| + |cu|2|u⟩⟨u|
= |cd|2 P̂d + |cu|2 P̂u , (9.7)



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

Density Matrix and Projectors 261

where the result is clearly a mixture [see Section 7.8]. This is
quite natural, since we expect interdependence (as represented by
the off-diagonal terms) in the density matrix that are associated
with quantum features to disappear. Indeed, in such a case the
quantum mechanical problem of measurement will reduce to a
treatable classical case, in which the different outcomes have a
certain probability to occur [see Section 7.9]. The reason for the
fact that we obtain a mixture here is that projectors are not unitary
operator and, in the general case, we cannot know the initial state
transformed by a projector by considering only the projected state
[see again Section 7.8]. This is geometrically evident, since different
state vectors can project on the same vector, i.e., on the same state
[see also Fig. 3.3].

In order to go further with our examination, it is important to
recall the concept of the expectation value of the observable being
measured, which can also be expressed in terms of the density
matrix as [see Eq. (7.113)]

〈
Ô
〉

ρ̂
= Tr(ρ̂ Ô). (9.8)

The probability of obtaining the event described by the projector P̂ j

given the initial state ρ̂ of the system can be written as

℘ j = Tr(ρ̂ P̂ j ). (9.9)

Suppose now that, given the state ρ̂ of the system, the quantum
detection event P̂ j actually occurs, that is, the probability ℘ j of the
event P̂ j is nonzero or Tr(ρ̂ P̂ j ) ̸= 0. According to von Neumann,a

given that the initial state of the system is ρ̂ and the event P̂ j has
occurred, then the state of the system after the detection event is
given by

ρ̂ j = P̂ j ρ̂ P̂ j

Tr(ρ̂ P̂ j )
. (9.10)

Moreover, it can be shown that ρ̂ j is again a density matrix. From the
above expression, it follows that we can rewrite Eq. (9.7) in term of
ρ̂d and ρ̂u as [see Eq. (9.9)]

ρ̂ ′ = ℘d ρ̂d + ℘uρ̂u . (9.11)

a(Von Neumann, 1932).



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

262 Measurement Problem

In fact, in the general case we have

ρ̂ ′ =
∑

j

P̂ j ρ̂ P̂ j =
∑

j

|c j |2 P̂ j =
∑

j

℘ j ρ̂ j , (9.12)

where j is an index over a complete set of projectors, ℘ j = |c j |2 are
a shorthand notation for the probabilities of the kind shown before,
and the ρ̂ j ’s can be computed according to Eq. (9.10). As we will see
in the following section, these formulas help us understand how a
final single detection event (here denoted by P̂ j ) can be obtained
starting with an initial superposition state or a pure state.

Problem 9.4 Explain why the density matrix ρ̂ ′ given by Eq. (9.7)
represents a mixture.

9.3 Projection Postulate

In 1932, von Neumann postulated that a transformation like
Eq. (9.7) or (9.10) characterizes measurement in quantum mechan-
ics, an assumption that was called projection postulate.a In specific,
von Neumann stated that there are two different time evolutions in
quantum mechanics:

(i) The unitary evolution ruled by the Schrödinger equation, which
is deterministic, continuous, linear, and reversible.

(ii) The projection-like transformation occurring during a mea-
surement, which is random, discontinuous, non-linear, and
irreversible [see also Section 6.9].

Von Neumann called the latter reduction of the wave packet since we
pass from a multicomponent superposition to one of its components,
as it is again evident by Eq. (9.10) or Fig. 3.3. Since he was unable
to find a physical justification for the latter, von Neumann became
convinced that such a process could not happen spontaneously
in nature without the involvement of the mind. The reason for
assuming this was that a human observer is always present when
there is a measurement process and apparently it is the only non-
physical reality involved in such a process. However, von Neumann

a(Von Neumann, 1932).
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was not at all clear about the role of the observer’s consciousness,a

whether

(i) to attribute to it a real power of intervention on the physical
reality from the outside, or

(ii) to confine its capabilities to a sort of illusory depiction of
the physical world, whilst this was still ruled by the ordinary
Schrödinger equation.

It is interesting to note that since the times of Descartes one
has debated whether or not the mind could intervene on the
physical reality from the outside. For most scholars (among them
Leibnizb) this would clearly represent a violation of the closure of
the causes in the physical world.c With this expression we mean the
epistemological requirement that all physical phenomena must be
explained with physical causes or factors, without any recurrence to
causes or factors that either cannot be explained in physical terms
(at least for our current state of knowledge) or pertain to scientific
domains that are not ruled directly by physical laws, like psychology.

The two possible interpretations of von Neumann’s postulate
soon split physicists into the subjectivist and objectivist parties.
There is a considerable amount of subjectivist interpretations.d

The first consistent proposal of this kind can be found in a work
written by London and Bauer.e These authors developed a very
detailed analysis of the measurement process including a specific
treatment of the apparatus and its connections with the object
system. They remarked that when measuring a system prepared
in a superposition state (9.1), according to the laws of quantum
mechanics such a superposition should affect somehow also the
apparatus, so that we should have the transformation

|ψ⟩|A0⟩ −→ cd |d⟩|ad⟩ + cu|u⟩|au⟩, (9.13)

where |ad⟩ and |au⟩ are the apparatus states corresponding
respectively to the system states |d⟩ and |u⟩. It is evident that the

a(Tarozzi, 1996).
b(Leibniz PS).
c(Kim, 1984).
d(Auletta, 2004c).
e(London/Bauer, 1939).
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transformed state is an entangled state. Here, we have assumed
that the apparatus is in an initial ready state |A0⟩ and, for the
sake of simplicity, we have also suppressed the direct product
symbol, but we stress that the apparatus kets |ad⟩ and |au⟩ and
the system kets |d⟩ and |u⟩ pertain to two different Hilbert spaces
(or subspaces). The state obtained on the right-hand side of the
transformation in Eq. (9.13) is really puzzling. On the one hand, it
establishes an unequivocal connection between states of the object
system and states of the apparatus. Indeed, to each measured state
of the object system there is a corresponding pointer state of the
apparatus. However, it also seems to imply that the apparatus is in
a superposition of different pointer states [see Section 7.9], which
is clearly absurd, since we expect from an apparatus to provide us
with a specific and univocal answer (either u or d). Moreover, as a
matter of fact, an ambiguous apparatus has never been observed.
London and Bauer were perfectly aware of the circumstance that if
we compute the density matrix of the transformed object system–
apparatus composite system

ρ̂AS = |cd |2 |d⟩⟨d| ⊗ |ad⟩⟨ad| + |cu|2 |u⟩⟨u| ⊗ |au⟩⟨au|
+ cdc∗

u|d⟩⟨u| ⊗ |ad⟩⟨au| + c∗
dcu|u⟩⟨d| ⊗ |au⟩⟨ad| (9.14)

and take a partial trace over the object system S [see again
Section 7.9], we obtain a mixture of the type given by Eq. (9.7). That
is, we have

ρ̂A = TrS ρ̂AS

= ⟨d|ρ̂AS |d⟩ + ⟨u|ρ̂AS |u⟩
= |cd|2 |ad⟩⟨ad | + |cu|2 |au⟩⟨au|. (9.15)

The crucial question for them was the physical meaning of such an
operation which apparently is only a mathematical one. The global
pure state contains the whole information that is in the composite
system at a certain time. This information is never accessible in its
totality [see Section 6.9]. When we consider the apparatus alone, we
do not take into account a significant part of the information, namely,
the part represented by quantum features (that contribute to the
quantum interdependence between the apparatus and the object
system) and therefore we only take into account a small subset of the
whole information. In general, a mixture represents less information
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than a pure state. The part that we do not consider is precisely what
is inaccessible to us and cannot be obtained under any circumstance
(i.e., the quantum features). On the other hand, a mixture like ρ̂A in
Eq. (9.15) could correspond to the classical probability distribution
between heads and tails before tossing a coin. Therefore, it satisfies
our expectation of how an apparatus works, namely, to respond to
certain measurement outcomes in an univocal way.

Summing up, we can have the desired classical result but this
is obtained at a certain cost since a mixture like ρ̂A in Eq. (9.15)
represents a state of diminished information as compared with the
entangled state on the right-hand side of the transformation (9.13).
London and Bauer considered this as a very relevant problem.
In a certain sense it is. However, as we shall show below, this
is also the solution of the problem. We also remark that London
and Bauer considered a mixture like ρ̂A in Eq. (9.15) a sort of
transitory (though mysterious) state and not as the final result
of a measurement. Indeed, following the initial approach of von
Neumann, they considered only one of the two eigenstates, either
|au⟩ or |ad⟩, to be such a final result (representing a single detection
event). Therefore, they concluded that it is only the observer that
is able to chose one of the two components of the initial entangled
state, since it is only the observer that, when seeing one of the
two apparatus states above, can say, for instance, “I perceive the
apparatus as being in the state |au⟩ and therefore the object system
must be in the physical state |u⟩.” However, according to London and
Bauer this should not be understood in solipsistic terms either, since
we can communicate this experience to any member of the scientific
community so that everybody is free to personally verify that the
apparatus is indeed in such a state. Such an interpretation has then
been further developed by Wignera and even acquired subsequently
a certain authority among physicists and philosophers.

The opposite orientation has been provided by the objectivist
interpretation. In this case the mind only gives rise to an illusionary
or partial image of reality. The first proposal in this sense goes
back to a 1957 paper of Everett,b but this interpretation could

a(Wigner, 1961).
b(Everett, 1957).
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also be considered an original development of some of Einstein’s
ideas that will occupy us below. The main idea of Everett is as
follows. The reduction of the wave packet never actually happens
but what physically occurs is only the establishment of a correlation
between observed system and apparatus given by Eq. (9.13) that
he called the relative state. The fact that we perceive only a
component of the superposition as the outcome of a measurement
is, according to Everett, only due to the particular perspective
under which we consider the composite system. This means that
for Everett all components of the entangled state on the right-
hand side of the transformation (9.13) are always and equally
real. B. DeWitt has developed this interpretation, giving rise to
the so-called many-worlds interpretation, which is quite diffused in
cosmological studies.a It asserts that actually we observe in our
universe a component of some initial state of an object system,
but there are other universes in each of which a counterpart of
ourselves observes another component. Such a theory is reminiscent
of a modal philosophy proposed by Leibniz in his correspondence
with Arnould.b As a matter of fact, Everett’s paper still left open the
possibility to interpret in subjectivist terms the theory of the many
components. This was done in terms of a many-minds theory of the
universe.c It asserts that each component is observed by a different
mind in a different universe or region of the same universe and every
finite mind of this kind is part of an universal Mind (which could
be God or a demiurge) to which the quantum state is immediately
present in all its components. These are really strong speculations
that seem to run against a fundamental principle of economy that
has ruled natural science for centuries, namely, entia non sunt
multiplicanda praeter necessitatem, the so-called Occam’s razor.

9.4 Basis Ambiguity

To many physicists the objectivist interpretation may sound more
reasonable. However, there is a specific problem occurring within

a(Dewitt, 1970).
b(Leibniz PS, v. II).
c(Lockwood, 1996).
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such a context, which is known as basis ambiguity. Such a difficulty
seems to cast doubts on the meaning of measurement as such.a

Let us suppose that we wish to measure a generic observable [see
Eq. (6.13)]

Ô =
∑

j

o j |o j ⟩⟨o j |, (9.16)

where |o j ⟩ are its eigenstates with o j the corresponding eigenvalues.
Suppose that system and apparatus as a whole evolves according to
the transformation

|ψ⟩|A0⟩ −→
∑

j

c j |o j ⟩|aj ⟩, (9.17)

where |ψ⟩ is the initial state of the object system and is a
superposition state of the eigenstates |o j ⟩, |A0⟩ is the initially
ready state of the apparatus, and |aj ⟩ are the pointer states of
the apparatus corresponding to |o j ⟩. As we have seen, Everett
calls such a transformed state a relative state and assumes that
measurement is accomplished already at this stage and nothing
happens thereafter. However, we know that the same state can be
expanded in different bases. Indeed, using the completeness relation

∑

k

|a′
k⟩⟨a′

k| = Î , (9.18)

we can now write the states of the apparatus as [see Section 4.6]

|aj ⟩ =
∑

k

⟨a′
k|aj ⟩|a′

k⟩. (9.19)

Therefore, the laws of quantum mechanics do not forbid us to write
the right-hand side of the transformation (9.17) as

∑

j

c j |o j ⟩|aj ⟩ =
∑

k

(∑

j

c j ⟨a′
k|aj ⟩|o j ⟩

)
|a′

k⟩

=
∑

k

|o′
k⟩|a′

k⟩, (9.20)

In the above expression, the states |o′
k⟩ are given by

|o′
k⟩ =

∑

j

c jk|o j ⟩, (9.21)

a(Zurek, 1981).
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where

c jk = c j ⟨a′
k|aj ⟩. (9.22)

Note that we obtain in the last line of Eq. (9.20) two different bases
for both the object system and the apparatus. This seems to imply
that the relative state on the right-hand side of transformation (9.17)
represents not only measurement of the observable Ô but also of the
new observable

Ô′ =
∑

j

o′
j |o′

j ⟩⟨o′
j |, (9.23)

which in general does not commute with Ô. Therefore, there seems
to be a confusion here between the formal possibility to expand the
joint state of the object system and apparatus in different bases and
the experimental setup for measuring a particular observable. If we
interpret the latter in terms of the former, such a “measurement”
would imply a violation of the uncertainty relations. If, on the
contrary, we interpret the former in terms of the latter, this would
force us to accept a definition of measurement that seems to deprive
it of any significance, since any possible observables would be jointly
measured, which dissolves the very act of decision that is connected
with any experimental operation. In other words, measurement
is by definition an interaction that deals with a certain specific
observable [see Section 6.9], and this is an issue that is much
more fundamental than the question whether we obtain only one
of the components of a certain initial state (according to some
preparation) or not. Namely, it is the step of measurement in
which apparatus and object system become coupled, and is called
premeasurement and should be kept distinguished from the initial
preparation of a system in some superposition of possible outcomes.
Although it is true, at least in principle, that such a premeasurement
step can be made reversiblea (which shows that up to this point
Everett is right with his theory of the relative state), the fact remains
that even in reversible couplings we always deal with a specific
experimental setup (that selects a certain observable and therefore
also a certain basis), and the latter imposes particular physical
conditions that cannot be changed without doing simply another

a(Wang et al., 1991).
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kind of experiment. Summing up, it seems that by trying to face the
impossibility to get an eigenstate of a certain observable through
unitary evolution, Everett and the other objectivists have incurred a
far bigger problem, a confusion between mathematics and dynamics
or also between preparation and premeasurement.

Problem 9.5 Prove that we arrive at a similar result by making the
inverse operation, that is, starting from the expansion in Eq. (9.21)
and the formula |a′

k⟩ =
∑

j |aj ⟩⟨aj |a′
k⟩, and deriving the expansion

on the right-hand side of Eq. (9.17) from the expansion in the last
line of Eq. (9.20).

9.5 Role of the Environment

A different idea about the concept of measurement has been
developed step by step during the 1960s and 1980s, especially as
a consequence of the introduction of quantum optical devices such
as lasers.a The so-called reduction could be the consequence of
a spontaneous coupling of the object system with the apparatus
and the environment, combined with the local interaction which
we perform when measuring. In this case, measurement becomes a
special case of a wider class of interactions between open systems,
that is, those physical systems that are open to the environment.
To this end, let us consider a composite system whose state at time
t0 = 0 takes the form

|6(0)⟩S A E = (cu|u⟩ + cd |d⟩)|A0⟩|E?⟩, (9.24)

where the object system S is prepared in a superposition state of
|u⟩ and |d⟩, the apparatus A is in an initial ready state |A0⟩, and
the environment E is in a unknown state |E?⟩. We have considered
here a two-state system for the sake of simplicity. Now at a certain
later time the apparatus and object system interact, giving rise to
an entangled state. It is this coupling that is called premeasurement
and, as we had seen, it is also the stage that could be still reversible.
We also assume that in a subsequent time t these two systems

a(Zeh, 1970), (Zurek, 1982), (Cini, 1983). See also (Auletta, 2000, Part IV), (Auletta,
2004b).
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become entangled with the environment, so that [see Sections 7.3
and 7.8]

|6(t)⟩S A E = cu(t)|u⟩|au⟩|eu⟩ + cd(t)|d⟩|ad⟩|ed⟩. (9.25)

We can even postulate that all quantum systems of the universe are
more or less entangled. When we say more or less we are referring
to the fact that entanglement has degrees,a an issue that will occupy
us later.

We have also stressed that measurement is local, because it
consists in some operation that we perform on a certain system
with a certain apparatus in a certain place called laboratory. It is
quite common that in such a case we do an extrapolation, that is, we
either are not aware at all of the entanglement with the environment
or decide to do not consider it. Both cases are mathematically
described by a partial trace [see Section 7.9]. To this purpose, let us
write down the density matrix corresponding to the state |6(t)⟩S A E ,
that is,

ρ̂S A E (t) = |6(t)⟩⟨6(t)|S A E , (9.26)

and trace the environment out to obtain

TrE ρ̂S A E (t) = ⟨eu|ρ̂S A E (t)|eu⟩ + ⟨ed |ρ̂S A E (t)|ed⟩
= |cu(t)|2 |u⟩⟨u| ⊗ |au⟩⟨au| + |cd(t)|2 |d⟩⟨d| ⊗ |ad⟩⟨ad |.

(9.27)

This is precisely the kind of state (mixture) that we expect. It is
true that this is not yet a single result, but to observe a specific
outcome (which represents the final step of measurement, i.e.,
detection) starting from a state like this is quite banal from a
classical point of view (however, as we shall discover, quantum
mechanically there is an additional difficulty). Although the previous
entanglement seems to have disappeared, quantum features, as
we shall see below, are not destroyed but simply lost in the
universal quantum noise background of our universe. Since what
decreases by losing quantum feature is the coherence between the
different components of a quantum state, this phenomenon is called
decoherence. This should be a quite common phenomenon as it has
been extensively shown that decoherence is precisely what happens

a(Vedral et al., 1997a).
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in controlled environments when a small quantum system is allowed
to spontaneously evolve in the presence of a large system (like a bath
of harmonic oscillators).a

There is a strong temptation to consider decoherence a pure
mathematical trick, perhaps good for practical purposes but unable
to solve the conceptual problem of measurement. In this case
one has spoken of FAPP (For All Practical Purposes) suitable
explanations of measurement.b We do not think that this is the
case. Actually, decoherence allows us to understand a fundamental
distinction between locality and non-locality that is unknown to
classical physics. Indeed, at a global level (the level of our universe,
ultimately) we can assume that everything happens according to
the laws of quantum mechanics and therefore in a reversible and
deterministic way. At this level, there are no events at all (so
nothing happens in the true sense of the word) but there are only
probabilities amplitudes of events ruled by those laws. At a local
level, instead, random events occur that are locally irreversible. How
is it possible to bring into harmony these two statements? This could
well be if we can account for the concept of local irreversibility.
If different local irreversible process could balance so that the
whole remains unperturbed, this could represent the solution to our
problem.

9.6 Entropy and Information

In order to deal with this problem, let us consider the quantum
mechanical entropy, which is called the von Neumann entropy.
Following the approach of Part II and especially the correspondence
principle [see Principle 7.1], it is always opportune to take into
account a classical analogue. Actually, classically we have at least two
different forms of entropy. The first one is called the Shannon entropy
(also known as the information entropy) and it is very relevant
to the exchange of information. Let us say that we wish to find
a quantitative measure of the information content of a process of

a(Lindblad, 1983), (Savage/Walls, 1985).
b(Bell, 1990).
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information acquisition (reduction of incertitude) J that can yield
certain possible outcomes (selections) j with the corresponding
probabilities ℘( j), where

∑
j ℘( j) = 1. The information content

associated with the outcome j may be quantified by a continuous,
non-negative decreasing function I ( j) of the probability ℘( j) that
the outcome j might occur. To find the function I ( j), we consider
the following two limiting cases. When ℘( j) = 1, we know for
certain the occurrence of the outcome j , so that the associated
information is minimum and we may specify I ( j) = 0 for ℘( j) = 1.
When ℘( j) ≪ 1, we know very little about the occurrence of the
outcome j , so that the associated information is maximum and we
may specify I ( j) → ∞ as ℘( j) → 0.

Next we consider two of such processes of information acqui-
sition J and K that are independent of each other. Then the joint
probability that the outcomes j ∈ J and k ∈ K might occur is
℘( j, k) = ℘( j)℘(k), and the associated information of the joint
outcome is I ( j, k). We stipulate that the information content of two
independent processes be additive, namely, we have

I ( j, k) = I ( j) + I (k), (9.28)

which is valid for all j and k. Together with the above limiting values,
this condition implies that the function I ( j) has to take the form [see
Box 9.1]a

I ( j) = −k log2 ℘( j), (9.29)

where k is a positive constant independent of the probability and the
minus sign is there to ensure that the information is a non-negative
quantity. Indeed, since 0 ≤ ℘( j) ≤ 1, according to Eq. (9.32c),
log2 ℘( j) would be negative except for ℘( j) = 1. A choice of
the constant k amounts to prescribing a unit for the measure of
information. Here we shall choose k = 1, that is,

I ( j) = − lg ℘( j), (9.30)

for which the corresponding unit is called the bit (short for binary
digit). The information content was called by Shannon the surprisal
as it represents the “surprise” of observing the corresponding

aSee (Khinchin, 1957) for short and effective introduction to these matters.
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Box 9.1 Logarithm

The logarithm logb x = y means that b y = x , where the positive
number b is called the base of the logarithm. The logarithm with
base 2 is referred to as the binary logarithm (generally denoted by
lg). It is widely used in computer science and information theory
because of its close connection to the binary numeral system. An-
other important kind of logarithm is the natural logarithm (com-
monly denoted by ln), whose basis is the constant e (≈ 2.718281)
[see Box 2.4]. It is the inverse of the exponential function [see
Fig. 6.2], namely, we have

e ln x = x (x > 0). (9.31)

A plot of the natural logarithm and the binary logarithm is
displayed in Fig. 9.2, which shows clearly that the logarithmic
increase is very slow as compared with the power-law or
exponential increase. The logarithm satisfies the following
properties:

logb 1 = 0, (9.32a)

logb(xy) = logb x + logb y, (9.32b)

logb

(
x
y

)
= logb x − logb y, (9.32c)

logb x p = p logb x , (9.32d)

logb x = loga x
loga b

. (9.32e)

Moreover, it can be shown that

lim
x→0+

x logb x = 0, (9.33)

where x → 0+ denotes that x approaches zero from above (i.e., x
decreases in value approaching zero) and the corresponding limit
is called the one-sided limit.
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Figure 9.2 Plot of the natural logarithm ln x (solid line) and the binary
logarithm lg x (dotted line). Comparing with the plot of the exponential
function in Fig. 6.2, we see that the exponential growth is very fast while
the logarithmic growth is very slow.

outcome. Indeed, the occurrence of a highly improbable outcome is
very surprising while the occurrence of an almost sure outcome is
well expected and causes little or even no surprise at all.a

The classical Shannon entropy associated with the information
acquisition J is defined by the sum of the information contents
over all the possible outcomes weighted by the corresponding
probabilities, that is,

H ( J ) = −
∑

j∈ J

℘( j) lg ℘( j), (9.34)

where
∑

j ℘( j) = 1. In other words, it represents the averaged
incertitude of all the possible outcomes in an information acquisi-
tion process (or of all possible choices that can be done in selecting
certain messages). Entropy, therefore, quantifies the expected value
of the information that could be acquired from a certain system. To
put it another way, entropy quantifies the randomness of the system
from which we extract information. Therefore, entropy is strictly
connected with how much disorder a system displays. In particular,
in a first approximation, increase in entropy means increase in
disorder, while decrease in entropy means growth in order.

The other form of classical entropy is called the Boltzmann
entropy. It appears in thermodynamics and statistical mechanics,

a(Shannon, 1948).
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and deals with disorder of an isolated thermodynamical system
(such as an isolated gas system). In specific, the Boltzmann entropy
of an isolated system of gas is defined by

S = kB ln W, (9.35)
where kB is the Boltzmann constant, whose value in SI units is
kB = 1.380, 6488 × 10−23 J/K, and W is the number of possible
configurations (microstates) of the gas molecules. The Shannon
and the Boltzmann entropies are closely related, especially when
the maximum value of the former is considered.a It can be shown
that the Shannon entropy reaches its maximum value when all
possible outcomes are equiprobable, the situation corresponding
to maximum randomness. Suppose that there are n possible states,
then we have ℘( j) = 1

n for equiprobability and the maximum value
of the Shannon entropy is given by [see Eq. (9.34)]

H Max = −
n∑

j=1

1
n

lg
1
n

= − lg
1
n

n∑

j=1

1
n

= lg n, (9.36)

where use has been made of relation
∑n

j=1
1
n = 1. When dealing

with the Boltzmann entropy of a gas, this corresponds to setting
W = n, that is, there are n possible configurations of the gas
molecules. From the relations between the natural and the binary
logarithms [see Eq. (9.32e)]

ln x = ln 2 lg x , (9.37)
we have

S = kB ln n

= kB ln 2 lg n

= kB ln 2 H Max, (9.38)
which shows that the two quantities S and H Max are equal apart from
a constant factor kB ln 2, which accounts for two different units used
in measuring the entropy.

aThe counterpart of the Shannon entropy in statistical mechanics is the Gibbs entropy,
which is defined by

S = −kB
∑

j

℘( j ) ln ℘( j),

where ℘( j) is the probability that the thermodynamical system is found in the
microstate j and the sum is over all possible microstates of the system. For an
isolated thermodynamical system, all the possible microstates are equiprobable and
the Gibbs entropy reduces to the Boltzmann entropy.
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Figure 9.3 The six possible locations of hydrogen atoms (white circles)
relative to oxygen atoms (gray circles) in an ice crystal. The solid lines
indicate covalent bonds and the dashed lines indicate hydrogen bonds. Two
of the hydrogen atoms must be near and two far away from the central
oxygen atom. This incertitude about the location of the hydrogen atoms
means that there is entropy even at absolute zero temperature. Adapted
from (Auletta, 2011a, p. 51).

What have the Shannon and the Boltzmann entropies in
common? Both measure the degree of disorder in a system. It
is obviously meaningful to associate a Shannon entropy to a
thermodynamic entropy (since any increase in thermodynamic
entropy also means increase in the information that could be
acquired), but the reverse is not necessarily the case. Unfortunately,
many even identify an increase in entropy with the increase of
heat, which is the thermodynamic expression of disorder. This is
however not correct, for even at absolute zero temperature there is
still a residual entropy given by the different possible arrangements
of the atoms. This is evident for ice crystalsa [see Fig. 9.3]. In
such a case, we only deal with certain possible configurations of
certain systems, but we no longer deal here with typical dynamical
factors involving work and exchange of heat, although this always
intervene in the generation of a certain entropic state. Therefore,
the most general way to define entropy in all cases is to say that it
expresses a degree of disorder in certain distributions. In the form
of Boltzmann entropy, this quantification of disorder is the result

a(Atkins/De Paula, 2006, pp. 609–610).
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of some dynamical exchange of energy and its quality for doing
work, while the Shannon entropy is connected with the degree of
disorder of some sequence of signals that we receive or exchange.
Having established this, entropy is not the same of information.
Although any exchange of information is a dynamical process like
measurement, information as such is a formal quantity. As we shall
see later, information has to do with certain interdependence among
the possible outputs. Indeed, while disorder is always the result
of some irreversible dynamical process that requires some form of
interaction, information can be processed in pure reversible way
without any involvement of interaction (and therefore also when
the system is fully isolated). What quantum systems do (in full
accordance with dynamical laws like the Schrödinger equation) is
precisely to process information in a reversible way. Summing up,
information does not imply irreversibility while all forms of entropy
deal with at least the result of irreversible processes. Although the
Shannon entropy has to do with dynamical treatment of information
(like that occurring in measurement), and it has to do with the
disorder among signals rather than with thermodynamic quantities,
ultimately it also implies thermodynamic aspects, as we shall see.

The von Neumann entropy is the extension of classical entropy
concepts to quantum mechanics. It is formally similar to the
Shannon entropy and is indeed defined by

HVN(ρ̂) = − Tr(ρ̂ ln ρ̂), (9.39)

where ρ̂ is the density matrix describing the system [see Sec-
tion 7.8]. As we may recall, the trace of a matrix is equivalent to the
sum of the diagonal elements of that matrix, which for the density
matrix represent the probabilities of obtaining the corresponding
components when measuring the system, and therefore the above
equation is formally similar to Eq. (9.34). To compute the von
Neumann entropy HVN(ρ̂), it is convenient to first find the spectral
decomposition [see Section 6.1] of density matrix ρ̂. We have already
shown that the density matrix can be considered an observable,
therefore it can be diagonalized. In other words, we have the
following eigenvalue equation

ρ̂|η j ⟩ = η j |η j ⟩, (9.40)
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where η j are the eigenvalues of ρ̂ and |η j ⟩ are the corresponding
eigenstates. This allows us to write the spectral decomposition of ρ̂

as

ρ̂ =
∑

j

η j |η j ⟩⟨η j |. (9.41)

The von Neumann entropy can then be expressed as

HVN(ρ̂) = −
∑

j

η j ln η j . (9.42)

Let us consider a simple two-state system. If ρ̂ is a pure state, then
the above eigenvalue equation produces two eigenvalue: +1 with
the eigenstate, say, |η1⟩, and 0 with the eigenstate, say, |η2⟩. The
specificity of the density matrix with respect to other observables
is that all its eigenvalues represent probabilities. Hence, the system
has a probability one to be in the state |η1⟩ and a probability zero to
be in the orthogonal state |η2⟩. In such case, we have ρ̂ = |η1⟩⟨η1|.
This is in full accordance with what we know of projectors, for
instance by considering projectors like those given by Eqs. (3.49).
It is interesting to note that the von Neumann entropy is precisely
zero when the system is a pure state (i.e., when the density matrix
coincides with a projector) as we have seen in Eq. (9.32a) that the
logarithm of one is zero. On the other hand, if ρ̂ is a mixture then
we have ρ̂ = η1|η1⟩⟨η1| + η2|η2⟩⟨η2|, where 0 < η1, η2 < 1.
Moreover, we have η1 + η2 = 1 because of the unit trace property
[see Eq. (7.117b)]. The system has a probability η1 in the state |η1⟩
and a probability η2 in the orthogonal state |η2⟩. The von Neumann
entropy for this mixture is given by HVN(ρ̂) = −(η1 ln η1 + η2 ln η2),
which is a positive quantity [see Problem 9.7].

With the help of the previous concepts, we can now understand
measurement as a local and dynamical displacement of order and
disorder whose net global balance, according to quantum mechan-
ics, should be zero. Suppose that the global system represented by
the combination of the object system, apparatus, and environment
is in a zero entropy state (i.e., it is a pure state, a state such
that information can be processed in a reversible way). When we
locally obtain a mixtures for the object system, this means that
its entropy is irreversibly and locally increased (it is a sort of
symmetry break starting from the many possible configurations
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that we have in the initial state). However, the global system could
remain fully reversible. In other words, we have found a physical
meaning to the partial trace through which we obtain the mixture
that is appropriate for describing the measurement process. The
local increase in entropy of the object system can be expressed
as determined by some loss of features into the environment
during a measurement of the object system. Therefore, features are
responsible for the maximum order (i.e., zero entropy) of the initial
state of the object system as well as of the object system–apparatus–
environment composite system, and their local loss explains the
result of a local measurement.

As we have seen, a very relevant issue is that detection can be
considered a kind of rupture of symmetry in which we obtain one
of the components out of many possible ones in a state of zero
entropy.a The repeatability of measurement is a necessary symptom
of the wave–packet collapse as far as we expect to have the system
in the same state in the subsequent trials. Now, if the system evolves
unitarily (where we do not consider here the environment for the
sake of simplicity) we have, for the components |u⟩ and |v⟩, the
following unitary transfer of information from the object system to
the apparatus during the premeasurement step [see also Eq. (9.13)]:

|u⟩|A0⟩ → |u⟩|au⟩, |v⟩|A0⟩ → |v⟩|av⟩. (9.43)

Since we have the preservation of the scalar product

⟨u|v⟩ = ⟨u|v⟩⟨au|av⟩, (9.44)

then, to have ⟨u|v⟩ ̸= 0 implies that ⟨au|av⟩= 1. This means that the
states of the pointer can differ (as we expect from an apparatus)
only when ⟨u|v⟩= 0. In other words, we can acquire information
only when the states of the object system are orthogonal. Only
this requirement can reconcile the linearity of the first two
steps of measurement (preparation and premeasurement) with the
non-linearity of the final selection. This means that we have a
spontaneous emergence of the pointer states |au⟩, |av⟩ only when
the requirement of orthogonality is satisfied. Therefore, whatever is
the initial superposition of the object system, things spontaneously

a(Zurek, 2007, 2013).
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evolve in order that the components of the object system that are
coupled with the pointer basis are orthogonal.

Problem 9.6 Show that the inclusion of outcomes that have zero
probabilities (i.e., outcomes that never occur) does not change the
Shannon entropy associated with a certain information acquisition
process.

Problem 9.7 Suppose a source emits a stream of binary digits (0’s
and 1’s) with the respective probabilities ℘0 = x and ℘1 = 1 − x ,
where 0 ≤ x ≤ 1. (i) What is the Shannon entropy of this source?
(ii) By plotting the Shannon entropy as a function of x for 0 ≤ x ≤ 1,
verify that the Shannon entropy is maximum for equiprobability, i.e.,
when ℘0 = ℘1 = 1

2 .

9.7 Reversibility and Irreversibility

Is there any evidence for the explanation we have proposed? The
ground is represented by the following theorem:

Theorem 9.1 (Reversibility) For any local irreversible trans-
formation of a given quantum system it is always possible to
choose a larger quantum system that embeds it and in which the
transformation is reversible.

Suppose now that we have a mixed state (like that occurring
during an irreversible measurement process [see, e.g., Eq. (9.15)]):

ρ̂A =
∑

j

w j |aj ⟩⟨aj |, (9.45)

where 0 < w j < 1 with
∑

j w j = 1 and {|aj ⟩} is a basis in the Hilbert
space of the apparatus. Consider the environment (or the rest of the
world) and the state vector of the composite system of the form

|6⟩A E =
∑

j

√
w j |aj ⟩|e j ⟩, (9.46)
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Table 9.1 Truth table for negation

Input Output

p ¬p

1 0

0 1

where {|e j ⟩} is a basis in the Hilbert space of the environment. Then,
if we denote the pure state density matrix corresponding to the state
|6⟩A E by ρ̂A E , by tracing out the environment we have

TrE ρ̂A E =
∑

jk

√
w j wk|aj ⟩⟨ak| Tr(|e j ⟩⟨ek|)

=
∑

jk

δ jk
√

w j wk|aj ⟩⟨ak|

= ρ̂A , (9.47)

which proves the theorem. Let us now give an example. As we
have mentioned, quantum systems can be considered information
processors. All information processing is performed by logic gates
as those that are currently active in every personal computer. This
is also the reason why one of the most important developments
in quantum information is quantum computing. A logic gate is a
function of the form

f : {0, 1}m −→ {0, 1}n, (9.48)

where m is the number of binary inputs and n is the number of
binary outputs. In the above expression, 1 can be associated with
the logical value true whilst 0 with the logical value false. For n = 1,
the function f is called a Boolean function. Examples of the logical
Boolean gates include NOT, AND, OR, and XOR gates.

The NOT gate is a logic gate which implements logical negation. It
is denoted by the symbol ¬ and its truth table in shown in Table 9.1,
in which the output is the opposite logic value of the input. The
AND gate is a logic gate that implements logical conjunction. It is
true if and only if both the inputs to the gate are true. This means
that p ∧ q = 1 if and only if both p = 1 and q = 1, where we
recall that 1 and 0 represent truth and falsity, respectively, and ∧
denotes conjunction. This can be represented by means of the truth
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Table 9.2 Truth table for conjunction

Input Output

p q p ∧ q

1 1 1

1 0 0

0 1 0

0 0 0

Table 9.3 Truth table for disjunction

Input Output

p q p ∨ q

1 1 1

1 0 1

0 1 1

0 0 0

Table 9.4 Truth table for exclusive
disjunction

Input Output

p q p !" q

1 1 0

1 0 1

0 1 1

0 0 0

table in Table 9.2. The OR gate is a logic gate that implements logical
disjunction. It is denoted by the symbol ∨ and is true if at least one of
the inputs to the gate is true, as shown in the truth table in Table 9.3.
Finally, the XOR gate is a logic gate that implements logical exclusive
disjunction. It is denoted by the symbol !" and is true if and only if
the two inputs to the gate have a different truth value, as shown in
the truth table in Table 9.4. Important logical rules are the so-called
De Morgan’s laws. They state that the negation of a conjunction is the
disjunction of the negations and that the negation of a disjunction is
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the conjunction of the negations. That is, formally we have

¬( p ∧ q) = ¬p ∨ ¬q, ¬( p ∨ q) = ¬p ∧ ¬q. (9.49)

As mentioned, logic circuits are currently implemented in our
computers. In other words, the electrical connections in an ordinary
computer instantiate logical connections (this is what constitutes a
processor). For instance, let us consider the circuit shown in Fig. 9.4.
Negation can be implemented by an open gate, a disjunction by two
parallel gates (that is, two gates implemented in parallel wires),
and a conjunction by serial gates. Due the De Morgan’s laws and
the definition of implication (which we shall come back in the next
chapter) any kind of logical operation can be implemented in this
way.

Conjunction is a reversible operation but only when it is true,
while it is not when its truth value is not known or when it is known
to be false (in the latter case three different inputs map to the same
output 0). If it is true, we know for certain that both p and q must
be true, that is, we can infer from the truth value of the conjunction
the truth value of the inputs, and vice versa. Instead, from the
truth value of the disjunction or exclusive disjunction we cannot
infer the truth value of the inputs, although we can infer for the
former when it is known to be false. Therefore, in the general case
conjunction, disjunction, and exclusive disjunction are irreversible
operations. However, it is always possible to make use of some logic
gate that is expanded to other inputs and that is logically equivalent
to an irreversible logical operation but being reversible itself.a For
instance, let us consider the disjunction between the negation of p
and and the negation of q as shown in the truth table in Table 9.5.
The reason for this truth table is that p is true when its negation ¬p
is false, and vice versa. Nevertheless, as we can see, the form of this
truth value is similar to the truth table in Table 9.3 and therefore still
irreversible. Moreover, ¬p ∨ ¬q is logically equivalent to ¬( p ∧ q)
due to De Morgan’s laws (9.49). The operation ¬( p ∧ q) is called
logical negated conjunction, which is implemented by the NOT AND
(or NAND) gate.

Let us consider now not just two inputs but enlarge the number
of inputs to three, denoted by p, q, and r . For our purposes we shall

a(Bennett/Landauer, 1985).
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Table 9.5 Truth table for ¬p ∨ ¬q

Input Output

p q ¬p ∨ ¬q

1 1 0

1 0 1

0 1 1

0 0 1

closed gate

open gate open gate

LED

bettary

Figure 9.4 Schematic implemented of a logic circuit. Electric current
flows clockwise. Gates are represented by thick lines for the sake of
representation, while wires by thin lines. In order that electric current flows,
it is necessary that the gates be closed. The two main wires of the circuit are
parallel. In other words, current can take both paths simultaneously, which
means that one path closed is sufficient for transmitting current. The wire at
the top displays moreover a serial circuit, where both gates need to be closed
for having a current. In specific, the circuit corresponds to the proposition
p ∨ (¬q ∧ ¬r).

make use of the so-called Toffoli gate,a whose truth table is shown
in Table 9.6. We note that, according to Table 9.4, the exclusive
disjunction (XOR) r !" ( p ∧ q) in the last of the two output columns
on the right is true only when either (i) r = 1 and p ∧ q = 0, or
(ii) r = 0 and p ∧ q = 1. It is false only when either (i) r = 1 and
p ∧ q = 1, or (ii) r = 0 and p ∧ q = 0. If we take into account
the fact that the conjunction between p and q is false when p or q
is false [see Table 9.2], we have the following inputs represented by
the three input columns on the left:

a(Fredkin/Toffoli, 1982).
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Table 9.6 Truth table for Toffoli gate. It is noted that p and q are
the control bits and are not changed under the transformation

Input Output

p q r p ∧ q r !" ( p ∧ q)

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 0 1

1 0 0 0 0

1 0 1 0 1

1 1 0 1 1

1 1 1 1 0

(i) The second, forth, and sixth rows correspond to the case r = 1
and p ∧ q = 0.

(ii) The seventh row corresponds to the case r = 0 and p ∧ q = 1.
(iii) The latter row corresponds to r = 1 and p ∧ q = 1.
(iv) The first, third, and fifth rows correspond to the case r = 0 and

p ∧ q = 0.

Taking into account these inputs, let us consider the last of the two
output columns on the right:

(i) The values on the second, fourth, and sixth row are 1 since r =
1 and p ∧ q = 0.

(ii) The value on the seventh row is again 1 since r = 0 and p∧q =
1.

(iii) The value on the last row is 0 since r = 1 and p ∧ q = 1.
(iv) The values on first, third, and fifth rows are 0 since r = 0 and

p ∧ q = 0.

Therefore, if we only consider the cases in which both r = 1 and
r !" ( p ∧ q) = 1, we obtain precisely all the three cases in which
p∧q = 0 (second, fourth, and sixth rows). This subset of the outputs
is therefore determined by setting r = 1 and can be expressed as

(r = 1) ∧ ¬( p ∧ q) or (r = 1) ∧ (¬p ∨ ¬q). (9.50)

It should be noted that we could obtain the same result by choosing
an alternative subset, i.e., when both r = 0 and r !" ( p ∧
q) = 0. Also this choice covers precisely all three cases in which
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p ∧ q = 0 [see Problem 9.9]. Therefore, with both choices we
have obtained the disjunction (OR) between ¬p and ¬q, which in
itself is an irreversible transformation but embedded in a larger
reversible transformation. Note indeed that all outputs of the Toffoli
gate are univocally mapped to the inputs: all truth values of p and q
are maintained, while the values of r and r !" ( p ∧ q) are also
the same apart from the last two lines (when both p and q are
true) whose truth value is inverted. This transformation can be also
described quantum mechanically, as we shall see in Chapter 11.

Let us now come back to the quantum mechanical problem
of measurement. When we locally have irreversible processes
this means that the system under observation has lost certain
features, i.e., the non-local correlations that are typical for quantum
mechanics [see Section 4.8]. Actually they have not been lost but
displaced into the environment or also obscured by the environment
going to constitute a sort of universal background quantum noise.
This is necessary if any kind of quantum dynamics must be unitary,
which means that, in order to preserve a global zero-entropy state (if
the state of the whole universe is a pure state), such a local increase
of entropy must be counterbalanced by some reduction of entropy
elsewhere, which implies constitution of order elsewhere. We
experience this every day. Indeed, everywhere there are beautiful
example of constitution of order, whose most striking manifestation
is represented by living beings and their amazing ability to maintain
and improve their order.a Such a universal tendency would be not
completely explainable if there was not a drive to order given to such
a compensatory effect.

In other words, if the universe as a whole obeys quantum
mechanical laws (and we are inclined to think so), we would
expect that the tendency to disorder is continuously balanced by
an induced tendency to order, so that the net result is zero or
at least fluctuates around zero [see Fig. 9.5]. In an adiabatically
expanding universe the global entropy is conserved,b which also
implies that this quantity can be conserved even when it is zero or
near to zero. The conservation of both order and disorder in our

a(Ball, 1999).
b(Mo et al., 2010, pp. 108–110 and 129–32).
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Figure 9.5 A constant-entropy (perhaps a zero-entropy) universe in which
local disruptive and order building processes do not affect the configuration
of the whole. Adapted from (Auletta, 2011a, p. 57).

universe is likely a far more general principle than the conservation
of physical quantities like mass, energy, and momentum. There are
situations, at least for very short time intervals, in which (according
to the energy–time uncertainty relation) the conservation of energy
can be violated as in the “creation” of virtual (i.e., extremely
short-living) particles in a vacuum. Moreover, quantum mechanics
does not obey the principle of least action that is connected with
those conservation laws. Obviously, the tendency to disorder is
spontaneous and in this sense more fundamental. Leibniz and the
fathers of classical mechanics considered indeed that nature always
chooses the “easiest” solutions, and in the sense of spontaneity
disorder is “easier” than order. This principle has a counterpart
in statistical mechanics, according to which in all the accessible
states of an isolated system the number of the disordered ones
are much more than that of the ordered ones (for instance, there
are likely infinite ways to break a cup, but only few to build it).
The crucial point is that every time such a tendency manifests
itself (and assuming that we are right in the previous assumptions),
a compensatory tendency to order should also be produced to
preserve this net balance. This second tendency can be said to be less
fundamental and not spontaneous, that is, forced by the first one.

The fact that irreversible phenomena are only the result of
local processes also implies that the matter structures of our
universe emerge as a determination process starting from quantum
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mechanics. This, however, does not imply at all that these matter
structures and the macroscopic world in general are illusionary
phenomena, as supporters of the many-worlds interpretation [see
Section 9.3] would be inclined to think. The only consequence is that
local reality is relational and perspective-likea while laws may very
well be invariant. A certain philosophical tradition has brought us
to a confusion between the concepts of subjectivity and relativity.
However, they should be kept carefully distinct. When we say that
a phenomenon has a subjective reality we mean that without the
contribution of the mind it would not be as we understand or
perceive it (this is the ground of both the subjectivist and the
objectivist interpretations of quantum mechanics). It is clear that
in a very wide sense, everything that we perceive or understand is
subjective (a truth that was often forgotten in a classical-physical
framework where it was commonly assumed that our theories
depict reality as it is). In a more useful and stricter sense, the term
subjective means plus or minus what is illusionary or has at least
an illusionary component. On the contrary, relative only means that
a certain system has the property that we assign to it only in the
intercourse with something else. In the case of quantum systems,
they can give rise to irreversible local processes when interacting
with other quantum systems open to the environment. It is not
necessary at all that human beings be present in order that this
happens and indeed it has happened many times in the history of our
universe long before humans had appeared at all.b It is amazing that
the objectivist interpretation of quantum mechanics went very near
to this conclusion when introduced the concept of relative state. The
only problem there was the inability to distinguish between local
irreversibility and global reversibility and to assume that only global
descriptions mirror reality.

Problem 9.8 Drawing comparative truth tables of ¬( p ∧ q) and
¬p ∨ ¬q, show that they are logically equivalent (i.e., they are both
true or false with the same value assignment).

a(Wheeler, 1983).
b(Joos/Zeh, 1985).
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radioactive
material

Geiger
counter

poison

Figure 9.6 Pictorial representation of the Schrödinger’s cat thought exper-
iment. Adapted from http://en.wikipedia.org/wiki/File:Schrodingers cat.
svg.

Problem 9.9 Individuate the rows in which r = 0 and r !" ( p∧q) =
0 and write down the counterpart of Eq. (9.50).

9.8 Schrödinger’s Cat

A relevant point of the previous examination is that quantum
effects are never totally washed out but only damped when larger
systems like molecules or polymers are built. This is evident today
at the chemical and molecular level, and indeed quantum chemistry
became in the last years one of the most affirmed fields.a However,
this should have some consequences also for macroscopic systems,
even if the effects are here so attenuated that it is very difficult
to detect them. In fact, almost a century ago such a possibility
was already foreseen by Schrödinger.b This is the celebrated
Schrödinger’s cat paradox (which, as we shall discover, is not a
paradox). Let us consider the situation depicted in Fig. 9.6, in which
a cat is confined in a box together with a trace of radioactive material
with a certain decay probability. The decayed atom would activate a
Geiger counter which is connected through a relay to a hammer that
may break an ampulla, thus releasing some poison, and so killing the
cat. Now, according to the probabilistic character of the radioactive
decay, which is a typical quantum process [see p. 186], after some
time the wave function describing the system should represent a
superposition of alive cat and dead cat. But this seems impossible,

a(Atkins/De Paula, 2006), (Atkins/Friedman, 2005).
b(Schrödinger, 1935a).
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and as a matter of fact nobody has ever observed such a situation
in the ordinary experience at macroscopic level. On the other hand,
according to the projection postulate [see Section 9.3], we may
assume that a measurement, in our case the opening of the box to
observe the cat, will univocally determine the state of the cat (either
alive or dead), thus eliminating the superposition. If so, we ascribe
an enormous and perhaps unjustified power to the observation, that
is the power to realize ex novo a very special physical situation, the
so-called wave function collapse (or wave packet reduction).

We may describe the whole system composite of the radioactive
material R , the hammer H , and the cat C by the superposition state:

|6⟩R H C = cD|d⟩|a⟩|D⟩ + cA|d′⟩|a′⟩|A⟩, (9.51)

where cD and cA are probability amplitudes, |d⟩ and |d′⟩ represent
an atom decaying and not decaying, respectively, |a⟩ and |a′⟩ the
hammer active and not active, respectively, and finally the states |D⟩
and |A⟩ the cat dead and alive, respectively. In other words, we have
a superposition here between the component |d⟩|a⟩|D⟩, in which
there is an atom decay, the hammer works, and the poison kills
the cat, and the component |d′⟩|a′⟩|A⟩, in which there is no atom
decay, the hammer is at rest, and the cat survives. Moreover, the
state |6⟩R H C is an entangled state in which the radioactive material,
the hammer, and the cat have a special entanglement. Although
the above expression is correct, it is very unlikely to have a cat
in animated suspension between life and death (anyway nobody
could observe it by definition). However, this does not represent
an impossibility as such and is rather a consequence of the huge
complexity of the involved systems. Even in the case in which this
could happen, it is likely that the result would be a very unstable,
short-living state, erased immediately by decoherence, therefore
increasing the difficulty to detect it. In other words, decoherence
helps us solve such an apparent paradox. Nevertheless, quantum
effects at least at the mesoscopic level (that of big atoms and
molecules) have been observed, and this is a promising field of
investigation.a

a(Monroe et al., 1996), (Brune et al., 1996), (Leibfried et al., 2005). We mention that
the 2012 Noble prize in physics has been awarded to the principal investigators of
the first two teams precisely for this kind of studies.
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We have already considered the complementarity principle in
Chapter 5. It is worth mentioning that in the original formulationa

the complementary wave-like and particle-like behaviors were still
understood as dependent on the macroscopic properties of the
apparatus that we use to perform complementary experiments.
This is commonly known as the Copenhagen interpretation, initially
devised by Bohr and Heisenberg in the years 1924–27. We have
already considered that the macroscopic bodies should be rather
conceived as emergent from the microscopic quantum world. It
is right that a macroscopic apparatus is necessary for assigning
a specific property to a quantum system (that is, a certain value
that we assign to an observable). However, as we have stressed,
this is also what spontaneously happens in nature although in this
case there is nobody reading, interpreting, and eventually storing
the result (and so, properly speaking there is an outcome of the
interaction but no property assignation).

Bohr’s approach is quite understandable in a time in which quan-
tum mechanics was still in its infancy. Indeed, on the one hand it was
not possible at that time to perform experiments using apparatuses
that are of the same size as the measured quantum system, as it is
currently the case for the many novel experiments on mesoscopic
systems. Moreover, there was no possibility to explore intermediate
situations between corpuscular and undulatory behaviors as it is
currently the case [see Section 5.5]. On the other hand, quantum
theory was still conceptually dependent on classical physics and
therefore quantum phenomena and quantities acquired a physical
meaning only in the light of the classical theory (what remains
today still true but only in the sense of the correspondence principle
[see Principle 7.1]). Therefore, it is quite normal that this kind of
assumptions or simplifications were made in the early development
of quantum theory. Even today when we learn something new, as
it happened when we began to learn algebra in our childhood, we
need first to translate the new notions into the old ones. Only after
a certain training we are able to deal with the new concepts in such
a way that they become the new reference system in whose context
we can also reinterpret the old notions.

a(Bohr, 1928).
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9.9 Summary

In this chapter we have

• Explained that there is no unitary transformation that can
account for obtaining a single component out of a superposition
state.

• Remarked the distinction between a unitary, reversible, linear
and smooth dynamics ruled by the Schrödinger equation and
a (local) random, irreversible, non-linear and abrupt transition
when dealing with measurement.

• Reviewed the two main historically established subjectivist and
objectivist positions on measurement and found reasons of
dissatisfaction for both.

• Introduced the so-called many-worlds interpretation of quan-
tum mechanics and the associated concept of relative states.

• Dealt with the problem of basis ambiguity and introduced the
concept of premeasurement.

• Discussed decoherence as a solution to the measurement
problem.

• Introduced the main notions of entropy and information.
• Considered quantum systems as information processors and

shown that any irreversible transformation can be embedded
in a larger reversible transformation.

• Distinguished between local irreversible processes, in which
order and disorder are displaced, and global reversible dynam-
ics.

• Introduced the Schrödinger’s cat paradox and its resolution.
• Commented on the Copenhagen interpretation of quantum

mechanics.



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

Chapter 10

Non-Locality and Non-Separability

In the previous chapter we have introduced the distinction between
locality and non-locality. In this chapter we shall explore non-
locality, one of the most amazing aspects of quantum mechanics.
We shall discover that it consists in non-local correlations without
transmission of signals. Along the way we will formulate and prove
three important theorems as well as introduce the phenomenon
of entanglement swapping that reveal unequivocally quantum non-
locality.

10.1 EPR Paper

In a historical paper published in 1935, Einstein, Podolsky, and
Rosen (EPR) asked whether quantum mechanics could be consi-
dered a complete description of microscopic systems.a The reason
for this investigation is that quantum mechanics showed an irre-
ducible probabilistic character [Sections 5.3–5.5 and 6.8–6.9]. Every
physical description of reality up to that time used probabilities
only as a statistical treatment for dealing with problems of high

a(Einstein et al., 1935).
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complexity, as those occurring in statistical mechanics, where the
typical number of particles in a gas is of the order of 6.022 × 1023,
and hence in practice their motion is too complex to be treated with
the traditional deterministic methods [see Section 1.2]. Therefore,
it was well possible that quantum mechanics displayed intrinsic
limitations in dealing with elusive entities which could be eventually
overcome by another, more refined theory or at least approach.
Indeed, the EPR paper represents a sort of general check of the
theory and in this sense its study still represents an unavoidable step
for truly understanding quantum mechanics.

Having this purpose, EPR formulated some general principles
that any physical theory should satisfy. When judging a physical
theory, one should inquire about both the correctness and com-
pleteness of that theory.a The correctness of a theory consists in
the degree of agreement between the conclusions of the theory and
experimental observation, i.e., the objective reality, while the notion
of completeness can be best encapsulated in the following definition:

Definition 10.1 (Completeness) A theory is complete if every
element of objective reality has a counterpart in it.

The aim of the EPR paper is to show the incompleteness of
quantum mechanics in the sense of its inability to give a satisfactory
explanation of entities which are considered fundamental. In a word,
it is a “disproof” and not a positive proof. Indeed, theories can
be disproved by experience and (even thought) experiments. This
type of epistemology is the so-called falsificationism.b Given these
premises, the core of the argument is the separability principle,
which can be expressed as follows [see also Sections 1.1 and 7.9].

Principle 10.1 (Separability) Two dynamically independent sys-
tems cannot influence each other.

The separability principle consists in the assumption that any
form of interdependence between physical systems is of dynamical
and causal type, ultimately relying on local transmission of effects.
Therefore, it is important to carefully distinguish the problem

a(Auletta, 2000, Chapter 31), (Auletta et al., 2009, Section 16.1).
b(Peirce, 1866), (Peirce, 1877), (Peirce, 1878), (Popper, 1934).
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of locality (i.e., the requirement of bounds in the transmission
of signals and physical effects) from that of separability, which
concerns only the impossibility of correlations between systems in
the case in which there are no dynamical and causal connections. Part
of the EPR argument is that in the absence of physical interactions,
the systems are also separated.

Making use of the separability principle, EPR stated a sufficient
condition for the reality of physical observables, which can be
formulated as follows.

Principle 10.2 (Criterion of Physical Reality) If, without in any
way disturbing a system, we can predict with certainty the value of a
physical quantity, then, independently of our measurement procedure,
there exists an element of the physical reality corresponding to this
physical quantity.

The phrase “without in any way disturbing a system” means
that the systems are considered dynamically independent. It may
be noted that this principle is of absolute generality (since it may
be applied to any scientific domain) and should therefore rather be
considered a philosophical principle. The crucial point is that EPR
have shown that the latter in conjunction with physical assumptions
can lead to consequences that can be tested. Indeed, assuming
separability and the sufficient condition of reality, EPR went on to
argue that quantum mechanics is not complete. In logical terms,
according to the EPR argument, the following statement holds for
quantum mechanics:a

(Suff. cond. of reality ∧ Separability) ⇒ ¬Completeness, (10.1)

where ∧ is the logical conjunction, ¬ is the logical negation, and the
arrow ⇒ is the symbol for logical implication [see Section 9.7]. The
implication p ⇒ q, where p and q are arbitrary statements, may be
defined by the statement “ p is false OR q is true.” In other words, the
implication is false only in the case that p is true AND q is false [see
Table 10.1].

Before entering into details, it is very important to understand
the abstract logic form of the argument. According to EPR, the

aIn logic, a statement is an assertion that can be determined to be true or false.
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Table 10.1 Truth table for logical implication

Input Output

p q p ⇒ q

1 1 1

1 0 0

0 1 1

0 0 1

incompleteness of quantum mechanics would be a consequence of
both separability and the sufficient condition of reality. Since the
EPR argument has the logical structure of an implication, in order to
invalidate the argument it suffices to show that at least one of the two
assumptions is false. In fact, if one of the two assumptions is false
then their joint assertion (i.e., Suff. cond. of reality ∧ Separability) is
false as well [see Table 9.2], i.e., the antecedent of the implication
is false. However, if the antecedent of an implication is false, its
consequent (i.e., ¬Completeness) may be indifferently true or false,
being, under this condition, the implication always true (see the
last two lines of Table 10.1). It this case, the argument would
prove neither the incompleteness, nor the completeness of quantum
mechanics, and be finally inconclusive. As we shall see below,
Schrödinger argued against the principle of separability, while Bohr
tried to reject the sufficient condition of reality.

Now, the crucial issue for EPR was the following: how to
find evidence showing that the implication (10.1) is true? To this
purpose, the argument of EPR is structured as follows. From (i)
Definition 10.1, (ii) Principle 10.2, and (iii) the fact that, according
to quantum mechanics, two non-commuting observables cannot
simultaneously have definite values [see Section 6.8], it follows that
the following two statements are incompatible:

(i) The statement r that the quantum mechanical description of
reality given by the wave function is not complete.

(ii) The statement s that when the operators describing two
physical quantities do not commute, the two quantities cannot
have simultaneous reality.
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In formal terms, we have the statement

r !" s, (10.2)

where the symbol !" means a XOR [see Section 9.7]. The meaning of
the statement (10.2) is the following: if it is possible to show (though
some kind of experiment) that two non-commuting observables
have in fact simultaneous reality, then we can logically conclude that
quantum mechanics cannot be a complete description of reality. In
other words, assuming the Sufficient Condition of Reality and by
hypothetically adding the uncertainly principle (which EPR in fact
did not acknowledge), we can derive the statement (10.2), that is,
r !" s . Now, if we perform an experiment and, by further assuming
the Separability Principle (Principle 10.1), find in fact that ¬s (i.e.,
we succeed in showing that the uncertainty principle is not valid),
then we have in this way deduced r , that is, the incompleteness
of quantum mechanics, which is in turn the consequent of the
implication (10.1). Therefore, having derived this result from the
two premises (Suff. cond. of reality and Separability) of the latter,
we had also proved the truth of this implication.

Given the structure of the argument, EPR must therefore
provide an example of wave function for which two non-commuting
observables can have simultaneous reality, and, as mentioned, it
is here that separability comes into play. Let us, for this purpose,
consider a one-dimensional system S made of two subsystems S1

and S2, say two particles 1 and 2, which interact during the time
interval between t1 and t2, after which they no longer interact. Let
us write their respective momentum observables in the position
representation as [see Eq. (6.116)]

p̂(1)
x = −i! ∂

∂x1
and p̂(2)

x = −i! ∂

∂x2
, (10.3)

where x1 and x2 are the position variables used to describe particles
1 and 2, respectively. Recall that the eigenfunction of p̂(1)

x with
eigenvalue p1 is given by [see Eq. (6.123)]

ϕp1 (x1) = 1√
2π!

e
i
! p1 x1 , (10.4)

while the eigenfunction of p̂(2)
x with eigenvalue p2 is

ψp2 (x2) = 1√
2π!

e
i
! p2(x2−x0), (10.5)



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

298 Non-Locality and Non-Separability

where x0 is some fixed position (constant). It is noted that the
presence of constant x0 in the exponent of the wave function above
corresponds to a global phase factor e− i

! p2 x0 . Let us suppose that the
composite system is described by the wave function

6(x1, x2) = 1
2π!

∫ ∞

−∞
e

i
! p(x1−x2+x0)dp, (10.6)

which can be written in terms of the momentum eigenfunctions of
particles 1 and 2 as

6(x1, x2) =
∫ ∞

−∞
ψ−p(x2)ϕp(x1)dp. (10.7)

It is clear that 6(x1, x2) is an entangled state and that the momenta
of particles 1 and 2 are entangled [see Section 7.9]. Indeed, we recall
that the concept of entanglement was introduced by Schrödinger
after publication of the EPR paper and precisely as a reply to their
proposal (in other words, EPR were unaware of how revolutionary
was the formalism that they introduced). We now proceed as
follows.

(a) We locally measure the momentum of particle 1 and the
measurement result is some eigenvalue of p̂(1)

x , say p′.
(b) After the measurement the state 6(x1, x2) given by Eq. (10.7)

reduces to the state ψ−p′ (x2)ϕp′ (x1) [see Sections 9.1 and 9.2].
(c) It is evident that particle 2 must be in the state ψ−p′ (x2)

and therefore its momentum must be −p′. This result can be
predicted with absolute certainty.

(d) However, we were able to formulate such a prediction without
disturbing particle 2 (by the assumption of separability).

(e) Thus, as a consequence of (c) and (d), and of the sufficient
condition of reality, p̂(2)

x is an element of reality.

Note that steps (a)–(c) are purely quantum mechanical. Only steps
(d) and (e) are connected to the specific EPR argument. However,
if we had chosen to consider the respective position observables
x̂ (1) and x̂ (2) of particles 1 and 2, then we would have written the
state 6(x1, x2) of the composite system in term of the position
eigenfunctions of particle 1 and 2 [see Section 9.4]. Let us denote
the latter by ϕx (x1) and ψx (x2), respectively. Then we have [see
Eq. (6.54)]

ϕx (x1) = δ(x − x1), ψx+x0 (x2) = δ(x − x2 + x0), (10.8)
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where x0 is some fixed position (constant). Using Eq. (6.50), we can
rewrite 6(x1, x2) in terms of ϕx (x1) and ψx (x2) as

6(x1, x2) =
∫ ∞

−∞
ψx+x0 (x2)ϕx (x1)dx . (10.9)

Again, it is clear that 6(x1, x2) is an entangled state and that the
positions of particles 1 and 2 are now entangled. Let us repeat the
previous procedure for the position measurement.

(a’) We locally measure the position of particle 1 and the measure-
ment result is some eigenvalue of x̂ (1), say x ′.

(b’) After the measurement the state 6(x1, x2) given by Eq. (10.9)
reduces to the state ψx ′+x0 (x2)ϕx ′ (x1).

(c’) It is evident that particle 2 must be in the state ψx ′+x0 (x2)
and therefore its position must be x ′ + x0. This result can be
predicted with absolute certainty.

(d’) However, we were able to formulate such a prediction without
disturbing particle 2 (by the assumption of separability).

(e’) Thus, as a consequence of (c’) and (d’), and of the sufficient
condition of reality, x̂ (2) is an element of reality.

We note that conclusions (e) and (e’) seem incompatible with each
other on the basis of the fact that the position and momentum
observables of particle 2 do not commute [see Section 6.8]. Going
back to the statements r and s [see Eq. (10.2)], EPR have in this
way shown that assuming r (the quantum mechanical description
of reality is not complete) is false, then s (two physical quantities
described by non-commuting operators cannot have simultaneous
reality) is false as well since both p̂(2)

x and x̂ (2) have therefore
simultaneous reality. Then, the previous assumption must be
rejected, and r must be true. Therefore, according to the EPR
argument, quantum mechanics cannot be considered a complete
theory and the description of reality as given by the wave function
is not complete.

Problem 10.1 Have you understood the EPR argument? If not, your
task is to read Section 9.7 again to understand the meaning of
logical negation, logical conjunction, logical disjunction, and logical
exclusive disjunction. Then read this section again to understand the
notion of completeness, the sufficient condition of reality, and the
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meaning of logical implication. Once you have finished, read it again
and verify if you understand the EPR argument fully. If not, start
again the procedure until you have absolute clarity about the EPR
argument.

10.2 Bohr’s and Schrödinger’s Criticism of EPR

As we have said, given the abstract logical structure (10.1) of the
EPR argument, if we desire to reject the conclusion that quantum
mechanics is incomplete, it is necessary to show the failure of the
sufficient condition of physical reality in a quantum framework or
the inconsistency of separability with quantum mechanics. In fact,
they are the only non-quantum mechanical assumptions in steps
(a)–(e) and (a’)–(e’). EPR themselves have anticipated the former
objection. In the end of the paper, they replied as follows.

“One could object to this conclusion on the grounds that our
criterion of reality is not sufficiently restrictive. Indeed, one would
not arrive at our conclusion if one insisted that two or more
physical quantities can be regarded as simultaneous element of
reality only when they can be simultaneously measured or predicted.
On this point of view, since either one or the other, but not both
simultaneously, of the quantities P [ p̂x ] and Q [x̂] can be predicted,
they are not simultaneously real. This makes the reality of P [ p̂x ]
and Q [x̂] depend upon the process of measurement carried out
on the first system, which does not disturb the second system in
any way. No reasonable definition of reality could be expected to
permit this.”

In the same year 1935, Bohr rejected the sufficient condition
of reality precisely along those lines. Bohr criticized the EPR
argument by pointing out that, even if the EPR thought experiment
excludes any direct physical interaction of the system with the
measuring apparatus, the measurement process has an essential
influence on the conditions on which the very definition of the
physical observables in question rests.a And these conditions

a(Bohr, 1935a), (Bohr, 1935b), see also (Jammer, 1974, pp. 195–197).
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must be considered an inherent element of any phenomenon to
which the term “physical reality” can be unambiguously applied.
Bohr acknowledged that it is possible to determine experimental
arrangements such that the measurement of the position or of the
momentum of one particle automatically determines the position or
the momentum of the other. However, such experimental arrange-
ments for measuring momentum and position are incompatible with
each other. Therefore, the central point of Bohr’s criticism is that it
is not possible to assign a reality to observables of quantum systems
(and therefore certainly not properties to the involved systems)
independently of the experimental context in which not only we
actually interact with them but in which we could interact with them
[see Sections 9.4 and 9.8].

In such a context, we wish to point out that the experimental
procedures through which observables are determined are physical
operations. Moreover, an observable precisely describes a possible
operation that could be performed on a system either artificially
in our laboratories or spontaneously in nature when certain kinds
of interactions occur. In this way, an observable describes what
would be the behavior of a system in certain conditions. Most of
the properties and parameters that we assign even to classical
and macroscopic systems show such a dispositional kind of reality.a

Nevertheless, such dispositions are for us very real, otherwise the
reality of most physical systems would dangerously evaporate. Then,
nothing prevents us to consider observables as elements of reality
independently of the fact that they may not commute. In this way,
an important instance of the EPR argument is that to determine
the way in which a system will behave in certain conditions is an
ascription of reality. This point of view can be framed in a wider
ontological context, in which state, observables, and properties
show an increasing degree of determination. As a matter of fact, we
are always allowed to assume the reality of the state of a quantum
system, with all provisos about the word “reality” we shall deal
with, provided that it is possible, at least in principle, to prepare
the system in that state [see Sections 4.8, 5.6, and 6.9]. Moreover,
it is also allowed to speak of observables as elements of reality,

a(Hempel, 1953, Section 6).
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provided that we are at least able to show a (possible) context
of measurement, that is, a premeasurement (a suitable coupling)
[see Section 9.5]. However, this also implies that to a certain extent
we are accepting Bohr’s instance too. The crucial point is that
the possible context in which a certain observable is considered
to be real is not an epistemic one as Bohr assumed, but both
an ontological and epistemic context, and without an ontological
context (that is, without some objective conditions, for instance of
experimental kind) we could certainly make no reality ascription. As
we have stressed, to be relative to a certain context does not imply
to be dependent on a subjective consideration of the problem [see
Section 9.7]. Therefore, Bohr’s objection, although stimulating for
refining the concept of reality, is not sufficient to demolish the EPR
argument.

Another kind of problem is constituted by the fact that a certain
observable being an element of reality does not imply that one of its
possible properties (that is, one of its eigenvalues) is also a reality. In
order to do this inference, we need an event, for instance a detection.
In other words, we need to consider an actual detection event
and not only a possible objective context, that is, a premeasurent.
This is the essence of the other objection to EPR, a contribution of
Schrödinger, which shows the true weakness of the EPR argument
by removing an ambiguity that is present in their argumentation (it
is also not completely clear whether Bohr’s argument rejects reality
ascription to observables or properties or, even more plausibly,
to both). In a series of articles, Schrödinger answered to EPR by
introducing the important concept of entanglement in quantum
mechanics [see Section 7.9].a It is entanglement that (in the
absence of events) prevents, in general, to attribute properties to
a system or its subsystems. But, provided that there is an event,
it is still entanglement that allows attribution of properties in a
way that is classically unknown but also forbids other property
assignments. In other words, quantum mechanical systems can
show non-local correlations that make them non-separable even in
the absence of any dynamical interaction (hence in disagreement
with the separability principle). These correlations, once that we

a(Schrödinger, 1935a), (Schrödinger, 1935b).
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have performed a measurement on one particle, in turn prevent the
possibility to assign properties to the entangled particle without
taking into account the obtained result; but once those results are
taken into account also allow new kinds of prediction. In finding
entanglement as a resolution to a possible conflict between a
thought experiment and quantum mechanical laws, Schrödinger
was performing an abduction [see Section 4.1].a However, it is
also important to note that Schrödinger considered entanglement
to be far away from our common perception of reality. We recall
indeed that his answer to EPR is developed in the same series of
papers where he proposed for the first time the Gedankenexperiment
(i.e., thought experiment) of Schrödinger’s cat as a possible bizarre
consequence of entanglement [see Section 9.8]. It is a sign of the
highest quality in research and speculation when a scholar is forced
to a conclusion that seems bizarre to him/her and finally accepts it
at least as a hypothesis.

10.3 EPR–Bohm Experiment

The reformulation of the original EPR thought experiment proposed
by Bohm in the 1950s deals with discrete observables like spins,
instead of continuous ones such as position and momentum.b This
step was originally understood as a further simplification of the
EPR argument. It is an important step not only because it displays
with high clarity that the non-local features of quantum theory are a
consequence of entanglement, but also because it is experimentally
realizable.

Let us consider two particles of spin 1
2 that are in a state in

which the total spin is zero, that is, they are in a singlet state [see
Section 8.7]. They can be produced, for instance, by radioactive
decay of a single particle of spin 0. After a time t0 the two particles
begin to separate and at time t1 they no longer interact with each
other [see Fig. 10.1]. On the hypothesis that they are not disturbed,
the law of angular momentum conservation guarantees that they

a(Peirce CP, 2.96).
b(Bohm, 1951, pp. 614–623).
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Figure 10.1 Schematic overview of the EPR–Bohm experiment. Two spin
1
2 particles are produced in a spin singlet state from a common source S
(e.g., by decay of a spin 0 particle). After the time the two particles no
longer interact, the spin of particle 1 in a direction a and the spin of particle
2 in another direction b are measured with two apparatuses A and B ,
respectively. The Euclidean vectors a and b are taken to be unit vectors as
they represent here spatial directions.

remain in a singlet state. Considering the projection of the spin along
the z direction, the singlet state |60⟩ can be written in the form [see
Eq. (8.140)]

|60⟩ = 1√
2

(|↑z⟩1 ⊗ |↓z⟩2 − |↓z⟩1 ⊗ |↑z⟩2), (10.10)

where the subscripts 1 and 2 refer to the particles. As we have
remarked, the singlet state |60⟩ is an entangled state. This implies
that, if a measurement of the spin component in the z direction of
particle 1 leads to the result + 1

2 (in units of !), the spin component
of particle 2 in the same direction must give the value − 1

2 , and vice
versa. It is straightforward to show that

(σ̂1z ⊗ σ̂2z)|60⟩ = 1√
2

(σ̂1z|↑z⟩1 ⊗ σ̂2z|↓z⟩2 − σ̂1z|↓z⟩1 ⊗ σ̂2z|↑z⟩2)

= − 1√
2

(|↑z⟩1 ⊗ |↓z⟩2 − |↓z⟩1 ⊗ |↑z⟩2)

= −|60⟩, (10.11)

where σ̂1z and σ̂2z are the z components of the spin observable of
particles 1 and 2 [see Eqs. (8.111)], respectively, and use has been
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made of the actions of σ̂z on |↑z⟩ and |↓z⟩ that are tabulated in
Table 8.1. The observable σ̂1z ⊗ σ̂2z represents the measurement
of the spin component of both particles in the z direction. For the
sake of presentational simplicity, here and in the next section we
shall measure the spin of the two particles in units of !

2 . The above
expression means that |60⟩ is an eigenstate of σ̂1z ⊗ σ̂2z with the
eigenvalue given by −1. Indeed, it can be shown that this result
holds true for the spin component of both particles in an arbitrary
direction, namely, we have

(σ̂1 · a) ⊗ (σ̂2 · a)|60⟩ = −|60⟩, (10.12)

where a is an arbitrary direction (i.e., an arbitrary unit vector). In
other words, the state |60⟩ is rotationally invariant. This is because
it is an eigenstate of the magnitude squared of the total spin operator
(σ̂1 + σ̂2)2 with eigenvalue 0, as it is clear in Section 8.7. In this way,
we have also confirmed that entanglement is a property of the state
that is independent of the basis used [see Section 7.9]. In order to see
this rotational invariance, it suffices to show that |60⟩ turns out to be
also an eigenstate of σ̂1x ⊗ σ̂2x and σ̂1y ⊗ σ̂2y . This can be achieved
either by explicit calculations or by expressing |60⟩ in terms of
the respective eigenstates of σ̂x and σ̂y . We shall demonstrate in
turn both approaches for the x direction and leave those for the y
direction as an exercise for the reader [see Problems 10.2 and 10.3].

First, by applying the observable σ̂1x ⊗ σ̂2x to the state |60 and
using the actions of σ̂x on |↑z⟩ and |↓z⟩ tabulated in Table 8.1, we
obtain

(σ̂1x ⊗ σ̂2x )|60⟩ = 1√
2

(σ̂1x |↑z⟩1 ⊗ σ̂2x |↓z⟩2 − σ̂1x |↓z⟩1 ⊗ σ̂2x |↑z⟩2)

= 1√
2

(|↓z⟩1 ⊗ |↑z⟩2 − |↑z⟩1 ⊗ |↓z⟩2)

= −|60⟩, (10.13)

which means precisely |60⟩ is an eigenstate of the observable
σ1x ⊗ σ2x with eigenvalue −1. Next, making use of the inverse of
Eq. (8.114a),

|↑z⟩ = 1√
2

(|↑x⟩ + |↓x⟩), |↓z⟩ = 1√
2

(|↑x⟩ − |↓x⟩), (10.14)
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we can rewrite |60⟩ in terms of |↑x⟩ and |↓x⟩ as

|60⟩ = 1√
2

(|↑z⟩1 ⊗ |↓z⟩2 − |↓z⟩1 ⊗ |↑z⟩2)

= 1
2
√

2
[(|↑x⟩1 + |↓x⟩1) ⊗ (|↑x⟩2 − |↓x⟩2)

− (|↑x⟩1 − |↓x⟩1) ⊗ (|↑x⟩2 + |↓x⟩2)]

= − 1√
2

(|↑x⟩1 ⊗ |↓x⟩2 − |↓x⟩1 ⊗ |↑x⟩2), (10.15)

which, apart from the global phase factor −1, is a singlet state but
with the projection of the spin along the x direction. Therefore, if
the spin component in the x direction of particle 1 is measured first,
followed by a measurement of the spin component of particle 2 in
the same direction the next, then the two results must have the
opposite values.

The spin singlet state |60⟩ is perhaps the simplest discrete
version of the EPR state 6(x1, x2), in that the form of the former
given by Eqs. (10.10) and (10.15) correspond respectively the form
of the latter given by Eqs. (10.7) and (10.9), and that the role of
position and momentum is played by different spin components.
Nonetheless, the advantage of the spin singlet state over the EPR
state is that as we have mentioned the spin singlet state is an ideal
candidate for the possible realization of experimental tests.

Problem 10.2 Using the actions of σ̂y on |↑z⟩ and |↓z⟩ tabulated in
Table 8.1, show that the singlet state |60⟩ given by Eq. (10.10) is an
eigenstate of the observable σ1y ⊗ σ2y with eigenvalue −1.

Problem 10.3 Express the singlet state |60⟩ given by Eq. (10.10) in
terms of the spin eigenstates |↑y⟩ and |↓y⟩ in the y direction.

10.4 Bell Theorem

The EPR paper raised a very important problem. If quantum
mechanics should turn out to be incomplete, this would imply
the existence of unknown variables able to determine the results
that quantum theory describes in probabilistic terms. In other
words, these variables would provide a full deterministic account
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in a classical sense of what quantum mechanics is meant to
phenomenologically describe [see Chapter 1]. Such variables have
been referred to as the hidden variables (or HVs for short), since
it was assumed that the technological standard of that time was
not sufficient for describing them. So, it is quite understandable
that the main results after Bohm has proposed his model were
of formal kind. In the 1960s Bell was able to prove the following
striking result:a No deterministic local hidden variable theory can
make predictions compatible with quantum mechanics.b By “local
hidden variable theory” we mean a theory that does not make
use of superluminal forms of communication. This achievement
was of particular importance because it moved the discussion
from a qualitative level to a strict quantitative (and therefore
experimentally testable) ground. The incompatibility between a
local hidden variable theory and quantum mechanics (that we have
still to prove) raises the further difficult question as to what type
of locality is violated by quantum mechanics. This discussion must
be postponed for the moment, and here we will use the phrase
“quantum non-locality” as a generic term that could cover two very
different possibilities, i.e., violation of the separability principle [see
Principle 10.1] and violation of Einstein’s locality dictated by special
relativity.

The Gedankenexperiment proposed by Bell was a further refine-
ment of the EPR–Bohm experiment.c Bell assumed the existence
of a hidden variable λHV such that it provides a full deterministic
description of the measurement results obtained in the EPR–Bohm
experiment. In specific, let us now imagine to perform a joint
measurement in which the spin of particle 1 in a chosen direction
a (i.e., the observable σ̂1 · a) is measured with apparatus A and the
spin of particle 2 in another chosen direction b (i.e., the observable
σ̂2 · b) is measured with apparatus B [see Fig. 10.1 and Section 8.6].
Then, given λHV, the results of this joint measurement are uniquely
described by the quantity Mab(λHV), which is a deterministic
function of the hidden variable λHV. It is noted that the Euclidean

a(Bell, 1964).
b(Gröblacher et al., 2007).
c(Auletta, 2000, Section 35.1), (Auletta et al., 2009, Section 16.4).
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vectors a and b are taken to be unit vectors as they represent here
spatial directions. Since the joint measurement is carried out after
the time the two particles no longer interact, then the separability
principle denies that there can be any form of interdependence
between the two particles. This assumption can be mathematically
formulated in a more rigorous way as the separability condition

Mab(λHV) = Aa(λHV) Bb(λHV), (10.16)

which can be interpreted as a factorization rule. The function
Aa(λHV) describes the result of measuring with apparatus A the
spin of particle 1 in the direction a, regardless of the measurement
result of particle 2, and the function Bb(λHV) the result of measuring
with apparatus B the spin of particle 2 in the direction b, regardless
of the measurement result of particle 1. Moreover, like Mab(λHV)
the functions Aa(λHV) and Bb(λHV) also are deterministic functions
of the hidden variable λHV. Indeed, the separability condition
(10.16) expresses the fact that the measurement results for the two
“separated” particles are mutually independent.

Since Aa(λHV) and Bb(λHV) are functions describing the possible
measurement results of spin components in certain directions,
which in units of !

2 can be either +1 (representing spin up) or −1
(representing spin down), then we have

Aa(λ) = ±1, Bb(λ) = ±1, (10.17)

where for the sake of notational simplicity, here and henceforth, we
have dropped the subscript HV from the hidden variable λ. While
the nature of the hidden variable λ is unknown, it is conceivable and
reasonable to assume that (i) the value of λ is real, (ii) all the possible
values of λ form a (continuous) set, which we shall denoted by =,
and (iii) a probability distribution ℘(λ) can be assigned to λ such
that the following normalization condition holds

∫

=

℘(λ)dλ = 1. (10.18)

Since we do not know the exact values of the hidden variable λ, in
order to get rid of the λ dependence we integrate the measurement
results over all the possible values of λ ∈ =, weighted by its
probability distribution ℘(λ). The resultant quantity can then be
interpreted as the “expectation value” of the measurement in a local
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hidden variable theory. With the separability condition (10.16) and
the above assumptions for the hidden variable λ, the expectation
value of the product of the spin component σ̂1 · a of particle 1 and
the spin component σ̂2 · b of particle 2 is given by

⟨(σ̂1 · a)(σ̂2 · b)⟩ =
∫

=

℘(λ)Aa(λ)Bb(λ)dλ. (10.19)

Evidently, the above expectation value is the hidden-variable
counterpart of the quantum expectation value

⟨(σ̂1 · a)(σ̂2 · b)⟩60 = ⟨60|(σ̂1 · a)(σ̂2 · b)|60⟩, (10.20)

where |60⟩ is the singlet state given by Eq. (10.10). From
Eqs. (10.17) and (10.19), it follows that

|⟨(σ̂1 · a)(σ̂2 · b)⟩| =
∣∣∣∣
∫

=

℘(λ)Aa(λ)Bb(λ)dλ

∣∣∣∣

≤
∫

=

℘(λ)|Aa(λ)||Bb(λ)|dλ

=
∫

=

℘(λ)dλ

= 1, (10.21)

where use has been made of the triangle inequality for integrals
(6.23). The above inequality implies that

−1 ≤ ⟨a, b⟩ ≤ 1, (10.22)

where for the sake of notational simplicity we have used the
shorthand notation ⟨a, b⟩ to denote ⟨(σ̂1 · a)(σ̂2 · b)⟩.

Our aim is to compare the prediction of a local hidden
variable theory ⟨a, b⟩, as defined by Eq. (10.19), with the quantum
mechanical prediction ⟨a, b⟩60 , as defined by Eq. (10.20). The above
quantum mechanical result can be computed as follows. We first
write the dot product between the observable and the Euclidean
vector in terms of the corresponding Cartesian components as

σ̂1 · a = ax σ̂1x + ayσ̂1y + azσ̂1z, (10.23a)

σ̂2 · b = bx σ̂2x + byσ̂2y + bzσ̂2z. (10.23b)

Thus the expectation value of the product (σ̂1 · a)(σ̂2 · b) on
the singlet state |60⟩ gives 9 terms, each of which can then be
computed straightforwardly. Using the fact that |60⟩ is an eigenstate
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of the observables σ̂1x σ̂2x , σ̂1yσ̂2y , and σ̂1zσ̂2z with eigenvalue −1
[see Section 10.3 and Problem 10.2], we find that the three direct
terms (i.e., terms resulting from the product between the same
components) are given by

⟨60|ax bx σ̂1x σ̂2x |60⟩ = −ax bx , (10.24a)

⟨60|aybyσ̂1yσ̂2y|60⟩ = −ayby , (10.24b)

⟨60|azbzσ̂1zσ̂2z|60⟩ = −azbz. (10.24c)

The remaining six cross terms (i.e., terms resulting from the product
between different components) are instead all zero. For instance,
using the actions of Pauli matrices on |↑z⟩ and |↓z⟩ tabulated in
Table 8.1, we find

⟨60|σ̂1x σ̂2y|60⟩ = ⟨60|σ̂1x σ̂2y
(
|↑z⟩1|↓z⟩2 − |↓z⟩1|↑z⟩2

)

= ⟨60|
[
(−i)|↓z⟩1|↑z⟩2 − i|↑z⟩1|↓z⟩2

]

= −i(⟨↑z |1⟨↓z |2 − ⟨↓z |1⟨↑z |2
)

(
|↑z⟩1|↓z⟩2 + |↓z⟩1|↑z⟩2)

= 0, (10.25a)

⟨60|σ̂1x σ̂2z|60⟩ = ⟨60|σ̂1x σ̂2z
(
|↑z⟩1|↓z⟩2 − |↓z⟩1|↑z⟩2

)

= ⟨60|
(
−|↓z⟩1|↓z⟩2 − |↑z⟩1|↑z⟩2

)

= −(⟨↑z |1⟨↓z |2 − ⟨↓z |1⟨↑z |2
)

(
|↑z⟩1|↑z⟩2 + |↓z⟩1|↓z⟩2)

= 0, (10.25b)

etc. [see Problem 10.4], where we recall that the scalar product of the
direct product states is defined by Eq. (7.125). Collecting the above
results, we finally conclude that

⟨a, b⟩60 = −(ax bx + ayby + azbz) = −a · b. (10.26)

When the two directions a and b are parallel, we have (recall that a
and b are taken to be unit vectors)

⟨a, a⟩60 = −1, (10.27)

as it should be since there is a perfect anticorrelation (spin up
versus spin down, and vice versa) between the results of the two
measurements.
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Figure 10.2 A scheme depiction of the experimental setup used in the
counterexample proposed for proving the Bell theorem, in which there are
three coplanar directions a, b, and c, with both b and c making an angle of π

3
with a (but in the opposite sense) and the angle between b and c begin 2π

3 .

Since the quantum mechanical result for perfect anticorrelation
is an experimental fact, any local hidden variable theory must also
satisfy this requirement. On the other hand, the hidden-variable
prediction ⟨a, a⟩ = −1 holds if and only if we have

Aa(λ) = −Ba(λ), (10.28)

for all directions a and all values of λ ∈ =. In this case, ⟨a, b⟩
also reaches its minimum value [see Eq. (10.22)]. With the above
requirement, we can drop any reference to apparatus B and rewrite
⟨a, b⟩ as [see Eq. (10.19)]

⟨a, b⟩ = −
∫

=

℘(λ)Aa(λ)Ab(λ)dλ. (10.29)

Let us now consider two alternative directions, say b and c, for the
spin measurement of particle 2 [see Fig. 10.2]. Then, we have

⟨a, b⟩ − ⟨a, c⟩ = −
∫

=

℘(λ)[Aa(λ)Ab(λ) − Aa(λ)Ac(λ)]dλ

=
∫

=

℘(λ)Aa(λ)Ab(λ)[Ab(λ)Ac(λ) − 1]dλ, (10.30)

where use had been made of Eq. (10.29) and the property [see
Eq. (10.17)]

Aa(λ)Ab(λ)Ab(λ)Ac(λ) = Aa(λ)Ac(λ). (10.31)
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Starting from Eq. (10.30) as well as using the triangle inequality for
integrals (6.23) and the property (10.17), we have

|⟨a, b⟩ − ⟨a, c⟩| =
∣∣∣∣
∫

=

℘(λ)Aa(λ)Ab(λ)[Ab(λ)Ac(λ) − 1]dλ

∣∣∣∣

≤
∫

=

℘(λ)|Aa(λ)||Ab(λ)||Ab(λ)Ac(λ) − 1|dλ

=
∫

=

℘(λ)[1 − Ab(λ)Ac(λ)]dλ

= 1 −
∫

=

℘(λ)Ab(λ)Ac(λ)dλ. (10.32)

Therefore, we finally obtain the sought-after result

|⟨a, b⟩ − ⟨a, c⟩| − ⟨b, c⟩ ≤ 1, (10.33)

where ⟨b, c⟩ is the expectation value of the product of the spin
component σ̂1·b of particle 1 and the spin component σ̂2·c of particle
2, i.e.,

⟨b, c⟩ = −
∫

=

℘(λ)Ab(λ)Ac(λ)dλ. (10.34)

It is noted that the inequality (10.33) is valid for arbitrary directions
a, b, and c. This property allows us to rewrite it in a more symmetric
form as

|⟨a, b⟩ + ⟨a, c⟩| + ⟨b, c⟩ ≤ 1. (10.35)

The above result is obtained by setting c to −c in the original
inequality, which corresponds to the situation that we had chosen
in the first place the two alternative directions b and −c for the spin
measurement of particle 2. The inequality (10.35) is the first of a
family of inequalities, collectively known as the Bell inequalities. Its
importance lies in the fact that it sets precise quantitative bounds on
the prediction of any deterministic local hidden variable theory.

A generalization of the Bell inequality can be derived if we
consider spin measurement in alternative directions for each
particles. Let a and a′ denote two alternative directions for particle 1,
while b and b′ two alternative directions for for particle 2. Since the
spin component of each particle is measured in two alternative di-
rections, there are four possible joint measurement pairs for the two
particles. They are represented by the four operators (σ̂1 · a)(σ̂2 · b),
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(σ̂1 · a)(σ̂2 · b′), (σ̂1 · a′)(σ̂2 · b), and (σ̂1 · a′)(σ̂2 · b′), in terms of which
we can then define the Bell operatora by

B̂ = (σ̂1 · a)(σ̂2 · b + σ̂2 · b′) + (σ̂1 · a′)(σ̂2 · b − σ̂2 · b′)

= (σ̂1 · a)(σ̂2 · b) + (σ̂1 · a)(σ̂2 · b′) + (σ̂1 · a′)(σ̂2 · b)

− (σ̂1 · a′)(σ̂2 · b′). (10.36)

Although relatively complicated, the Bell operator is not in principle
different from the basic expression of any quantum observable (here
for a composite system). According to the second line of Eq. (10.36),
the expectation value of B̂ in a local hidden variable theory can be
written as [see also Eqs. (10.29) and (10.19)]

B = ⟨a, b⟩ + ⟨a, b′⟩ + ⟨a′, b⟩ − ⟨a′, b′⟩, (10.37)

where we recall the shorthand notation ⟨a, b⟩ = ⟨(σ̂1 ·a)(σ̂2 ·b)⟩, etc.
The so-called CHSH inequality (short for Clauser, Horne, Shimony,
and Holt) is given byb

|B| =
∣∣⟨a, b⟩ + ⟨a, b′⟩ + ⟨a′, b⟩ − ⟨a′, b′⟩

∣∣ ≤ 2, (10.38)

which is a generalized reformulation of the Bell inequality (10.35).
We are now in a position to formulate the Bell theorem in terms

of the Bell inequality.

Theorem 10.1 (Bell) A deterministic local hidden variable theory,
which acknowledges the separability principle, must satisfy an
inequality of the type given by (10.35) or (10.38). The predictions
of quantum mechanics on the contrary violate such an inequality.

The first part of the Bell theorem has been already proved since
we have obtained the Bell inequality by assuming the separability
condition (10.16). In order to prove the second part, it suffices
to show the contradiction of the Bell inequality (10.35) or the
CHSH inequality (10.38) with quantum mechanics by means of
counterexamples.c We shall first consider a specific counterexample
of the Bell inequality. Let us take the unit vectors a, b, and c to be
coplanar, with both b and c making an angle of π

3 with a (but in
the opposite sense) and the angle between b and c begin 2π

3 [see

a(Braunstein et al., 1992).
b(Clauser et al., 1969).
c(Clauser/Shimony, 1978, pp. 1888–1890).
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Fig. 10.2]. Using Eq. (10.26), we find that the quantum expectation
values in this case are given by

⟨a, b⟩60 = −a · b = − cos
π

3
= −1

2
, (10.39a)

⟨a, c⟩60 = −a · c = − cos
π

3
= −1

2
, (10.39b)

⟨b, c⟩60 = −b · c = − cos
2π

3
= 1

2
, (10.39c)

where use has been made of Eq. (3.16). From the above results, we
obtain

∣∣⟨a, b⟩60 + ⟨a, c⟩60

∣∣ + ⟨b, c⟩60 = 3
2

> 1, (10.40)

which evidently violates the Bell inequality (10.35). We then
consider a specific counterexample of the CHSH inequality. We
choose the following directions of spin measurement for particles
1 and 2:

a = ex , a′ = ez, b = − 1√
2

(ez + ex ), b′ = 1√
2

(ez − ex ),

(10.41)
where ex , ey , and ez are unit vectors in the x , y, and z directions,
respectively. Using again Eq. (10.26), we find that the quantum
expectation values in this case are given by [see Box 3.1]

⟨a, b⟩60 = −a · b = 1√
2

, ⟨a, b′⟩60 = −a · b′ = 1√
2

, (10.42a)

⟨a′, b⟩60 = −a′ · b = 1√
2

, ⟨a′, b′⟩60 = −a′ · b′ = − 1√
2

,

(10.42b)

where use has been made of Eqs. (3.16) and (3.18). Consequently,
we have
∣∣ 〈

B̂
〉

60

∣∣ =
∣∣⟨a, b⟩60 + ⟨a, b′⟩60 + ⟨a′, b⟩60 − ⟨a′, b′⟩60

∣∣ = 2
√

2 ≥ 2,
(10.43)

which is obviously in contradiction to the CHSH inequality (10.38).
The construction of other counterexamples of the Bell and CHSH
inequalities is left as an exercise for the reader [see Problem 10.5].

There have been several experiments confirming that indeed
quantum mechanics violates the Bell inequality, thus providing
experimental verification of the Bell theorem. The first series of
experiments began in the 1970s and have made use essentially
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Figure 10.3 (a) Friedman–Clauser experiment. The correlated photons
γA , γB coming from the source S impinge upon the linear polarizers A and
B oriented in directions a and b, respectively. The rate of joint detection by
the photomultipliers is monitored for various combinations of orientations.
(b) Experiment proposed by Aspect. The optical commutator CA directs
the photon γA either towards polarizer A1 with orientation a1 or to
polarizer A2 with orientation a2. Similarly for CB to direct the photon γB

to polarizer B1 with orientation b1 or polarizer B2 with orientation b2.
The two commutators work independently (the time intervals between two
commutations are taken to be stochastic). The four joint detection rates are
monitored and the orientations a1, a2, b1, and b2 are not changed for the
whole experiment. The distance l is the separation between the switches.
Adapted from (Auletta et al., 2009, p. 600).

of particles decay, according to Bohm’s original model [see Sec-
tion 10.3]. Prototypical is the experiment performed by Friedman
and Clausera [see Fig. 10.3(a)]. This kind of experiment was later
on shown to present several flaws.b For this reason, in the 1980s
a new generation of experiments was performed starting from the
historical result of Aspect and collaboratorsc [see Fig. 10.3(b)].

a(Freedman/Clauser, 1972).
b(Auletta, 2000, Sections 35.3–35.4), (Auletta et al., 2009, Section 16.5). See also

Selleri (1988), Santos (1991).
c(Aspect et al., 1982).
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Problem 10.4 Verify that the cross terms of the expectation value
⟨a, b⟩60 given by Eq. (10.26) all vanish.

Problem 10.5 Try to construct another counterexample to the Bell
inequality (10.35).

10.5 Entanglement Swapping

In this section we try to make a significant step towards the
understanding of the concept of entanglement in its generality,
namely, if it is possible for systems that have never directly
interacted before to get entangled. This novel phenomenon reveals
clearly that entanglement is not a dynamical interdependence
between systems and, in particular, that entanglement is not
associated with causal relations. Such genuine quantum mechanical
characteristics clashes with the assumptions made in the EPR
argument, as far as EPR postulated that there are no connections
between systems if their interdependence is not of dynamical and
therefore of causal type [see Section 10.1]. The milestone step
towards the generalization of the entanglement concept was the
entanglement swapping experiment performed by Zeilinger and
collaborators in 1993.a Consider two pairs of entangled photons
emitted by two independent sources as shown in Fig. 10.4. The
states of the two photon pairs are given by

|ψ⟩12 = 1√
2

(
|h⟩1|v⟩2 − |v⟩1|h⟩2

)
, (10.44a)

|ψ⟩34 = 1√
2

(
|h⟩3|v⟩4 − |v⟩3|h⟩4

)
, (10.44b)

where the subscripts 12 and 34 denote the photon pairs composed
of photons 1 and 2, and photons 3 and 4, respectively. Evidently, the
state of the composite four-photon system |6⟩ is factorized, i.e., we
have

|6⟩ = |ψ⟩12 ⊗ |ψ⟩34. (10.45)

In other words, while the two photons in each photon pair are
entangled, there is no entanglement between either of the two
photons in different photon pairs.

a(Zukowski et al., 1993).
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BS

photon 1

photon 2photon 3 

photon 4

SPDC 1 SPDC 2

Bell state
meadurement

Figure 10.4 Schematic setup of entanglement swapping. Two pumped
spontaneous parametric down-conversion sources SPDC 1 and SPDC 2 each
emit a photon pair (1–2 and 3–4, respectively). Note that photons 2 and 3
merge through a beam splitter BS before being measured by a Bell state
measurement device. Spontaneous parametric down-conversion consists
in pumping a non-linear crystal with ultraviolet (high-energy) light. An
ultraviolet photon may eventually decay into a couple (of less energetic)
photons, obeying the laws of conservation of energy and momentum. If the
orientation of the nonlinear optical crystal is chosen appropriately, two such
possible decay processes become indistinguishable and lead to quantum
correlations between the daughter photons. Adapted from (Auletta et al.,
2009, p. 611).

If we now perform a particular type of joint measurement on
photons 2 and 3, we are able to project photons 1 and 4 onto an
entangled state that depends on the result of the measurement on
photons 2 and 3. To be specific, let us use the so-called Bell states for
photons 2 and 3, which in the basis {|h⟩, |v⟩} are given bya

|6+⟩23 = 1√
2

(|h⟩2|v⟩3 + |v⟩2|h⟩3), (10.46a)

|6−⟩23 = 1√
2

(|h⟩2|v⟩3 − |v⟩2|h⟩3), (10.46b)

|7+⟩23 = 1√
2

(|h⟩2|h⟩3 + |v⟩2|v⟩3), (10.46c)

|7−⟩23 = 1√
2

(|h⟩2|h⟩3 − |v⟩2|v⟩3). (10.46d)

Although we are considering here photon polarization states, with
a suitable reformulation it may be shown that the Bell states are

a(Braunstein et al., 1992).
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eigenstates of the Bell operator B̂ given by (10.36). Indeed, the Bell
states are four maximally entangled states of photons 2 and 3 and
also constitute a complete orthonormal basis of the Hilbert space of
photons 2 and 3. In order to find the effect of the joint measurement
that projects |6⟩ onto one of the Bell states given by Eqs. (10.46), we
rewrite the state |6⟩ given by Eq. (10.45) in terms of the latter as

|6⟩ = 1
2

(
|6+⟩14|6+⟩23 − |6−⟩14|6−⟩23 − |7+⟩14|7+⟩23

+ |7−⟩14|7−⟩23
)

, (10.47)

where the states for photons 1 and 4 have been expressed now in
terms of their own Bell states |6+⟩14, |6−⟩14, |7+⟩14, and |7−⟩14.
Note also that in the above expansion the components for photons
1 and 4 are paired with components of the same type for photons
2 and 3 (i.e., each “plus”-type state for photons 1 and 4 is paired
with the corresponding “plus”-type state for photons 2 and 3, and
the same for each “minus”-type state). It follows from Eq. (10.47)
that the projection of the state |6⟩ onto a Bell state of photons 2 and
3, also projects photons 1 and 4 onto an entangled state precisely of
the same form. In other words, by performing a joint measurement
on photons 2 and 3 that entangles the two initial unentangled
photons, we are able to entangle two initially unentangled photons
1 and 4. It is noted that photons 1 and 4 never met and therefore
are not involved at all in this dynamical interaction. Therefore we
are finally justified in saying that entanglement represents a form
of interdependence in which no dynamic interaction is necessary.
We remark that entanglement swapping of photon is not the only
phenomenon of genuine quantum interference of systems from
different sources. Indeed, it has been shown that electrons also show
a similar behavior.a

Problem 10.6 Show that the state |6⟩ given by Eq. (10.47) is indeed
the same as that given by Eq. (10.45). It is a cumbersome but very
instructive calculation.

a(Neder et al., 2007).
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10.6 Eberhard Theorem

Until now we have postponed the general issue of which kind of non-
locality is displayed by quantum mechanics. Although entanglement
does not imply exchange of signals, we cannot exclude that this
will happen in other situations. Since 1978 Eberhard has focused
on the conceptual distinction between separability and locality.a

Let us consider the problem in all its generality. In other words,
we do not need to restrict ourselves to the specific spin model
previously introduced. To this purpose, we consider a composite
system S consists of two subsystems S1 and S2, which are set to be
measured with apparatuses A and B , respectively. Let Ô1 and Ô2 be
the respective observables of systems S1 and S2. Now, given that the
respective settings of apparatuses A and B are a and b, suppose that
the probability that a joint measurement of Ô1 on S1 and Ô2 on S2

yield the respective results oa and ob is given by ℘(oa , ob|a, b). The
latter is the kind of probability called conditional probability [see
Box 10.1].

Let ℘(oa|a) denote the probability that a measurement of Ô1

on S1 yield the outcome oa given the setting of apparatus A is
a, regardless of the setting of apparatus B and the measurement
outcome of Ô2 on S2. From the addition rule (10.55), the conditional
probability ℘(oa|a) is obtained by summing the joint probabilities
℘(oa , ob|a, b) over all the possible outcomes ob of Ô2 on S2, i.e.,

℘(oa|a) =
∑

ob

℘(oa , ob|a, b). (10.48)

A similar probability ℘(ob|b) can be defined for the measurement
outcome ob of Ô2 on S2 when the setting of apparatus B is b,
regardless of the setting of apparatus A and the measurement
outcome of Ô1 on S1. Likewise, the probability ℘(ob|b) is given by

℘(ob|b) =
∑

oa

℘(oa , ob|a, b). (10.49)

The careful reader may have noticed that neither the dependences
of the setting b on both sides of Eq. (10.48) nor the dependences

a(Eberhard, 1978), (Auletta, 2000, Section 36.5).
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Box 10.1 Conditional probability

Conditional probability deals with the probability of an event
while we have the information that another event has already
occurred. To be specific, the conditional probability ℘(A|B) that
an event A occurs given the known occurrence of an event B is
defined by

℘(A|B) = ℘(A , B)
℘(B)

, (10.50)

where ℘(A , B) is the joint probability that the events A and
B both occurred and ℘(B) ̸= 0. Similarly, the conditional
probability of B given A is

℘(B|A) = ℘(A , B)
℘(A)

, (10.51)

where ℘(A) ̸= 0. Rearranging and combining these two
equations, we find

℘(A|B)℘(B) = ℘(B|A)℘(A), (10.52)

Dividing both sides by ℘(B), we obtain

℘(A|B) = ℘(B|A)℘(A)
℘(B)

, (10.53)

which is known as the Bayes theorem. If ℘(A , B) = ℘(A)℘(B),
then the events A and B are said to be statistically independent
(or uncorrelated). It is noted that statistical independence of A
and B implies ℘(A|B) = ℘(A) and ℘(B|A) = ℘(B). Since
conditional probability is probability, it also satisfies the basic
probability rules [see Eq. (2.2)]:

0 ≤ ℘(A|B) ≤ 1 for all A ⊂ $, (10.54a)

℘(B|B) = 1, (10.54b)

℘(A1 ∪ A2|B) = ℘(A1|B) + ℘(A2|B) if A1 ∩ A2 = ∅, (10.54c)

℘(A1 ∪ A2|B) = ℘(A1|B) + ℘(A2|B) − ℘(A1, A2|B),
(10.54d)
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provided that ℘(B) ̸= 0. A generalization of the addition rule
(10.54c) is that for a set of mutually exclusive events A j whose
union is the event A, we have

℘(A|B) =
∑

j

℘(A j |B), (10.55)

where B is an arbitrary event with ℘(B) ̸= 0. Moreover, if the
set of mutually exclusive events A j exhausts the sample space $,
then we have

℘(B) =
∑

j

℘(B , A j ), (10.56)

which in turn can be expressed in terms of the conditional
probability ℘(B|A j ) as

℘(B) =
∑

j

℘(B|A j )℘(A j ). (10.57)

The above expression is of great use when we discuss information
acquisition in Section 12.1.

of the setting a on both sides of Eq. (10.49) are consistent. Indeed,
in writing the above two equations we have implicitly taken into
account the locality requirement. By “locality requirement” we mean
that the conditional probability ℘(oa|a) has to be independent of the
setting b of apparatus B and similarly the conditional probability
℘(ob|b) has to be independent of the setting a of apparatus A. In
other words, the conditional probabilities ℘(oa|a) and ℘(ob|b) must
depend only on the local setting.

According to Eberhard, if the locality requirement were violated
we would have a non-local causal interdependence between the
two subsystems. This is because, by changing the setting of one
apparatus, we would be able to have influence on the measurement
outcomes of the other apparatus, and hence, if we performed
experiments on subsystems that are space-like separated (i.e., not
connected by a light signal), we would be able to transmit a message
at superluminal or even infinite speed. Actually, as we shall see, the
violation of the above requirement does not necessarily imply a non-
local causal interconnection because there could still be some form
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of interdependence between possible apparatus settings of the kind
that quantum mechanics acknowledges for possible measurement
outcomes, as we have seen to be the case for entanglement. To
exclude also the latter possibility sets a stronger bound than to
exclude a violation of Einstein’s locality because it would represent
also a violation of the separability between apparatus settings.
Eberhard himself interpreted the theorem in the weaker form (no
causal interconnection between apparatus settings) that implies
the stronger formulation (no violation of the separability between
apparatus settings). Here, we shall formulate the theorem in the
most general terms as denying any kind of non-local correlations
between apparatus settings and shall back on this issues later on.

Theorem 10.2 (Eberhard) Quantum mechanics does not allow
non-local correlations between apparatus settings.

In order to prove the above theorem, we consider the situation
in which we first perform a measurement of Ô1 on S1, followed by
a subsequent measurement of Ô2 on S2. Let us denote by |oa , a⟩
the state of subsystem S1 when the setting of apparatus A is a
and the measurement outcome of Ô1 is oa , and by |ob, b⟩ the state
of subsystem S2 when the setting of apparatus B is b and the
measurement outcome of Ô2 is ob. Then the conditional probability
of obtaining the outcome oa when the setting of apparatus A is a, can
be expressed in terms of the density matrix of the composite system
ρ̂ as [see Section 9.2]

℘(oa|a) = Tr
(

P̂oa , a ρ̂
)

, (10.58)

where P̂oa , a is the projector on the state |oa , a⟩ of S1, i.e.,

P̂oa , a = |oa , a⟩⟨oa , a|. (10.59)

After the measurement of Ô1 on S1 when the setting of apparatus
A is a and the outcome is oa , the density matrix ρ̂ of the composite
system reduces to [see Eq. (9.10)]

ρ̂ ′ = P̂oa , a ρ̂ P̂oa , a

℘(oa|a)
. (10.60)
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If we perform a subsequent measurement of Ô2 on S2, then the
conditional probability of obtaining the outcome ob when the setting
of apparatus B is b, is given by

℘(ob|oa , a, b) = Tr
(

P̂ob , b ρ̂ ′)

=
Tr

(
P̂ob , b P̂oa , a ρ̂ P̂oa , a

)

℘(oa|a)
, (10.61)

where P̂ob , b is the projector on the state |ob, b⟩ of S2, i.e.,

P̂ob , b = |ob, b⟩⟨ob, b|. (10.62)

Therefore, the joint probability of obtaining the outcomes oa and ob,
given the respective settings a and b of apparatus A and B , is given
by [see Eq. (10.50)]

℘(oa , ob|a, b) = ℘(oa|a) ℘(ob|oa , a, b)

= ℘(oa|a)
Tr

(
P̂ob , b P̂oa , aρ̂ P̂oa , a

)

℘(oa|a)
= Tr

(
P̂ob , b P̂oa , aρ̂ P̂oa , a

)
(10.63)

By using the cyclic property of the trace (7.115c), the fact that the
projectors P̂oa , a and P̂ob , b commute because they pertain to different
subsystems, and the general property P̂ 2

oa , a = P̂oa , a [see Eq. (3.62)],
we may further simplify the above expression to

℘(oa , ob|a, b) = Tr
(

P̂oa , a P̂ob , b P̂oa , a ρ̂
)

= Tr
(

P̂ob , b P̂oa , a P̂oa , a ρ̂
)

= Tr
(

P̂ob , b P̂oa , a ρ̂
)

. (10.64)

From Eq. (10.49), we sum the above result over all possible
outcomes of oa to obtain the probability ℘(ob|b) as

℘(ob|b) =
∑

oa

℘(oa , ob|a, b)

=
∑

oa

Tr
(

P̂ob , b P̂oa , a ρ̂
)

= Tr

[
P̂ob , b

(∑

oa

P̂oa , a

)
ρ̂

]

= Tr
(

P̂ob , b ρ̂
)

, (10.65)
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where use has been made of the property that
∑

oa
P̂oa , a = Î

for any complete set of orthogonal projectors [see Section 3.7].
We note that the result for ℘(ob|b) given by the last equality in
Eq. (10.65) is indeed independent of the setting a of apparatus A.
This is in agreement with locality requirement. The same conclusion
applies to ℘(oa|a) if we had started the proof by considering a
measurement of Ô2 on S2, followed by a measurement of Ô1 on S1

[see Problem 10.7].
The Eberhard theorem is of particular importance in our

understanding of the conceptual aspects of quantum mechanics.
In fact, it proves that although the probability distributions of
possible measurement outcomes of two entangled systems are
not independent, as predicted by quantum mechanics, there is
no correlation between possible apparatus settings. This excludes
the possibility to influence the probability distributions of the
outcomes of measurement on one system by changing the setting
of the apparatus for measurement on another system, which in
turn would imply the possibility of exchanging superluminal signals.
Although in the following we shall often use the term non-locality
as a shorthand way to refer to all quantum correlations associated
with entanglement, as a fulfillment of the examination developed
in the previous sections we assume as proved that the kind of
non-local interdependence expressed as quantum features is not
of dynamical type but of pure relations or constraints of a new
kind. Moreover, as anticipated, we take for proved that quantum
mechanical correlations in fact only concern the possible outcomes
but never settings, although this will be also the object of a
later examination. A philosophical remark may be opportune here.
Already the great philosopher Peirce has distinguished between
static relations, that is, correlations, and dynamical ones, that is,
interactions.a

Problem 10.7 Prove the Eberhard theorem by starting from the
conditional probability ℘(oa|ob, b, a).

a(Peirce CP, 1.293; 1.303–1.332; 3.472–3.473), see also (Auletta, 2006a).
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10.7 Kochen–Specker Theorem

We wish to briefly present in this section an important general result
represented by a theorem proved by Kochen and Specker in 1967,a

which shows the incompatibility between quantum mechanics and
hidden variable theories without any separability assumption. We
may recall that the EPR argument can be circumvented by either
denying the separability assumption (and we have followed this first
development until now) or by rejecting the principle of physical
reality [see Sections 10.1 and 10.2]. The latter is the subject of the
present section.b Let {a1, a2, . . . , an} be a set of n atomic statements,
while bi j and ci jk be compound statements of the formc

bjk = ¬(aj ∧ ak), ci jk = ai ∨ aj ∨ ak. (10.66)

By De Morgan’s law (9.49), we have bi j = ¬aj ∨ ¬ak, which means
that classically the disjunction of ¬aj and ¬ak can be true if at least
one of the two statements aj and ak is false. On the contrary, in
quantum mechanics the statement bi j can be true even if both aj and
ak are true. Indeed, we known that in an interferometer experiment
we can affirm that the photon is in a state such that it can be found in
one of the two paths, down or up, but in most cases we cannot affirm
that it is indeed in either the down or the up path [see Chapter 2].
Formally, d ∨ u can be true even when neither u or d is. Similarly, in
quantum mechanics the statement ci jk can be true even if ai , aj , and
ak are all false.

We now consider a statement d composed of ten atomic
statements aj (with j = 0, 1, . . . , 9)

d = b01 ∧ b02 ∧ b08 ∧ b13 ∧ b15 ∧ b24 ∧ b26 ∧ b35 ∧ b37 ∧ b46

∧ b47 ∧ b56 ∧ b78 ∧ b79 ∧ b89 ∧ c135 ∧ c346 ∧ c789. (10.67)

The graphical representation of the statement d is depicted in
Fig. 10.5, in which the vertices are the atomic statements. The two
vertices aj and ak are connected by a straight line if and only if bjk is

a(Kochen/Specker, 1967).
bWe follow here a simplified exposition given by Pitowsky in (Pitowsky, 1989,

pp. 109–117).
cA statement which cannot be broken down into other simpler statements is called
an atomic statement.
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Figure 10.5 The 10-point Kochen–Specker graph, i.e., the graphical
representation of the statement d given by Eq. (10.67).

in d, while the vertices ai , aj , and ak constitute a triangle if and only
if ci jk is in d. Let f (a) denotes the truth value of the statement a. If
f (d) = 1, then no pair of atomic statements connected by a straight
line can have truth value 1. This is because the statement d is false
if one of its constituent statements bjk is false. Formally, we have the
statement

[ f (aj ) = f (ak) = 1 ⇒ f (bjk) = 0] ⇒ f (d) = 0. (10.68)
Indeed, on the one hand, the disjunction bjk is true only if at least
one of the two statements ¬aj and ¬ak is true (or only if aj or ak is
false). On the other hand, if bjk is false, then the compound statement
d is also false as the latter is composed of conjunctions between bjk

and ci jk, which implies that neither bjk nor ci jk in d can be false [see
Table 9.3]. Now we shall prove the following lemma:

Lemma 10.1 (Pitowsky) If both f (d) = 1 and f (a0) = 1, then
f (a9) = 1.

A quick proof by reductio ad absurdum can be obtained by
inspecting the graph of d depicted in Fig. 10.5. Since a0 is true, we
have that all the statements connected to it through a straight line
are false, that is, a1, a2, and a8 are all false. But if we assume for the
sake of the argument that a9 is also false, this then implies that a7

must be true since c789 = a7 ∨ a8 ∨ a9 must hold true if d is true.
However, if a7 is true, then a3 and a4 must be false because both are
connected with a7 by a straight line. However, since both c135 and
c246 must be true, this implies that both a5 and a6 are true. But this
is a contradiction since the a5 and a6 are connected by a straight line.



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

Kochen–Specker Theorem 327

a0
a112

a104

a96

a88

a8

a73

a65
a57

a49

a41

a33

a25

a17

a9

Figure 10.6 The 117-point Kochen–Specker graph, i.e., the graphical
representation of the statement s ′ given by Eq. (10.69), is constructed by
using 15 copies of the 10-point Kochen–Specker graph depicted in Fig. 10.5
(consider especially the subgraph containing a0, a8, and a9). The vertices
are numbered consecutively in a counterclockwise direction from a0 to a119

except for a8 and a41. Moreover, vertices a0 and a40 are identified with each
other, and so are a8 and a119, and a41 and a80.

With the above lemma, we now proceed to the formulation
and proof of the Kochen–Specker theorem. Consider a compound
statement s ′ constructed as follows by using 15 copies of the d
graph considered above [see Fig. 10.6]. There are three groups of
five interlocking copies of the d graph such that in each group every
a9 of one copy of d is identified with every a0 of the next copy
and all copies of a8 are identified with each other. Then, the three
groups are cyclically interlocked together by identifying a9 of the
last copy of d and a8 in one group with a0 of the first copy of d in
the next group and that in the next next group, respectively. Finally,
a0, a8, and a41 constitute a triangle. Let us now denote by d0, 8, 9 the
statement given by Eq. (10.67), where the subscripts 0, 8, and 9 are
the vertices a0, aj , and ak to be identified with those of the next
copy in the above construction, and by d′

0, 8, 9 the same statement but
with b08 removed. To avoid confusion, here we have used commas to
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separate numerical subscripts. Then the compound statement s ′ can
be expressed in terms of d and d′ as

s ′ = d0, 8, 9 ∧ d′
9, 8, 17 ∧ d′

17, 8, 25 ∧ d′
25, 8, 33 ∧ d′

33, 8, 41 ∧ d41, 0, 49 ∧ d′
49, 0, 57

∧ d′
57, 0, 65 ∧ d′

65, 0, 73 ∧ d′
73, 0, 8 ∧ d8, 41, 88 ∧ d′

88, 41, 96 ∧ d′
96, 41, 104

∧ d′
104, 41, 112 ∧ d′

112, 41, 0 ∧ c0, 8, 41. (10.69)

Moreover, from the 15 copies of the d graph used in the process of
constructing s ′, we subtract those vertices that were identified with
each other and end up with 117 different vertices, which correspond
to the 117 constituting atomic statements of s ′. The reason why we
have denoted such a statement as s ′ is that it can be considered
opposite to the statement s involved in the EPR argument [see
Section 10.1].

We are now in a position to formulate the Kochen–Specker
theorem in terms of the compound statement that we have just
constructed.

Theorem 10.3 (Kochen–Specker) The statement s ′ is classically
a logical falsity, but there are cases in which it is true in quantum
mechanics.

The first part of the Kochen–Specker theorem, that is, the
statement s ′ is classically a logical falsity, can be proved by reductio
ad absurdum. Suppose that s ′ is true, then both c0, 8, 41 = a0 ∨a8 ∨a41

and d0, 8, 9 must hold true because they are subgraphs of the graph of
s ′ [see Eq. (10.69) and Fig. 10.6]. The logical truth of c0, 8, 41 implies
that at least one of a0, a8, and a41 is true. We assume for the sake of
the argument that a0 is true. Together with the logical truth of d0, 8, 9,
by Lemma 10.1, this implies that a9 is also true. The same argument
can be repeated to show that a17, a25, a33, and a41 are all true. But
a0 and a41 are connected by a straight line, which implies b1, 41 is
false and hence s ′ is also false. This is a contradiction, therefore we
conclude that the statement s ′ is false.a

In order to prove the second part, it suffices to provide a quantum
mechanical counterexample to the logical falsity of the statement s ′.

aRecently, an experiment on a single system with two degrees of freedom has been
reported in (Hasegawa et al., 2006), which demonstrates the validity of a Kochen–
Specker-like argument and shows that quantum mechanics is a contextual theory.
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To this purpose, let us consider a single-particle spin 1 system and
the measurement of the squared spin components Ŝ2

x , Ŝ2
y , and Ŝ2

z .
It can be shown that the latter operators are mutually commuting
(while Ŝx , Ŝy , and Ŝz themselves are not). In the common eigenbasis
of Ŝ

2
and Ŝz, i.e., the {|1, 1⟩, |1, 0⟩, |1, −1⟩} basis, the operators Ŝx , Ŝy ,

and Ŝz are respectively represented by the three 3×3 matrices given
by Eq. (8.45). Thus, the corresponding squared spin components are
given by (in units of !2)

Ŝ2
x = 1

2

⎡

⎣
0 1 0
1 0 1
0 1 0

⎤

⎦

⎡

⎣
0 1 0
1 0 1
0 1 0

⎤

⎦ = 1
2

⎡

⎣
1 0 1
0 2 0
1 0 1

⎤

⎦ , (10.70a)

Ŝ2
y = 1

2

⎡

⎣
0 −i 0
i 0 −i
0 i 0

⎤

⎦

⎡

⎣
0 −i 0
i 0 −i
0 i 0

⎤

⎦ = 1
2

⎡

⎣
1 0 −1
0 2 0

−1 0 1

⎤

⎦ , (10.70b)

Ŝ2
z =

⎡

⎣
1 0 0
0 0 0
0 0 −1

⎤

⎦

⎡

⎣
1 0 0
0 0 0
0 0 −1

⎤

⎦ =

⎡

⎣
1 0 0
0 0 0
0 0 1

⎤

⎦ . (10.70c)

With the above expressions, it is now straightforward to verify that
Ŝ2

x , Ŝ2
y , and Ŝ2

z are mutually commuting. Indeed, we have

[Ŝ2
x , Ŝ2

y ] = Ŝ2
x Ŝ2

y − Ŝ2
y Ŝ2

x

= 1
4

⎡

⎣
0 0 0
0 4 0
0 0 0

⎤

⎦ − 1
4

⎡

⎣
0 0 0
0 4 0
0 0 0

⎤

⎦ = 0, (10.71a)

[Ŝ2
x , Ŝ2

z ] = Ŝ2
x Ŝ2

z − Ŝ2
z Ŝ2

x

= 1
2

⎡

⎣
1 0 1
0 0 0
1 0 1

⎤

⎦ − 1
2

⎡

⎣
1 0 1
0 0 0
1 0 1

⎤

⎦ = 0, (10.71b)

[Ŝ2
y , Ŝ2

z ] = Ŝ2
y Ŝ2

z − Ŝ2
z Ŝ2

y

= 1
2

⎡

⎣
1 0 −1
0 0 0

−1 0 1

⎤

⎦ − 1
2

⎡

⎣
1 0 −1
0 0 0

−1 0 1

⎤

⎦ = 0. (10.71c)

It is important to note that while the above calculation is carried
out using the squared spin components in the x , y, and z directions,
the same conclusion holds for the squared spin components in
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three arbitrary mutually orthogonal directions. This is because
commutation relations are invariant under a unitary transformation
[see Eq. (7.41)], and the unitary transformation here is simply a
rotation about an arbitrary direction [see Section 8.6]. Therefore,
for a spin 1 particle it is always possible (at least in principle)
to simultaneously measure the squared spin components in three
arbitrary mutually orthogonal directions. Moreover, for a spin 1
particle we have (again, in units of !2)

Ŝ
2 = Ŝ2

x + Ŝ2
y + Ŝ2

z = 2 Î , (10.72)

which can be easily verified by an explicit calculation using the
matrices given by Eq. (10.70). This in turn implies that the sum of
the eigenvalues of the three operators Ŝ2

x , Ŝ2
y , and Ŝ2

z is equal to 2.
Since the eigenvalues of the operators Ŝ2

x , Ŝ2
y , and Ŝ2

z are either 0
or 1, we conclude that the eigenvalue of one, and only one, of these
operators is 0.

Now, let us assign a unit Euclidean vector a j to each of the 117
vertices aj in the graph of s ′, such that we can build from these
unit vectors triplets of mutually orthogonal vectors. Indeed, each of
these triplets can be obtained from a rotation of the basis vectors
ex , ey , and ez about some direction. The rule for our assignment of
vectors is that when the vertices ai , aj , and ak constitute a triangle,
the corresponding vectors ai , a j , and ak are one of these triplets
of mutually orthogonal vectors. Moreover, since a triangle also
corresponds to three pairs of vertices, each connected by a straight
line, our above assignment implies that if aj and ak are connected
by a straight line, then two orthogonal vectors a j and ak must be
assigned to them. Consider all the 117 atomic statements aj meaning
“The squared spin component of the particle in the direction a j is
zero.” Then, since from our above analysis in each triplet of mutually
orthogonal directions the squared spin component of the particle is
zero only in one direction, we find that all of the statements bjk =
¬(aj ∧ ak) as well as all of the statements ci jk = ai ∨ aj ∨ ak hold
true in quantum mechanics (at least) for the single-particle spin 1
system under consideration. This in turn means that the compound
statement s ′ hold true in quantum mechanics despite the fact that it
is classically a logical falsity.
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In conclusion, the Kochen–Specker theorem provides a powerful
argument against the possibility of interpreting quantum mechanics
in terms of hidden variables. The fact that in quantum mechanics
there can be value assignments that are not classically meaningful,
means acknowledging that we cannot have a classical value
assignment for all eigenvalues of quantum observables. This is to a
certain extent not far away form the spirit of Bohr’s argument [see
Section 10.2], in which it is argued that such a value assignment
should be done in the framework of a specific context that turns out
to be experimental. Only that, we have proved that the true issue
here, in the absence of any detection events, is ascription of reality
to properties but not to observables. We have mentioned that Bohr’s
argument was still not completely clear about this point. In fact, this
is what made his criticism of EPR weak and not sufficient to disprove
EPR’s principle of physical reality (one of the two main assumptions
of EPR). If clarified in such a way, both Schrödinger’s and Bohr’s
arguments, although in different ways, deal with properties.

10.8 Summary

In this chapter, we have

• Analyzed the path-breaking paper of Einstein, Podolsky, and
Rosen (EPR), in which the authors aimed at showing the
incompleteness of quantum mechanics.

• Considered Bohr’s and Schrödinger’s replies to the EPR
argument.

• Presented Bohm’s model for testing the EPR thought experi-
ment using a spin singlet state.

• Proved the Bell theorem, which shows that local hidden
variable theories do not satisfy quantum predictions and are in
contradiction to experimental results.

• Introduced the amazing concept of entanglement swapping,
which shows that entanglement does not need a direct
dynamical interaction.

• Proved the Eberhard theorem, which shows that quantum sys-
tems display correlations between possible outcomes violating
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separability but not Einstein’s locality principle. More strongly,
they are not interdependences between apparatus settings.

• Proved the Kochen–Specker theorem, which shows that it is not
possible to have a classical value assignment for all eigenvalues
of quantum observables.
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Chapter 11

Quantum Information

We have already hinted at the relevance of information for measure-
ment. In the last chapter we have considered the relevance of non-
local correlations. It is time to deal again with measurement and
non-locality from the point of view of information. Indeed, in this
chapter, we shall learn how to treat quantum systems as information
processors along the lines of quantum reversibility presented in
Section 9.7. After providing a brief discussion on the nature of
information, we introduce the concepts of information accessibility
and partial information. We shall present a basic analysis of some
commonly used quantum gates in quantum computation. Quantum
teleportation and the quantum key distribution problem are then
analyzed. Finally, the important concept of mutual information and
its relation to quantum non-separability are discussed.

11.1 Nature of Information

Let us consider two entangled spin 1
2 particles in a singlet state.

If we measure their spin, we shall find out that, if one particle
is spin up in a certain direction, the other particle is necessarily
in spin down state in the same direction, and vice versa. That is,

Quantum Mechanics for Thinkers
Gennaro Auletta and Shang-Yung Wang
Copyright c⃝ 2014 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4411-71-4 (Hardcover), 978-981-4411-72-1 (eBook)
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we shall find out either down–up or up–down, but never up–up
or down–down. A statistics in which we would obtain all the four
possible outcomes up–up, down–down, up–down, and down–up
with equiprobability would be completely random, as can be seen
by comparing, for instance, the entangled photon polarization state
given by Eq. (7.131) with the product state given by Eq. (7.128). A
random statistics is precisely what we should expect if the world
consisted only of random events. If, on the contrary, we found that
only two of the four possible outcomes occur, this would be really
amazing and we will be forced to search for some explanation.
In particular, we should infer that there is a correlation between
the possible measurement outcomes. We note that to get a subset
of possibilities in a completely random set represents an increase
in order. Indeed, if we get spin up, we are able to predict that
our partner will get spin down, and vice versa. Therefore, the key
point we are trying to make here is that the existence of quantum
correlations or, at a more general level, constraints of a new kind, is
precisely the piece of the world that allows us to make predictions,
to formulate theories and laws, and to have an ontological import of
these theories and laws. Hence, the irreducibility of the randomness
of quantum events does not prevent us from attributing to the
quantum world an aspect of regularity that, although somehow
opposite to the irreducibility of randomness, may well be articulated
together with the latter [see Sections 7.2 and 7.3].

The natural question arises about the kind of reality quantum
correlations consist in. We have already considered them in terms of
the features that characterize quantum states and have also assigned
to them a certain ontological import [see Sections 4.8 and 5.6].
Now, we need to deepen this examination. The term feature has
a more physical flavor and stresses the particularity of quantum
correlations. However, the concept of correlation has also a certain
advantage, not only because it also applies to the classical case
[see Section 7.9]. What we would like to stress here is that we
live in a world that is physical but correlations are by definition
formal, and this may well be the main reason why EPR postulated
separability [see Section 10.1]: they wold avoid any non-physical
factor [see also Section 9.3]. The key point is now that correlations
and physical quantities (i.e., quantum observables, to which EPR
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would ascribe reality [see Section 10.2]) are tightly connected. It
suffices to consider that correlations are mediated by, or instantiated
in, physical interactions involving exchanges of dynamical quantities
like momentum and energy. Now, how is it possible to put together
something formal with something else that is not? We need a sort
of quantity that is both formal and notwithstanding linked with
the material dimension. We have seen that, given two entangled
spin 1

2 particles in a singlet state, the statistics of the measurement
outcome is more ordered (with two out of four possible outcomes)
than when there is no entanglement between the particles (with
four out of four possible outcomes). There is a language for dealing
in the most general way with such kind of problems, namely,
the language of information. As a matter of fact, information is a
dimensionless quantity that is basic for the understanding of many
physical systems, among them the quantum ones.

First, let us consider an example drawn from the microscopic
world. DNA (deoxyribonucleic acid) is a good example of the
encoding of information.a As first discovered by Watson and Crick
in 1953,b the structure of DNA consists of two long polymers of
simple units called nucleotides, with backbones made of sugars and
phosphate groups joined by ester bonds. It is quite interesting to
observe that, in this case, a sharp separation between chemical
bonds and information combinatorics is necessary. As we have said,
information is a formal quantity. For instance, the sequence of words
on a written page cannot depend on the chemistry of the page. Also
in the case of DNA, the four nucleobases (or bases for short) A, G,
C, and T are not involved in the chemical bonds constituting the
phosphate sugar backbone along a single strand, that is, the linkage
of a nucleotide with another is not constrained by the chemical
details of the bases. This is the reason why the bases may instantiate
truly informational connections along the same strand. In fact, this
ensures that any combination is in principle possible and, therefore,
that DNA is able to store information. Therefore, we have some kind
of formal entity that, although grafted onto the physics or chemistry
of life, it is also somehow independent.

a(Auletta, 2011a, Chapter 7).
b(Watson/Crick, 1953).
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Information, together with its measure, the Shannon entropy,
is precisely concerned with the issue of singling out a subset of
elements (e.g., the message or the information we like to acquire)
from a larger set (e.g., the set of all possible messages or at least
the set of elementary units out of which all possible messages can
be composed, like the alphabet). The Shannon entropy measures the
unlikeness to perform such an extrapolation, which is expressed by
the probability that the latter does not occur or is not chosen [see
Section 9.6]. Obviously, if there is no (syntactical) order among the
units and the sequence of the latter is random, to acquire or to guess
the right message will be much more difficult than the case in which
there is some rule (for instance, in some cases, we can understand
that an encrypted message represents an English rather than an
Italian sentence because of the bigger or smaller frequency of some
letters). This fully justifies our previous treatment of entanglement,
as we shall see now.

In conclusion, we stress that what is interesting about infor-
mation is that it is a quantity “sitting” somehow between pure
mathematics and physical reality. It must necessarily be instantiated
in some physical media but, as we have seen, both the information
content and its syntax are not dependent on the specific physical
characteristics of the medium (although the latter must satisfy some
general requirements to carry information). Instead, the informa-
tion carried by a physical medium resides in the structure, the
order, the configuration, the pattern, or the combination of discrete
physical elements. Let us now consider these issues in details.

11.2 Information Accessibility

Let us consider a very useful geometrical representation of pure
states of a two-state quantum system, the so-called Bloch sphere
(also known as the Poincaré sphere). Recall that according of the
superposition principle [see Principle 2.1], given an orthonormal
basis represented by the vectors |0⟩ and |1⟩, the state vector of a two-
state system can be written as

|ψ⟩ = c0|0⟩ + c1|1⟩, (11.1)
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where c0 and c1 are complex coefficients satisfying the normal-
ization condition |c0|2 + |c1|2 = 1. Since each complex number
can be specified by a non-negative modulus and a phase, for two
complex coefficients whose square moduli summed to 1 we need
one modulus and two phases to uniquely specify a state vector
like |ψ⟩ (as one of the modulus can be expressed in terms of the
other). However, thanks to the fact that state vectors that differ
by a global phase factor (i.e., an overall complex factor with unit
modulus) represent the same physical state vector [see Section 5.2],
it turns out that we only need one modulus (varying between 0 and
1) and one relative phase (ranging from 0 to 2π) to uniquely specify
a physical state vector. The Bloch sphere representation provides a
convenient geometric parameterization of the single modulus and
the relative phase respectively in terms of the polar and azimuthal
angles of a point on a unit sphere [see also Figs. 1.1 and 8.6]. Indeed,
in the Bloch sphere representation the state vector |ψ⟩ may be
written as (up to a global phase factor)a

|ψ⟩ = cos
θ

2
|0⟩ + eiφ sin

θ

2
|1⟩, (11.2)

which is a superposition of the basis states |0⟩ and |1⟩, represented
by the north and south poles of the sphere, respectively [see
Fig. 11.1]. In the above expression, the parameter θ is the polar
angle (with 0 ≤ θ ≤ π), which covers the meridians and
represents the relative contributions of the components |0⟩ and |1⟩
to the superposition [see Section 5.5], while the parameter φ is the
azimuthal angle (with 0 ≤ φ < 2π), which covers the parallels of the
sphere and represents the relative phase between the components
|0⟩ and |1⟩ of the superposition [see Section 2.6]. We recall that a
relative phase is the distance (modulo the wavelength) between a
peak in one component of the superposition and the corresponding
peak in the other component [see Fig. 2.1].

The state |ψ⟩ represents a new information entity called
the quantum bit (or qubit for short). In other words, quantum
superposition spread what is classically a one-bit state (either 0
or 1, geometrically represented here by the two poles) first to an
infinite number of possible combinations (thanks to the parameter
θ that accounts for their relative contribution) and then to a

a(Auletta, 2005).
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x

y

z

Figure 11.1 The state vector of a two-state quantum system, for instance
|ψ⟩, can be represented by a point on a unit sphere, called the Bloch sphere.
The parameters φ (the angle between the x axis and the projection of |ψ⟩
on the equatorial plane) and θ (the angle between |ψ⟩ and the z axis) are
sufficient to specify its location. The states |+⟩ and |−⟩ lie on the equatorial
plane and represent two symmetric superpositions of |0⟩ and |1⟩, located
at the north and south poles, respectively. (For the sake of convenience, we
have chosen the diameter connecting them to be along the x axis as well
as the diameter connecting |0⟩ and |1⟩ along the z axis.) In other words,
orthogonal states that were previously represented by orthogonal vectors
in a two-dimensional Hilbert space are here represented by antipodal points
on the Bloch sphere.

further dimension of infinite possibilities of interference (thanks
to the parameter φ that accounts for the relative phase). To a first
approximation, we are authorized to assume that the two orthogonal
states |0⟩ and |1⟩ represent information since they indeed represent
the measurement outcomes of some observable with two distinct
eigenvalues. We also stress that these two states are not different
at all from the superposition of them given by Eq. (11.2). In fact, if
one chooses to measure another observable, whose eigenstates are
represented by, say,

|+⟩ = 1√
2

(|0⟩ + |1⟩) , |−⟩ = 1√
2

(|0⟩ − |1⟩) , (11.3)

where |+⟩ and |−⟩ are orthogonal to each other and hence they
also constitute an orthonormal basis, the possible outcomes would
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be |+⟩ and |−⟩ [see Sections 8.6 and 9.4]. This is due the fact
that superposition is a relative concept [see Section 4.5]. Here, for
the sake of simplicity, we have chosen the states |+⟩ and |−⟩ as
symmetric superpositions of the states |0⟩ and |1⟩ such that in the
Bloch sphere they are located on the equator with equal distance
from the poles [see Fig. 11.1]. Since the states |+⟩ and |−⟩ are
possible measurement outcomes (if we decided to measure the
observable of which they are eigenstates), they also will represent
information in spite of the fact that they are superpositions of the
states |0⟩ and |1⟩.

To demonstrate the above exposition with an specific example,
let us consider measuring the spin component of a spin 1

2 particles.
If we choose to measure the spin component in the z direction, the
possible outcomes would be |↑z⟩ and |↓z⟩, which constitute the
usual orthonormal basis for the spin 1

2 space. Since there is nothing
special about the z direction, we may choose to measure the spin
component of the particle in other direction, say in the x direction.
Then the possible outcomes would be |↑x⟩ and |↓x⟩, which also
constitute an orthonormal basis for the spin 1

2 space. If, for some
reason of convenience, we decide to denote the states |↑z⟩ and |↓z⟩
by |0⟩ and |1⟩, then according to Eq. (8.114a) the states |↑x⟩ and |↓x⟩
will be written exactly as the superposition states |+⟩ and |−⟩ given
by Eq. (11.3). We therefore conclude that information represented
by a qubit is the information contained in the superposition of two
arbitrary orthogonal states, and is independent of the information
acquisition procedures (measurement is indeed a particular form
of information acquisition). There are several requisites for the
encoding of information, and these are satisfied by quantum
systems:

(i) There exist (at least) two orthogonal states that represent
two mutually exclusive measurement outcomes of a quantum
system. According to the superposition principle [see Princi-
ple 2.1], these two orthogonal states constitute an orthonormal
basis and can be linearly combined into an arbitrary super-
position state. Note that while not all combination rules are
linear, linearity however is necessary for quantum information
encoding. The resultant orthonormal basis is referred to as the
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computational basis, and the two computational basis states are
conventionally denoted by |0⟩ and |1⟩.

(ii) By varying the coefficients of the superposition (i.e., the
parameters θ and φ in the Bloch sphere representation), we can
obtain an infinite number of possible superposition states. In
other words, it is in principle possible to represent an arbitrary
qubit by means of a superposition of the two computational
basis states |0⟩ and |1⟩. Therefore, the coefficients of the
superposition are the rules according to which we combine the
two computational basis states |0⟩ and |1⟩, and the latter can be
understood as a (binary) code, as in quantum computation.

(iii) It is always possible to choose another set of orthogonal states,
say |+⟩ and |−⟩ as in the above example, as the computational
basis states. In other words, different computational bases are
different codes used to encode quantum information. For a
given state, there are specific rules that allow the translation
of expressions from one computational basis to another. These
translation rules are precisely unitary transformations for the
corresponding changes of basis [see Section 4.6]. Indeed, this is
a necessary requirement for having information.

Having established these basic elements, we can now deepen our
investigation. At a formal level or a priori we have said that there are
no appreciable differences between an initial state in superposition
and a measurement outcome: indeed, we have remarked that
a quantum state represents information since it is a possible
measurement outcome, and have added that such information is
independent of the information acquisition procedures (i.e., local
measurements). However, this is only one side of the coin. From the
point of view of this information acquisition or a posteriori there is a
remarkable difference. First, let us stress which kind of information
is represented by a qubit and consider to this purpose the state
|ψ⟩ of a system given by Eq. (11.2). What is really amazing here
is that the amount of information contained in a qubit is infinite,
since, as mentioned, the parameters φ and θ allow the state |ψ⟩ to
be located anywhere on the Bloch sphere (which obviously has an
infinite number of points). However, what is crucial is that such an
infinite amount of information contained in the state |ψ⟩ is not only
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inaccessible to an observer at a given moment, but also inaccessible
to any observer at any time. As a a matter of fact, every time
we try to measure the system we need two steps after the initial
preparation. We are first obliged to choose a specific observable
[see Section 6.9]. Suppose that we choose to measure an observable
whose eigenstates are |0⟩ and |1⟩. Then, we will detect the system
and obtain either |0⟩ or |1⟩ as the measurement outcome. In other
words, the state of the system after the measurement will be reduced
with a certain probability to either |0⟩ or |1⟩. However, since both |0⟩
and |1⟩ represent a single point on the Bloch sphere (the two poles,
here), then, when we obtain one or the other as the outcome of a
measurement, we have acquired at most one bit of information, a
much smaller amount of information than what is initially contained
in a qubit. This is the essence of the Holevo theorem,a which can be
formulated as follows.

Theorem 11.1 (Holevo) The information that can be acquired
from one qubit is at most one bit.

In other words, when measuring a system we dump into the
environment precisely the non-local features that contribute to the
infinite amount of information contained in the state |ψ⟩, that is, that
spread the information on the whole Bloch sphere [see Section 9.5].
In fact, this could be another way to consider the reduction of the
wave packet that occurs during a measurement [see Section 9.3].
This allows us to reconcile the a priori (encoding) and the a
posteriori (information acquiring) understanding of information.
Every time the appropriate conditions for the dynamic interaction
between two open systems are satisfied (e.g., whenever we have
a measurement or a measurement-like interaction process), we
are able to acquire a classical bit of information in the form of
a measurement outcome. The fact that we are free to measure
either the observable whose eigenstates are |0⟩ and |1⟩ or the
observable whose eigenstates are |+⟩ and |−⟩ shows clearly that
what is inaccessible is not a superposition of |0⟩ and |1⟩ as such, but
the whole amount of information contained in an arbitrary unknown
state |ψ⟩ (independently of whether we decide to measured it or

a(Holevo, 1998).
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not), which besides the eigenstates also comprehends all possible
interdependences between them, i.e., features. This definitively
establishes that it is not only what is actually communicated and
received that can be called information.

We note however that there could be a plausible argument
against the validity of the above analysis if it is possible to
create identical copies of an arbitrary unknown quantum state.
Indeed, by doing so an observer would be able to make a large
(possibly infinite) number of identical copies of the state |ψ⟩.
Then, by measuring different observables on those identical copies
of the state |ψ⟩, the observer could in principle measure all the
possible observables on the same state |ψ⟩ over and over again.
Since from each measurement outcome the observer would acquire
one bit of information, in this way the infinite amount of information
contained in the state |ψ⟩ could be retrieved and therefore be
accessible to the observer. As a matter of fact, such a possibility
is ruled out by the celebrated no-cloning theorem, first proved
independently by Wootters and Zurek,a and by Dieksb in 1982.

Theorem 11.2 (No-Cloning) It is not possible to create identical
copies of an arbitrary unknown quantum state.

We shall prove the no-cloning theorem by reductio ad absurdum.
For the sake of simplicity, let us restrict ourselves to the two-
state quantum system that is under current consideration. The
generalization to many-state quantum systems is straightforward.
Suppose that cloning of an arbitrary unknown state |ψ⟩ is possible,
then this would mean preparing a second qubit initially in some
“blank state” |B⟩ and copying the original state |ψ⟩ on to it. This
in turn implies the existence of a unitary transformation Û clone such
that

|ψ⟩ ⊗ |B⟩ Ûclone−−−→ |ψ⟩ ⊗ |ψ⟩. (11.4)

For this to be a true cloning transformation it is necessary for the
transformation to hold for arbitrary qubit states. In particular, the
cloning transformation on the computational basis states |0⟩ and |1⟩

a(Wootters/Zurek, 1982).
b(Dieks, 1982).
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is given by

|0⟩ ⊗ |B⟩ Ûclone−−−→ |0⟩ ⊗ |0⟩, |1⟩ ⊗ |B⟩ Ûclone−−−→ |1⟩ ⊗ |1⟩. (11.5)

Then, due to linearity of the unitary transformation, the cloning
transformation on the superposition state |ψ⟩ = c0|0⟩ + c1|1⟩ of
|0⟩ and |1⟩ is given by

|ψ⟩⊗|B⟩ = (c0|0⟩+c1|1⟩)⊗|B⟩ Ûclone−−−→ c0|0⟩⊗|0⟩+c1|1⟩⊗|1⟩, (11.6)

where c0 and c1 are arbitrary complex amplitudes such that the
normalization condition |c0|2 + |c1|2 = 1 holds. It is obvious that
the transformed state is not equal to the expected state |ψ⟩ ⊗ |ψ⟩,
except for the case in which one of the two amplitudes c0 and
c1 is identically zero. Therefore, we conclude that there does not
exist a unitary transformation that can clone an arbitrary unknown
quantum state.a

In classical physics, instead, it is assumed that the state of a
physical system is an observable, which means that it is possible to
extract all the information contained in an arbitrary physical state
[see Section 7.8]. This is however not supported by empirical facts.
Indeed, let us consider the case in which we desire to measure
exactly the circumference of a ring (e.g., an ordinary wedding ring).
Let us avoid any complications that derive from the matter structure
and consider a pure ideal case in which matter would be totally
uniform (continuous) and static. In this case, we would very soon
run into the difficulty that the circumference as well as probably the
radius of the ring would be a real number. Now, we cannot (even in
principle) exhaust the infinite sequence of decimals that constitute a
real number. This means that we cannot measure the circumference
of the ring with infinite precision [see also Section 6.3]. In other
words, we cannot acquire the whole information contained in a
system because of the finite resolution of measurement (i.e., the
impossibility to reduce to zero the measurement error).

We may summarize what have been said in an information
accessibility principle, which can be formulated as follows.

Principle 11.1 (Information Accessibility) The whole information
contained in a system can only be partially accessed.

a(D’Ariano/Yuen, 1996).
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Figure 11.2 The continuous unit interval [0, 1] can be viewed as a limiting
case of digitization in which the number of digits approaches infinity.
Adapted from (Auletta, 2011a, p. 38).

From a quantum mechanical perspective, the reason is that
we have non-local features that cannot be classically acquired as
information [see also Section 6.9]. Classically, this is due to the finite
resolution of measurement. However, in both cases the ultimate
source of that impossibility seems to be the discrete nature of encod-
ing [see Fig. 11.2] and therefore also of any information acquisition.

Problem 11.1 Show that each pair of antipodal points on the Bloch
sphere corresponds to mutually orthogonal state vectors.

11.3 Potential Information

Information as such is only a formal quantity. It needs to be
activated or acquired. As mentioned, and as we shall see below,
information acquisition is a dynamical process in which the entropic
flux between the involved interacting systems is also relevant.
Therefore, the difference between a qubit and a bit is related to
the measurement procedure within a local context [see Section 9.7],
that is, related to a given environment. A bit can be understood
as a qubit that has been made active or has been accessed.a Both
can be interpreted as the minimum information entities. The only
difference is that a qubit is a bit once it is obtained, that is, if
someone had chosen or will choose to perform a possible operation
(or if some objective conditions had been or will be spontaneously
produced) through which this state has been or could be obtained. In

a(Auletta, 2006b).
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other words, it is not the form of the superposition [see Eq. (11.3)]
that distinguishes |0⟩ from |+⟩, but the fact that we have obtained
|0⟩ instead of |+⟩ as the actual information, given (i) the local choice
of measuring the observable of which |0⟩ is an eigenstate, and (ii)
the selection of |0⟩ in certain environmental conditions. Therefore,
London and Bauer’s point of view that the final selection act is
relevant to the measurement problem is ultimately not ungrounded
[see Sections 9.3 and 9.5], provided that we free it from any
subjective form.

There is also a further and important difference between a
prepared state and a measurement outcome. As we have said, the
states |0⟩ and |1⟩ as such (as well as the states |+⟩ and |−⟩ as such)
can be taken to be the possible but not actual measurement results.
In this sense, they represent potential information, i.e., information
that has not yet been acquired (and possibly never will be).a In other
words, the potential information is the relation between possible
events, so that we can take this to be the definition of information
as such.b We note that one however often speaks of potential
information in the sense of information that can be later received.
Here, we mean potentiality in a more radical sense as information
that is to be but has not yet been acquired. For this reason, the
concept of the potential information allows us to deal with both
the classical and the quantum case because in both cases the whole
information contained in a system can only be partially acquired or
accessed [see Principle 11.1].

Let us give an evidence supporting this view. When two qubits
are entangled, they constitute a further new information entity
called the entangled bit (or ebit for short). The interdependence
displayed by the two entangled qubits (or an ebit) is not mediated
by any detectable physical signal, and therefore there is no causal
connection either, as shown in the previous chapter. It is non-
local in nature and is an immediate consequence of features.
The reason is again to be found in quantum information. Since
information expresses the relation between possible events, it is

a(Von Weizsäcker, 1972), (Auletta, 2011a, Chapter 2), see also (Küppers, 1990,
pp. 36–38).

bA. Zeilinger, private communication.
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also independent of space and time, and entanglement is a natural
consequence. An ebit is therefore a kind of quantum channel
(especially when qubits are maximally entangled), i.e., a typical
quantum mechanical information sharing between systems. This
is very relevant since an ebit allows things to be done that
cannot be performed classically, like transmitting the information
contained in an unknown quantum state in quantum teleportation
[see Section 11.5] or encrypting a text against eavesdropping
in quantum cryptography [see Section 11.6]. Thus, entanglement
can be interpreted as a potential resource to transfer additional
quantum information in the future at no further cost.a This justifies
the notion of potential information. Bell seemed to share the
viewpoint expressed here when he introduced the concept beable
for expressing the capability of quantum systems to become actual
or to be.b

Therefore, the actual information is only the information which
has been actually acquired. While following the previous examina-
tion let us call encoded information the information contained in
any combination of mutually orthogonal states of a physical system
according to a certain set of prescribed rules. Each set of mutually
orthogonal states is called the alphabet, that is, a collection of
symbols (or characters), while the set of rules is known as the code
system. It is noted that encoded information is always potential,
both classically and quantum mechanically. A good measure of the
classical information content of encoded information is represented
by the Kolmogorov measure of complexity, namely, the measure
of the computational resources needed to specify the string of
characters instantiating encoded information.c This measure has
also been generalized to quantum mechanics.d Therefore, both
classically and quantum mechanically we may posit an information
activation principle as follows.

Principle 11.2 (Information Activation) Any encoded information
is as such potential, and may be activated only by actual (external)
conditions.

a(Horodecki et al., 2005).
b(Bell, 1973, 1976).
c(Kolmogorov, 1963).
d(Berthiaume et al., 2000).
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Moreover, quantum systems can be understood as information
processors, in the sense that they evolve in time by changing their
states according to a unitary transformation and hence can be
thought of as transforming an initial encoded information into
some other encoded information. We note that this information
processing is reversible, provided that there is no information
selection and therefore no measurements involved. This aspect
is crucial and even the most basic one when dealing with
quantum mechanics, and we have already seen its relevance to
the measurement problem when a larger system that is reversible
is considered [see Section 9.7]. This is also the backbone of the
fast growing field of quantum computing.a For these reasons, it is
conceivable that all quantum systems can be considered in terms of
information.b

Now, the issue is how can we make understandable that
information is processed in a reversible way and what is the
relation between this reversibility and the irreversible information
acquisition represented by measurement. A natural question,
indeed, is whether it is possible to have information processing
without any energy expenditure. We have already said that it is
possible to process information in a reversible way. However, this
issue demands some additional considerations. Landauer showed
that throwing bits away (i.e., selecting them), not processing them,
requires an expenditure of energy.c This is the Landauer’s principle.
In this way, as anticipated in Section 9.6, we have in fact a
connection between information selection, informational entropy,
and thermodynamic entropy. Indeed, the cost of information erasure
has been precisely quantified. The erasure of a classical bit of
information will cost dissipating a minimum possible amount of
energy kB T ln 2 ≈ 0.6931kB T into the environment.d Successively,
Bennett explained how a computer could be designed that would not
discard information and thus virtually dissipate no energy.e Bennett

a(Nielsen/Chuang, 2011).
b(Wheeler, 1990), (Chiribella et al., 2011), (D’Ariano, 2012).
c(Landauer, 1961), (Landauer, 1996), (Landauer, 1991).
d(Plenio/Vitelli, 2001).
e(Bennett, 1973), (Bennett, 1982), (Bennett/Landauer, 1985).
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showed that each step in the computation can be carried out in a
way that allows not only the output to be deduced from the input
but also the input to be deduced from the output. In other words,
the computer can also run backwards. Such a computer, after having
processed information in the ordinary way, could put itself into
the reverse mode so that each step is undone. No information is
erased here and accordingly no energy is dissipated (as opposed to a
measurement process). This is precisely the way in which a quantum
system behaves when not interacting with other systems or when
a sufficiently large system is considered [see Section 9.6]. On the
contrary, during a measurement process part of the information
contained in a quantum system is selected and dumped into the
environment. Because and only because of this selection, there
is energy expenditure. This energy expenditure together with the
increase in entropy makes the measurement process for quantum
systems locally irreversible.

11.4 Quantum Computation

In this and in the following sections, we shall first explore the
non-local and reversible aspects of the quantum information (those
that in fact make the difference with respect to the classical case).
The first idea of quantum computation capable of exploiting the
potentialities represented by the qubits was developed in the
1980s.a It mainly relies on previous ideas that a Turing machine
can be simulated by unitary transformations of a quantum system.
A Turing machineb is a a recursive device that manipulates symbols
on a strip of tape according to a table of rules [see Box 11.1]. In the
classical case, a Turing machine is an irreversible device, while, if
we desire to make use of the specificity of quantum information,
we need unitary transformations, which are reversible. As we have
already shown at a general level, an irreversible device can be
embedded in a larger device that is reversible [see Section 9.7].

a(Feynman, 1982), (Feynman, 1986), (Deutsch, 1985).
b(Turing, 1936), (Turing, 1937).
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Box 11.1 Turing machine

A Turing machine is a theoretical computing machine invented
by Turing during 1936–37 to serve as an idealized model for
mathematical calculation. A Turing machine is composed of four
parts [see Fig. 11.3]:

(i) A tape that is divided into cells, one next to the other. Each
cell can have a symbol from a finite alphabet.

(ii) A head that can read and write symbols on the tape and
move along the tape left or right one cell at a time.

(iii) A register that stores the state of the Turing machine, one of
finitely many.

(iv) A table of a finite collection of instructions that tell the
machine how operations are performed.

The action of the Turing machine is made up of discrete steps,
and each step is determined by two initial conditions: the current
state of the machine and the symbol currently scanned by the
head. Given these two conditions, the machine performs the
following operations in sequence:

(i) Assume the same or a new state of the machine.
(ii) Write a symbol into the scanned cell.

(iii) Move the head left or right along the tape or stop.

The Turing machine is the simplest form of a computer. It plays an
important role in the development of modern computer science
as the world knows it.

A classical or quantum computer consists of wires and gates [see
Fig. 9.4]. The wires transmit information, whereas the gates perform
transformations of bits or qubits to process information. A wire can
be represented by a gate that does nothing, i.e., the identity gate,
whose function is precisely to further transmit information without
changing it. According to the number of the input bits, quantum
gates can be classified as either one-qubit or multi-qubit gates. The
number of qubits in the input and output of a quantum gate have to
be equal. Quantum gates are represented by unitary matrices, and
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moving head

100

program

register

tape

1 0 0 0 1 1 0 1 ...

Figure 11.3 Scheme of a Turing machine. A moving head goes (here from
the left to the right) along a tape that is divided into cells (here, storing
binary encoded information) with the task to read and eventually to modify
(write) the content of each cell. A register stores the state of the Turing
machine. Finally the program is the appropriate set of instructions.

a quantum gate which acts on k qubits is represented by a 2k × 2k

unitary matrix. An elementary one-qubit gate is the phase shift gate,
which on the computational basis states |0⟩ and |1⟩ acts as

Ûφ|0⟩ = |0⟩, Ûφ|1⟩ = eiφ|1⟩. (11.7)

As usual writing the basis states |0⟩ and |1⟩ in component form
as

|0⟩ =
(

1
0

)
and |1⟩ =

(
0
1

)
, (11.8)

respectively, then we can express Ûφ in matrix form as

Ûφ =
[

1 0
0 eiφ

]
, (11.9)

which is precisely the unitary operator representing the phase
shifter PS on the upper path in the Mach–Zehnder interferometer
that produces a phase shift φ to the state |u⟩ [see Section 2.6 and
Problem 4.10]. Some common examples of the phase shift gates are
the π

8 gate for φ = π
4 ,a the phase gate for φ = π

2 , and the Pauli-Z gate

aThe curious reader might wonder why Û π
4

is called the π
8 gate when the phase shift

is actually π
4 . The reason for this is simply because the gate has been historically

written as

Û π
4

= eiπ/8
[

e−iπ/8 0
0 eiπ/8

]
,

which, up to an irrelevant global phase, shifts the phase of |0⟩ and |1⟩ by π
8 but in the

opposite sense.
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for φ = π (see below). Another elementary one-qubit gate is the
NOT gate, whose action on the computational basis states |0⟩ and |1⟩
is to change |0⟩ to |1⟩ and |1⟩ to |0⟩. In other words, we have

Û NOT|0⟩ = |1⟩, Û NOT|1⟩ = |0⟩. (11.10)

In matrix form Û NOT is given by

Û NOT =
[

0 1
1 0

]
. (11.11)

It is noted that Û NOT for a single qubit is exactly identical to the Pauli
spin matrix σ̂x [see Eq. (8.111)]. For this reason, the NOT gate is also
called the Pauli-X gate (or X gate for short). It represents a rotation
of the Bloch sphere about the x axis by π radians. Similarly, the
Pauli matrices σ̂y and σ̂z also represent two one-qubit gates, called
respectively the Pauli-Y gate (or Y gate for short) and Pauli-Z gate (or
Z gate for short). They represent respectively rotations of the Bloch
sphere about the y and z axes by π radians.

A more involved (and also useful) one-qubit gates is the so-called
Hadamard gate, whose action on the computational basis states |0⟩
and |1⟩ is given bya

Û H|0⟩ = 1√
2

(|0⟩ + |1⟩) = |+⟩, (11.12a)

Û H|1⟩ = 1√
2

(|0⟩ − |1⟩) = |−⟩. (11.12b)

It follows that Û H can be expressed in matrix form as

Û H = 1√
2

[
1 1
1 −1

]
. (11.13)

For obvious reason, the operator Û H is also called the Hadamard
operator. Comparing the above equation with Eq. (4.35), we find that
the Hadamard gate represents the action of a 50–50 beam splitter.
Also note that, as can been seen from Eq. (11.3) and the Bloch sphere
depicted in Fig. 11.1, the Hadamard gate transforms the state |0⟩ (or
|1⟩) to a state “halfway” between the state and its “negation” (i.e.,
orthogonal) state |1⟩ (or |0⟩). However, two consecutive applications
of the Hadamard gate are not equal to the NOT gate but to the

a(Cerf et al., 1998).
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identity gate, due to the fact that the Hadamard gate is the inverse
of itself. As for the Pauli matrices, this happens because ÛH is both
Hermitian and unitary. When we have an initial two-qubit state
|00⟩ = |0⟩1 ⊗ |0⟩2, the Hadamard transform takes the form

Û H ⊗ Û H|00⟩ = Û H|0⟩1 ⊗ Û H|0⟩2

= 1
2

(|0⟩1 + |1⟩1)(|0⟩2 + |1⟩2)

= 1
2

(|00⟩ + |01⟩ + |10⟩ + |11⟩) , (11.14)
which is the symmetric superposition of the conventional binary
encoding of the four (22) integer 0, 1, 2, and 3. In the case of three
qubits, we have

Û ⊗3
H |000⟩ = 1

2
√

2
(|0⟩1 + |1⟩1)(|0⟩2 + |1⟩2)(|0⟩3 + |1⟩3)

= 1
2
√

2
(|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩

+ |101⟩ + |110⟩ + |111⟩), (11.15)
where we have used the shorthand notation Û ⊗3

H = Û H ⊗ Û H ⊗
Û H. The above expression again is the symmetric superposition
of the conventional binary encoding of the eight (23) integers
0, 1, 2, . . . , 7. These results can be generalized straightforwardly to
the case of n qubits, in which we obtain the symmetric superposition
of the binary encoding of the 2n integers 0, 1, 2, . . . , 2n−1.

Since the actions of a 50–50 beam splitter and a phase shifter are
represented respectively by the Hadamard gate and the phase shift
gates, the Mach–Zehnder interferometer considered in Chapter 2
can be viewed as a quantum device composed of wires and quantum
gates. In other words, the series of beam splitter 1, phase shifter,
and beam splitter 2 in Fig. 2.3 can be thought of as a succession of
a Hadamard gate, a phase shift gate, and a second Hadamard gate
as depicted in Fig. 11.4. Suppose that the input state of the qubit is
given by |0⟩, then we have the transformation

|0⟩ ÛH−−→ 1√
2

(|0⟩ + |1⟩)

Ûφ−−→ 1√
2

(
|0⟩ + eiφ|1⟩

)

ÛH−−→ 1
2

[(
1 + eiφ

)
|0⟩ +

(
1 − eiφ

)
|1⟩

]
, (11.16)
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H H

Figure 11.4 Graphical representation of the quantum device equivalent
to a Mach–Zehnder interferometer. The wires and the quantum gates are
represented by lines and the squares, respectively. The diagram are to be
read from left to right, with the line on the left representing the input state
|i⟩ of the qubit and the line on the right the output state | f ⟩ as transformed
by a Hadamard gate, a phase shift gate, and a second Hadamard gate.

which, when compared with Eq. (2.29), is exactly the state of the
photon after it leaves the beam splitter BS2 but before it is set to
be detected at D1 or D2.

One of the most important two-qubit gate is the controlled-NOT
(CNOT) gate. It leaves the control qubit unchanged and performs
a transformation on a target qubit depending on the state of the
control qubit. If the control qubit is in the state |0⟩ then the target
qubit is unchanged, but if it is in the state |1⟩ then the quantum NOT
gate is applied to the target qubit. Thus, we have

Û CNOT|00⟩ = |00⟩, Û CNOT|01⟩ = |01⟩, (11.17a)

Û CNOT|10⟩ = |11⟩, Û CNOT|11⟩ = |10⟩, (11.17b)

where the first qubit is the control qubit and the second the target
qubit. In the computational basis of the two-qubit Hilbert space

|00⟩ =

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ , |01⟩ =

⎛

⎜⎜⎝

0
1
0
0

⎞

⎟⎟⎠ , |10⟩ =

⎛

⎜⎜⎝

0
0
1
0

⎞

⎟⎟⎠ , |11⟩ =

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠ ,

(11.18)
the CNOT gate can be expressed in matrix form as

Û CNOT =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥⎦ . (11.19)

From the above expression, it is obvious that Û CNOT is both Hermitian
and unitary. The CNOT gate can be thought of as the quantum
analogue of the classical XOR gate introduced in Section 9.7 [see
Table 9.4]. In fact, it is easy to show that when the CNOT gate acts on
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Figure 11.5 Graphical representation of the CNOT gate. The top line
represents the control qubit, the bottom line the target qubit. The states |x⟩
and |y⟩ represent the computational basis states |0⟩ and |1⟩, and ⊕ denotes
modulo-2 addition.

the computational basis states, the output state of the target qubit
may be expressed in terms of modulo-2 addition (i.e., XOR) of the
input states of the control and target qubits as [see Fig. 11.5 and
Eqs. (11.17)]

|x⟩|y⟩ ÛCNOT−−−→ |x⟩|x ⊕ y⟩, (11.20)

where |x⟩ and |y⟩ are the computational basis states of the control
and target qubits, respectively, and ⊕ denotes modulo-2 addition, an
operation in modular arithmetic [see Box 11.2]. Moreover, the CNOT
gate is sometimes called the measurement gate, because, if the target
qubit is prepared in the state |0⟩ then its output state is always the

Box 11.2 Modular arithmetic

The idea of modular arithmetic can be understood as addressed
to solve the shift (or “wrap around”) in time of a 12–hour clock. If
now the clock indicates the 9 position (it does not matter whether
am or pm) and we ask which position it will occupy after 7 hours,
the answer is 9 + 7 − 12 = 4 and not 9 + 7 = 16, as the ordinary
addition would require.

Given two integers a and b, then a modulo b means the
remainder of the division of a by b. For instance, in the clock
example above, 16 divided by 12 gives the quotient 1 and the
remainder 4, so that 16 modulo 12 is equal to 4. In other words,
we have that 16 − 4 = 12 is an integer multiple of 12. In general,
given integers a, b, and n, if a = b + kn for some integer k then
we say that a is congruent to b modulo n. This relation is usually
expressed as a ≡ b mod n.
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It is fairly easy to show that for any integers a, b, c, and m ̸= 0, the
following properties hold:

a ≡ a mod n, (11.21a)

a ≡ b mod n ⇒ b ≡ a mod n, (11.21b)

a ≡ b mod n, b ≡ c mod n ⇒ a ≡ c mod n. (11.21c)

If a ≡ b mod n, then it can be shown that

ka ≡ kb mod n and an ≡ bn mod n, (11.22)

where k is an integer and n a non-negative integer. Let a1 ≡
b1 mod n and a2 ≡ b2 mod n, then we have

a1 + a2 ≡ b1 + b2 mod n and a1a2 ≡ b1b2 mod n. (11.23)

Moreover, modular arithmetic satisfies the following properties:

(a + b) mod n = [(a mod n) + (b mod n)] mod n, (11.24a)

(a × b) mod n = [(a mod n) × (b mod n)] mod n. (11.24b)

In the case of binary computation, the rules for modulo-2
addition are given by

0 ⊕ 0 = 0, 0 ⊕ 1 = 1 ⊕ 0 = 1, 1 ⊕ 1 = 0. (11.25)

Arithmetic modulo 2 is sometimes referred to as Boolean
arithmetic and it plays an important role in computer science.

same as the state of the control qubit [see Eqs. (11.17)]. Another
important feature of the CNOT gate is its ability to entangle and
disentangle states of a pair of qubits. Let us consider, for instance,
a device composed of a Hadamard gate followed by a CNOT gate as
depicted in Fig. 11.6. It is easy to see that the actions of this device
on the unentangled product states |0⟩|0⟩, |0⟩|1⟩, |1⟩|0⟩, and |1⟩|1⟩ of
the first (control) and second (target) qubits are respectively given
by

|0⟩|0⟩ ÛH⊗ Î−−−→ 1√
2

(|0⟩|0⟩ + |1⟩|0⟩)
ÛCNOT−−−→ 1√

2
(|0⟩|0⟩ + |1⟩|1⟩),

(11.26a)
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H

,
Bell states

Figure 11.6 Graphical representation of the device for generating the Bell
states. The states |x⟩ and |y⟩ represent the computational basis states |0⟩
and |1⟩. When running backwards, this device also serves as a Bell state
measurement device.

|0⟩|1⟩ ÛH⊗ Î−−−→ 1√
2

(|0⟩|1⟩ + |1⟩|1⟩)
ÛCNOT−−−→ 1√

2
(|0⟩|1⟩ + |1⟩|0⟩),

(11.26a)

|1⟩|0⟩ ÛH⊗ Î−−−→ 1√
2

(|0⟩|0⟩ − |1⟩|0⟩)
ÛCNOT−−−→ 1√

2
(|0⟩|0⟩ − |1⟩|1⟩),

(11.26b)

|1⟩|1⟩ ÛH⊗ Î−−−→ 1√
2

(|0⟩|1⟩ − |1⟩|1⟩)
ÛCNOT−−−→ 1√

2
(|0⟩|1⟩ − |1⟩|0⟩).

(11.26c)

The output states are recognized respectively as the four Bell
states |7+⟩, |6+⟩, |7−⟩, and|6−⟩ given by Eqs. (10.46) [see also
Eqs. (11.43)] and therefore are maximally entangled states of the
two qubits. Moreover, since both Û H and Û CNOT are the inverse of
themselves (i.e., they are both Hermitian and unitary), the device
can also run backwards so as to disentangle the Bell states into
unentangled product computational basis states. In other words,
when running backwards, this device also serves as a Bell state
measurement device.

The CNOT gate belongs to a larger classes of possible quan-
tum gates called the controlled-unitary (CU) gates, the graphical
representation of which is depicted in Fig. 11.7. The action of these
gates is as follows. If the control qubit is in the state |0⟩ then
the target qubit is left unchanged, but if it is in the state |1⟩ then
the unitary operator Û is applied to the target qubit. The CNOT
gate is clearly a simple example of the controlled-unitary gate, in
which the unitary operator is the Pauli matrix σ̂x (i.e., the Pauli-X
gate). Other common examples of the controlled-unitary gates are
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U

Figure 11.7 Graphical representation of the CU gate. The top line
represents the control qubit, the bottom line the target qubit, and the U gate
a unitary operator Û .

the controlled-Pauli-Z gate and controlled-phase gate. Moreover, any
of the two-qubit gates can be also used in a controlled-unitary gate
to make a controlled three-qubit gate. Indeed, the simplest three-
qubit gate is the controlled-controlled-NOT (CCNOT) or Toffoli gate.
Its action on three qubits is that if the first two (control) qubits are
in the state |1⟩ then it applies a NOT on the third (target) qubit,
otherwise it does nothing. Therefore, we have

Û Toffili|000⟩ = |000⟩, Û Toffili|001⟩ = |001⟩, (11.27a)

Û Toffili|010⟩ = |010⟩, Û Toffili|011⟩ = |011⟩, (11.27b)

Û Toffili|100⟩ = |100⟩, Û Toffili|101⟩ = |101⟩, (11.27c)

Û Toffili|110⟩ = |111⟩, Û Toffili|111⟩ = |110⟩, (11.27d)

where the first two qubit are the control qubits and the third qubit
is the target qubit. In the computational basis of the three-qubit
Hilbert space

|000⟩ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |001⟩ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |010⟩ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |011⟩ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(11.28a)
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|100⟩ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |101⟩ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |110⟩ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
1
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |111⟩ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(11.28b)

the Toffoli gate can be expressed in matrix form as

Û Toffoli =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11.29)

which leaves all basis states unchanged except for the last two, that
is, only in the cases in which both control qubits are in the state
|1⟩, the target qubit is flipped. Moreover, as the name suggests, the
Toffoli gate is the quantum analogue of the classical Toffoli gate
introduced in Section 9.7 [see Table 9.6]. Indeed, when the quantum
Toffoli gate acts on the computational basis states, the output state
of the target qubit may be expressed in terms of multiplication (i.e.,
AND) and modulo-2 addition (i.e., XOR) as [see Fig. 11.8]

|x⟩|y⟩|z⟩ ÛToffoli−−−→ |x⟩|y⟩|(x · y) ⊕ z⟩, (11.30)

where |x⟩, |y⟩, and |z⟩ are the computational basis states |0⟩ and
|1⟩, and ⊕ denotes modulo-2 addition. The validity of the above
expression can be verified straightforwardly by using Eqs. (11.27).

The most fascinating and innovative aspect of quantum computa-
tion is that it allows to solve certain problems in an efficient way that
classical computation cannot. An algorithm is a method in which a
set of well-defined instructions, applied to a certain initial state, can
complete a required task or solve a given problem. Then the question
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Figure 11.8 Graphical representation of the Toffoli gate, where |x⟩, |y⟩, and
|z⟩ are the computational basis states |0⟩ and |1⟩, and ⊕ denotes modulo-2
addition. The top two qubits represent the control qubits, the bottom qubit
the target qubit.

arises naturally as to how to quantify the efficiency of an algorithm.
It is common sense that given some problem the algorithm that takes
a short time in solving the problem is more efficient then the one
that takes a longer time. From a general viewpoint, let us consider an
algorithm which takes an input of n digits and gives an answer after
a certain amount of time T . Obviously, the time T is a function of the
number of digits n. An algorithm is said to be of polynomial time if its
running time increases no faster than a polynomial function of the
size of the input for the algorithm, i.e.,

T (n) = O(nk), (11.31)

where k is some non-negative integer. In the above expression, the
big O notation denotes the upper bound on the limiting behavior of
a function when the argument of the function approaches infinity.
On the other hand, an algorithm is said to be of exponential time if its
running time increases no faster than an exponential function of the
size of the input for the algorithm, i.e.,

T (n) = O(en). (11.32)

From Eq. (6.93), it is evident that the exponential time is much
longer than the polynomial time. Therefore, an algorithm of
polynomial time is said to be easy or efficient, while an algorithm
of exponential time is called hard or inefficient. Many problems can
be solved by using efficient algorithms, and a notable example is
calculating the greatest common divisor. However, there is a class of
problems for which no efficient algorithms are known but for which
the solutions, once found, can be verified as correct in polynomial
time. Among these problems perhaps the most known example
is integer factorization. The obvious way to factorize a very large
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integer n is to try dividing it by each of the primes less than
√

n in
order to determine which are its factors. Running on a computer, this
is known to be a CPU intensive and time consuming task. However,
once the integer has been factorized, it is relatively easy to verify on
a computer that its factors when multiplied together give the integer.

Let us now discuss one of the first examples demonstrating
the efficiency of quantum computation. As we have mentioned in
Section 9.7, a Boolean function f : {0, 1} −→ {0, 1} is a function
which maps the truth values {0, 1} to the truth values {0, 1} [see
Eq. (9.48)]. A Boolean function f is called constant if it always
returns the same value, i.e., either f (0) = f (1) = 0 or f (0) =
f (1) = 1, and balanced if it returns 1 for half of the input domain
and 0 for the other half. Suppose now that there is a device that can
evaluate the function f and that it is allowed to run only once. The
so-called Deutsch problem is to ask whether, under these conditions,
it is possible to determine if the function f is constant or balanced.a

It is easy to see that classically it is impossible to answer this
question by running the device only once. However, this can be done
quantum mechanically. In order to see this, let us consider first the
quantum implementation of a Boolean function as a quantum gate.
For a given Boolean function f , its quantum implementation is the
gate whose action is defined by the following unitary transformation
(which for the moment will be referred to simply as the Boolean
gate) [see Fig. 11.9]

|x⟩|y⟩
Û f−−→ |x⟩| f (x) ⊕ y⟩, (11.33)

where |x⟩ and |y⟩ are the computational basis states |0⟩ and
|1⟩, and ⊕ denotes modulo-2 addition. The power of a quantum
device lies largely in the fact that due to linearity we can
input not just the computational basis states |0⟩ and |1⟩, but an
arbitrary superposition of them. Therefore, in its generality, the
transformation Û f can be implemented by

∑

j

c j |x j ⟩|y⟩
Û f−−→

∑

j

c j |x j ⟩| f (x j ) ⊕ y⟩, (11.34)

a(Deutsch, 1985).
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Figure 11.9 The implementation of a Boolean function f as a quantum
gate, where |x⟩ and |y⟩ are the computational basis states |0⟩ and |1⟩, and
⊕ denotes modulo-2 addition.

where |x j ⟩, |y⟩ = |0⟩, |1⟩ and c j are coefficients. It is interesting to
note that in the above expression the state created by the Boolean
gate is an entangled state. Now consider the two-qubit quantum
device shown in Fig. 11.10, in which the input state is set to be |0⟩|1⟩.
The two qubits are first transformed separately by two Hadamard
gates

|0⟩|1⟩ ÛH⊗ÛH−−−−→ Û H|0⟩Û H|1⟩ = 1
2

(|0⟩ + |1⟩) (|0⟩ − |1⟩) . (11.35)

For later convenience, the resultant state can be rewritten as

|6⟩ = 1
2

[(|0⟩ + |1⟩)|0⟩ − (|0⟩ + |1⟩)|1⟩]. (11.36)

The state |6⟩ is then processed by the Boolean gate, leading to four
possible results depending on the nature of the function f . If f is a

H

HH

Figure 11.10 Device for solving the Deutsch problem of determining if a
Boolean function f is constant or balanced in a single run. A square with
a dial denotes a measurement of the qubit in the computational basis,
while a trash bin means the qubit is discarded rather than measured. The
top and bottom qubits are initially in the states |0⟩ and |1⟩, respectively.
A measurement on the output state of the first qubit gives the requested
answer.
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constant function, then we obtain

Û f (0, 0)|6⟩ = 1
2

(|0⟩|0 ⊕ 0⟩ + |1⟩|0 ⊕ 0⟩ − |0⟩|0 ⊕ 1⟩ − |1⟩|0 ⊕ 1⟩)

= 1
2

[(|0⟩ + |1⟩)|0⟩ − (|0⟩ + |1⟩)|1⟩]

= 1
2

(|0⟩ + |1⟩)(|0⟩ − |1⟩)

= |+⟩|−⟩, (11.37a)

Û f (1, 1)|6⟩ = 1
2

(|0⟩|1 ⊕ 0⟩ + |1⟩|1 ⊕ 0⟩ − |0⟩|1 ⊕ 1⟩ − |1⟩|1 ⊕ 1⟩)

= 1
2

(|0⟩|1⟩ + |1⟩|1⟩ − |0⟩|0⟩ − |1⟩|0⟩)

= −1
2

(|0⟩ + |1⟩)(|0⟩ − |1⟩)

= −|+⟩|−⟩, (11.37b)

where use has been made of Eq. (11.34) and the shorthand notation
Û f (0, 0) = Û f (0)= f (1)=0 and Û f (1, 1) = Û f (0)= f (1)=1. Similarly, if on
the other hand f is a balanced function then we have

Û f (0, 1)|6⟩ = 1
2

(|0⟩|0 ⊕ 0⟩ + |1⟩|1 ⊕ 0⟩ − |0⟩|0 ⊕ 1⟩ − |1⟩|1 ⊕ 1⟩)

= 1
2

(|0⟩|0⟩ + |1⟩|1⟩ − |0⟩|1⟩ − |1⟩|0⟩)

= 1
2

(|0⟩ − |1⟩)(|0⟩ − |1⟩)

= |−⟩|−⟩ (11.37c)

Û f (1, 0)|6⟩ = 1
2

(|0⟩|1 ⊕ 0⟩ + |1⟩|0 ⊕ 0⟩ − |0⟩|1 ⊕ 1⟩ − |1⟩|0 ⊕ 1⟩)

= 1
2

(|0⟩|1⟩ + |1⟩|0⟩ − |0⟩|0⟩ − |1⟩|1⟩)

= −1
2

(|0⟩ − |1⟩)(|0⟩ − |1⟩)

= −|−⟩|−⟩, (11.37d)

where Û f (0, 1) = Û f (0)=0, f (1)=1 and Û f (1, 0) = Û f (0)=1, f (1)=0. The
first qubit of each of the above four results (two for the constant case
and two for the balanced case) is further processed by the Hadamard
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Figure 11.11 Graphical representation of the swap gate.

gate, leading to the final results

±|+⟩|−⟩ ÛH⊗ Î−−−→ ±|0⟩|−⟩ if f is constant, (11.38a)

±|−⟩|−⟩ ÛH⊗ Î−−−→ ±|1⟩|−⟩ if f is balanced. (11.38b)

This shows clearly that, apart from an irrelevant global phase factor
(i.e., the overall sign of the output state), a measurement on the first
qubit immediately gives the requested answer: the state |0⟩ implies
that the function is constant, while the state |1⟩ implies that the
function is balanced.

Problem 11.2 Perform a computation similar to that given by
Eq. (11.16) for the case in which the input state is |1⟩.

Problem 11.3 Express the controlled-Pauli-Z (CZ) gate in matrix
form, compute its action on a two-qubit input and use the result to
verify its unitarity.

Problem 11.4 Check that the transformations (11.26) and (11.27)
are indeed reversible.

Problem 11.5 Check the results given by Eqs. (11.38). (Hint: Recall
that the Hadamard gate is the inverse of itself.)

Problem 11.6 Another commonly used two-qubit gate is the swap
gate, the graphical representation of which is depicted in Fig. 11.11.
Its action is to interchange the two input qubits, i.e.,

Û swap|ψ⟩|φ⟩ = |φ⟩|ψ⟩, (11.39)

where |ψ⟩ and |φ⟩ are arbitrary qubit states. Express the swap gate
in matrix form.
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step 1: interaction 

step 2: Bell state
measurement 

step 3: classical communication 

step 4: state rotation
BobAlice

qubit 1 qubit 2 qubit 3

classical channel 

quantum channel
(entanglement) 

Bell stateinput

output

Figure 11.12 Schematic setup of quantum teleportation. In step 1, Alice let
qubit 1 (the qubit to be teleported) interact with quit 2 which is entangled
with qubit 3, previously given to Bob, in the Bell state |6−⟩23. In step 2 she
reads the outcome of the Bell measurement performed on qubits 1 and 2.
In step 3, she classically communicates this result to Bob. With this piece of
classical information, in step 4 Bob rotates the state of qubit 3 and obtains
as the output state |ψ⟩3 the state |ψ⟩1 of qubit 1.

11.5 Quantum Teleportation

In this section we describe one of the most striking examples
demonstrating the power of quantum information processing:
quantum teleportation. By this term, we mean a procedure that
is able to transfer with certainty the state of an input quantum
system onto the state of a distant output system of the same
type. As we know, an instantaneous transfer of information is not
possible [see Section 10.6]. In other words, due to the intrinsic
randomness of quantum mechanics we cannot manipulate at a
distance the measurement outcomes of a system, neither their
probability distributions although that system may be entangled
with another one that we are able to manipulate locally (obviously,
by choosing certain measurement procedures but not by controlling
the possible outcomes). However, it is possible to “teleport” some
information by exploiting entanglement and without violating the
Einstein locality.a

Suppose that a sender, conventionally called Alice, wishes to send
to a receiver, conventionally called Bob, the information about a
quantum system, say a qubit labeled 1, prepared in the state |ψ⟩1

unknown to her as well as to Bob. To this purpose, Alice allows

a(Bennett/Wiesner, 1992), (Bennett et al., 1993).
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qubit 1, called the ancilla, to interact with qubit 2 that is entangled
with qubit 3, previously given to Bob [see Fig. 11.12]. Now, Alice
performs a special kind of measurement on the her composite two-
qubit system 12, so that, by classically communicating with Bob the
result of her measurement, Bob can reconstruct the same state of
qubit 1 onto qubit 3. In order to discuss this procedure specifically,
let the entangled qubits 2 and 3 be in the EPR state [see Eq. (10.10)]

|6−⟩23 = 1√
2

(|0⟩2|1⟩3 − |1⟩2|0⟩3). (11.40)

We note that to make connection with previous discussions
presented in Sections 10.3 and 10.4, the computational basis states
|0⟩ and |1⟩ may be thought of respectively as the spin up and spin
down states |↑z⟩ and |↓z⟩ in the z direction. If qubit 1 is in the
unknown state

|ψ⟩1 = α|0⟩1 + β|1⟩1, (11.41)

where α and β are complex amplitudes, then before the measure-
ment the state of the whole composite three-qubit system 123 is
given by the product state

|6⟩123 = |ψ⟩1|6−⟩23

= α√
2

(|0⟩1|0⟩2|1⟩3 − |0⟩1|1⟩2|0⟩3)

+ β√
2

(|1⟩1|0⟩2|1⟩3 − |1⟩1|1⟩2|0⟩3). (11.42)

Alice could chose to measure qubits 1 and 2 in the Bell basis
composed of the four orthonormal Bell states for the two qubits [see
Eqs. (10.46)]

|6+⟩12 = 1√
2

(|0⟩1|1⟩2 + |1⟩1|0⟩2), (11.43a)

|6−⟩12 = 1√
2

(|0⟩1|1⟩2 − |1⟩1|0⟩2), (11.43b)

|7+⟩12 = 1√
2

(|0⟩1|0⟩2 + |1⟩1|1⟩2), (11.43c)

|7−⟩12 = 1√
2

(|0⟩1|0⟩2 − |1⟩1|1⟩2). (11.43d)
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To this end, the state |6⟩123 is written in terms of the above Bell
states as

|6⟩123 = −1
2

[
|6−⟩12(α|0⟩3 + β|1⟩3) + |6+⟩12(α|0⟩3 − β|1⟩3)

− |7−⟩12(α|1⟩3 + β|0⟩3) − |7+⟩12(α|1⟩3 − β|0⟩3)
]
.

(11.44)

This expression can be further simplified to

|6⟩123 = −1
2

[
|6−⟩12|ψ⟩3 + |6+⟩12 σ̂z|ψ⟩3 − |7−⟩12 σ̂x |ψ⟩3

+ i|7+⟩12 σ̂y|ψ⟩3
]
, (11.45)

where σ̂x , σ̂y , and σ̂z are the usual Pauli matrices, whose actions
on the computational basis states are tabulated in Table 8.1.
After Alice’s measurement, the three-qubit system is projected into
one of the four states superposed in |6⟩123, depending on the
measurement outcome. According to Eq. (11.45), this means that
given Alice’s measurement outcome, the state of Bob’s qubit (up to
an irrelevant global phase factor) is given by

|6−⟩12 −→ |ψ⟩3, (11.46a)

|6+⟩12 −→ σ̂z|ψ⟩3, (11.46b)

|7−⟩12 −→ σ̂x |ψ⟩3, (11.46c)

|7+⟩12 −→ σ̂y|ψ⟩3. (11.46d)

It is noted that three of the four possible states of qubit 3 (Bob’s one)
are simply related to the state |ψ⟩1 of qubit 1 (the one Alice wished
to teleport) by a unitary transformation, namely, the Pauli matrix σ̂x ,
σ̂y , or σ̂z.

In the case of the first measurement outcome |6−⟩12, the state
of qubit 3 is the same as that of qubit 1 except for an irrelevant
phase factor, so that Bob needs to do nothing further to recover the
state of qubit 1. In the three other cases, in order to convert the
state of qubit 3 to the state of qubit 1, Bob must apply to qubit 3
one of the unitary operators σ̂x , σ̂y , and σ̂z (or the Pauli-X, Pauli-Y,
and Pauli-Z gates), which as we have said in the previous section
represents respectively rotations of the Bloch sphere about the x ,
y, and z axis by π radians. The possible operations involved in the
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Table 11.1 Possible events in a teleportation process. The fact
that each of Alice’s measurement result is uniquely mapped
(through the ebit |6−⟩23) to the input state |ψ⟩1 of qubit
1 (which could represent a code) allows that Alice classical
instructs Bob about the kind of operation to be performed so
as to recover the state |ψ⟩1 of qubit 1 on qubit 3

Alice’s measurement State of Bob’s qubit Bob’s operation

|6−⟩12 |ψ⟩3 Î

|6+⟩12 σ̂z|ψ⟩3 σ̂z

|7−⟩12 σ̂x |ψ⟩3 σ̂x

|7+⟩12 σ̂y |ψ⟩3 σ̂y

teleportation procedure are summarized in Table 11.1. What Bob
has to do, obviously depends on the classical communication of
Alice’s measurement result, say via phone call or email. In other
words, once Alice obtains a certain result she sends to Bob a simple
instruction. For instance the instruction may reads “Do nothing,”
“Perform the rotation about the z axis,” “Perform the rotation about
the x axis,” or “Perform the rotation about the y axis.” For this reason,
both Alice and Bob could be even computers with no understanding
whatsoever of quantum mechanics and therefore no knowledge of
the initial conditions and the equations describing the states of
the three qubits. It suffices that two bits of classical information
is sent by Alice (according to a previously established code, like
the binary numbers 00, 01, 10, and 11) so that Bob may perform
the required operation as per the prearranged rules. Thanks to the
shared information, i.e., the entanglement between qubits 2 and
3, Bob is able to recover the encoded quantum information. In
short, depending on Alice’s measurement result, Bob can recover
with certainty the original state |ψ⟩1 with the proper application
of one of the above unitary transformations. Finally, we note that
quantum teleportation has been experimentally realized, first with
photons.a The setup of a typical quantum teleportation experiment
is schematically shown in Fig. 11.13.

In conclusion, quantum teleportation is based on two channels:
a quantum channel (the shared ebit composed of qubits 2 and

a(Bouwmeester et al., 1997), (Furusawa et al., 1998).
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Bell state 
measurement

BS

EPR source
teleported

state

photon 1 photon 2

photon 3photon 4 NL

polarizer

Alice

Bob

classical channel 

UV pulse 

Figure 11.13 Experimental realization of quantum teleportation by
Zeilinger and colleagues. A pulse of ultraviolet radiation passing through a
non-linear crystal NL produces the EPR photon pair 2–3. After reflection
during its second passage through NL, the radiation creates another pair, 1–
4, of which the photon 1 is that to be teleported and photon 4 is a trigger
indicating that the other photon is under way. Alice looks for coincidence
counts of photons 1 and 2, after they pass through the beam splitter BS.
Finally, Bob, after receiving two bits of classical information, may retrieve
the input state of photon 1 through appropriate detection. Adapted from
(Auletta et al., 2009, p. 646).

3), by which Alice teleport to Bob the state |ψ⟩1 of qubit 1 [see
Section 11.3], and a classical channel, by which Alice communicates
to Bob the result of her measurement. After having received the
classical information about Alice’s measurement result, and hence
without violating relativistic locality, Bob uses the entanglement
between qubits 2 and 3 to recover exactly the state |ψ⟩1 of qubit 1 on
qubit 3. However, the original state |ψ⟩1 of qubit 1 is destroyed as a
result of the entanglement between qubits 1 and 2 created by Alice’s
measurement. We note that this is in accordance with the no-cloning
theorem [see Theorem 11.2], which dictates the impossibility to
clone arbitrary unknown quantum states.
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Since an ebit is the amount of entanglement between a maximally
entangled pair of qubits (for example two spin 1

2 particles in a singlet
state), by teleportation we transmit a qubit by means of a shared
ebit and two bits of classical information. It is noted that an ebit
is a weaker resource than a qubit. In fact, the transmission of a
qubit can always be used to create one ebit, while the sharing of an
ebit (or many ebits) does not suffice to transmit a qubit as we also
need classical information to make an appropriate state rotation.
This is another way to say that without additional classical and
local resources quantum correlations do not allow transmission of
information.

Problem 11.7 Work out the explicit calculation that leads to the
expression given by Eq. (11.44).

Problem 11.8 Can quantum teleportation be implemented by using
the Bell state |6+⟩23, |7+⟩23, or |7−⟩23 instead of |6−⟩23?

11.6 Quantum Cryptography

One of the most important aspects of information technology in
modern society is how to establish a secure way to exchange secret
messages. By secure we mean here that the message cannot be
eavesdropped by extraneous agencies. Cryptography is precisely
the technique that allows the sender, traditionally called Alice, to
encode a message and the receiver, traditionally called Bob, to
decode it by using a certain key with a procedure such that the
eventual eavesdropper, traditionally called Eve, is not able to break
the secrecy of the encoded message.

There are several possible schemes of cryptography. Two best
known examples are represented by the public-key protocols and
the private-key protocols. In the public-key protocols, the encryption
key may be publicly announced by the receiver to the sender, but the
decryption key is only known to the former. This ensures that only
the receiver is able to decrypt the message. The public-key protocols
rely on the enormous difficulty in inverting certain mathematical
operations. For instance, multiplying two large prime numbers is
relatively easy but, on the contrary, factorizing the result into its
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prime factors may take a very long time [see Section 11.4]. For this
reason, public-key protocols are also called asymmetric protocols.
Unfortunately, it has never been proved that the mathematical
operations used in the public-key protocols are truly difficult (i.e.,
the time required to solve them grows exponentially with the size
of the input). The only thing we know so far is that there are no
classical algorithms that can solve them in a polynomial time. On
the other hand, private-key protocols are called symmetric protocols
since they use the same key for both encryption and decryption.
They rely on secure communication in order to establish a shared
secret key. Such a communication is often performed by a human
courier that is however not completely reliable. Indeed, there does
not exist a classical procedure that allows for a complete safe key
distribution, since any key can in principle be intercepted without
the knowledge of the interested parties. This problem is known as
the key distribution problem.

Quantum information has brought a new light to the key
distribution problem. As a matter of fact, through quantum key
distribution, quantum mechanics allows two parties to establish a
totally secure private key, by transmitting information in quantum
superpositions or entangled states. Essentially, what is used here are
some basic quantum principles:

(i) A non-interaction-free measurement will irreversibly perturb
the state of the measured system [see Sections 5.2–5.3].

(ii) It is impossible to distinguish with a single measurement two
non-orthogonal states [see Section 7.8].

(iii) It is impossible to clone an unknown quantum state [see
Section 11.2].

Quantum cryptography was initiated by a pioneering study of
Wiesner, proposed in the 1970’s but only published later on in
1983.a Bennett and Brassard short thereafter in 1984 published
a seminal paper in which they proposed the first protocol for
quantum key distribution.b In Bennett and Brassard’s protocol,
now know universally as the BB84 protocol, Alice and Bob are

a(Wiesner, 1983).
b(Bennett/Brassard, 1984).
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connected by a quantum communication channel which allows the
transmission of quantum states. In addition, they may communicate
via a public classical channel. Both these channels may possibly be
not secure. In particular, if the quantum channel is represented by
the transmission of photons (e.g., in an optical fiber or in free space),
they can make use of two possible bases for photon polarization
statesa

⊕ = {|↔⟩, |↕⟩} and ⊗ = {|⤡⟩, |⤢⟩}, (11.47)

which represent, respectively, the horizontal–vertical polarization
basis and the 45◦–135◦ polarization basis. First, Alice and Bob
establish a one-to-one correspondence between each basis state of
the two bases and the classical bits 0 and 1 that they desires to
communicate with each other. They may agree to use, for instance,
the following correspondence

0 ⇐⇒ |↔⟩, |⤡⟩, and 1 ⇐⇒ |↕⟩, |⤢⟩. (11.48)

Then, Alice sends to Bob a sequence of classical bits, encoded in
photon polarization states using one or the other polarization basis
chosen at random. Bob decodes the transmitted bits by measuring
the polarization state of the transmitted photons, using the basis
randomly chosen from one of the two bases. After the measurement,
they publicly inform each other via a classical channel which
basis they have chosen to use for each transmitted bit. They can
immediately discard the bits for which the two chosen bases do not
match (on average 50% of the transmitted bits). The bits for which
Alice and Bob used the same basis constitute a shared secret key.
An example of the transmission sequence is schematically shown in
Table 11.2.

It is obvious that Alice and Bob should take into account
the possible presence of eavesdroppers. In order to exclude any
possibility of eavesdropping, Bob takes a subset of the shared key
and publicly compares the bits with those sent by Alice. If they
do not match, this means that Eve has intercepted and measured

aIt is noted that the horizontal–vertical polarization states |↔⟩ and |↕⟩ may be put
in correspondence to the spin states |↑z⟩ and |↓z⟩ of a spin 1

2 particle, while the
45◦–135◦ polarization states |⤡⟩ and |⤢⟩ to the spin states |↑x ⟩ and |↓x ⟩ of a spin 1

2
particle.
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Table 11.2 An example of the transmission sequence in the BB84
protocol in the absence of eavesdroppers. At the end of the protocol,
Alice and Bob have the shared key 011010

Alice’s bits 0 1 1 1 0 0 1 0 0 1

Alice’s basis ⊕ ⊕ ⊗ ⊗ ⊗ ⊕ ⊕ ⊗ ⊕ ⊕

Alice’s states |↔⟩ |↕⟩ |⤢⟩ |⤢⟩ |⤡⟩ |↔⟩ |↕⟩ |⤡⟩ |↔⟩ |↕⟩

Bob’s basis ⊕ ⊗ ⊗ ⊗ ⊗ ⊗ ⊕ ⊕ ⊕ ⊗

Bob’s states |↔⟩ |⤡⟩ |⤢⟩ |⤢⟩ |⤡⟩ |⤢⟩ |↕⟩ |↔⟩ |↔⟩ |⤡⟩

Shared key 0 – 1 1 0 – 1 – 0 –

Table 11.3 An example of the transmission sequence in the BB84
protocol in the presence of an eavesdropper. At the end of the protocol,
Alice and Bob are left with the partially correlated bit strings 011010
and 010010, respectively. A comparison containing the third bit (1 for
Alice, but 0 for Bob) will reveal the presence of an eavesdropper

Alice’s bits 0 1 1 1 0 0 1 0 0 1

Alice’s basis ⊕ ⊕ ⊗ ⊗ ⊗ ⊕ ⊕ ⊗ ⊕ ⊕

Alice’s states |↔⟩ |↕⟩ |⤢⟩ |⤢⟩ |⤡⟩ |↔⟩ |↕⟩ |⤡⟩ |↔⟩ |↕⟩

Eve’s basis ⊗ ⊗ ⊕ ⊕ ⊗ ⊕ ⊕ ⊕ ⊗ ⊕

Eve’s states |⤡⟩ |⤡⟩ |↕⟩ |↔⟩ |⤡⟩ |↔⟩ |↕⟩ |↔⟩ |⤢⟩ |↕⟩

Bob’s basis ⊕ ⊗ ⊗ ⊗ ⊗ ⊗ ⊕ ⊕ ⊕ ⊗

Bob’s states |↔⟩ |⤡⟩ |⤢⟩ |⤡⟩ |⤡⟩ |⤢⟩ |↕⟩ |↔⟩ |↔⟩ |⤡⟩

Check 0 – 1 0 0 – 1 – 0 –

the photons, thus changing the compared bits in a random way.
An example of the transmission sequence in the presence of an
eavesdropper is schematically shown in Table 11.3. When this is the
case, Alice and Bob discard the shared key and have to start their
procedure again, until they can be sure that no eavesdropping has
occurred. Suppose that Eve also chooses one of the two bases at
random. Then Eve will have a probability of 1

2 to choose the same
basis as that used by Alice and Bob, thus leaving the compared bits
unchanged. On the other hand, when Eve chose a different basis from
that used by Alice and Bob, which happens with a probability of 1

2 ,
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Bob has again a probability of 1
2 to obtain a bit that matches the

one sent by Alice. Therefore, in the presence of an eavesdropper
the probability that two compared bits match each other is 1

2 +
1
2 × 1

2 = 3
4 . A shared key will be identified as secure only if there

is no mismatch at all between the compared bits, and for a n-bit
comparison this happens with a probability of

( 3
4

)n. By increasing
the number compared bits n, Alice and Bob are able to increase the
probability of detecting Eve’s presence, i.e., the probability that there
is at least one mismatch in the comparison, according to the formula

℘eve = 1 −
(

3
4

)n

. (11.49)

For instance, if Alice and Bob would like to exclude the presence of
Eve at a confidence level of 99.99%, they need to compare 33 bits.
As said, if they find a mismatch, they should repeat the protocol
from the very beginning, over and over again until they find a perfect
match between the compared bits. Obviously, the number of bits to
be sent must be sufficiently large in order to allow a sufficiently high
level of reliability. This makes Eve’s attempts at eavesdropping even
more difficult. Needless to say, Eve would like ideally to intercept
Alice’s bit, make a copy of it, and resend it unperturbed to Bob.
However, as we know, this is prohibited by the no-cloning theorem.

In the BB84 protocol, Alice and Bob exploit superposition to
distribute a shared secret key. Another very interesting protocol
for quantum key distribution is due to Ekerta and is based on
entanglement. In the Ekert protocol (sometimes called the EPRBE
protocol, short for Einstein, Podolsky, Rosen, Bell, and Ekert), Alice
prepares a sequence of entangled qubit pairs, each prepared in the
same maximally entangled Bell state [see Eq. (11.43b)]

|6−⟩12 = 1√
2

(|↔⟩1|↕⟩2 − |↕⟩1|↔⟩2), (11.50)

where we remark that the chosen basis is the ⊕ basis. It is
however noted that since entanglement is basis independent [see
Section 7.9], the state |6−⟩ takes the same form (up to an irrelevant
global phase factor) in the ⊗ basis and, in fact, in any basis. She
keeps the first qubit for herself and sends the second to Bob. Again,

a(Ekert, 1991).
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when Alice and Bob use the same ⊕ or ⊗ basis to measure their
qubit, they obtain the opposite results (i.e., their results are perfectly
anticorrelated [see Section 10.4]). This in turn provides them with a
shared key. In this case, moreover, it is possible to make use of the
Bell inequality to check the security of the protocol. A measurement
by Eve on the qubit sent to Bob will leave Alice’s qubit and the qubit
subsequently sent to Bob by Eve in the product state |↔⟩1|↕⟩2 or
|↕⟩1|↔⟩2. Alice and Bob can use a third choice of basis, say the
Breidbart polarization basis B = {|B0⟩, |B1⟩}, where |B0⟩ and |B1⟩
are respectively given bya

|B0⟩ = cos
π

8
|↔⟩ + sin

π

8
|↕⟩, (11.51a)

|B1⟩ = cos
π

8
|↔⟩ − sin

π

8
|↕⟩, (11.51b)

together with the classical bits correspondence

0 ⇐⇒ |B0⟩ and 1 ⇐⇒ |B1⟩, (11.52)

so that, as they establish a shared key, they also collect enough data
to test the Bell inequality (10.35). If the latter is violated, then Alice
and Bob can be sure that their qubit pairs are indeed entangled, thus
ruling out the presence of an eavesdropper.

Finally, it should be noted that quantum cryptography may be
only exploited to establish and distribute a private key, not to
transmit any message. Such a key may, of course, be used with
any chosen cryptographic algorithm to encrypt and to decrypt a
message, which can be transmitted over standard communication
channels.

Problem 11.9 Show that for the state |6−⟩12 and the three
directions given by the ⊕, ⊗, and B bases, the Bell inequality (10.35)
is indeed violated. (Hint: See Footnotes c, p. 371 and a, this page.)

11.7 Mutual Information and Entanglement

As we have said, quantum systems in pure states (i.e., the states
showing quantum features in the maximum degree) have a zero von

aWe note that the Breidbart polarization states |B0⟩ and |B1⟩ correspond respectively
to the spin up and spin down states of a spin 1

2 particle in the direction n = 1√
2

(ez +
ex ).
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Neumann entropy. This is the reason why we have suggested that
the universe as a whole may have zero entropy [see Sections 9.6
and 9.7]. This is due to the fact that features are the strongest
form of interdependences between systems in our universe. As a
consequence, quantum systems are the most ordered systems in
nature. This confirms the fact that they have an infinite amount
of potential information, though it can only be partially accessed
by information acquisition [see Sections 6.9, 11.2, and 11.3].
Conversely, this accounts for the fact that it is necessary for the
system to lose features to the environment and to increase the
entropy when being measured. It is indeed impossible to extract
information from a system that is perfectly ordered (as well as when
it is totally disordered). Information acquisition is possible only
when there is a sort of tradeoff between order and disorder.

We now use the classical treatment of information for developing
considerations that will be extended to quantum information later
on. Suppose that we have two systems characterized respectively
by the sets J and K of elements j ∈ J and k ∈ K , in which the
probability of j is given by ℘( j) and the probability of k by ℘(k). It
is noted that in classical information theory J and K may represents
respectively the sets of characters in a signal transmitted by Alice
and received by Bob in a certain communication between them.
Because of possible errors induced by noise, J and K as well as ℘( j)
and ℘(k) might not be identical. From our discussion in Section 9.6,
the Shannon entropies of J and K are respectively given by

H ( J) = −
∑

j∈ J

℘( j) lg ℘( j) and H (K) = −
∑

k∈K

℘(k) lg ℘(k),

(11.53)
which quantify the respective potential information associated with
J and K . Then the question arises naturally as to how to quantify
the joint information associated with J and K . Indeed, such a
information is measured by the joint entropy of J and K , which is
defined by

H ( J , K) = −
∑

j∈ J

∑

k∈K

℘( j, k) lg ℘( j, k), (11.54)

where ℘( j, k) is the joint probability of j and k. Let us consider the
case in which J and K are uncorrelated (or statistically independent)
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[see Box 10.1], then we have ℘( j, k) = ℘( j)℘(k) for all j ∈ J and
k ∈ K . In this case, the joint entropy H ( J , K) is given by

H ( J , K) = −
∑

j∈ J

∑

k∈K

℘( j)℘(k) lg[℘( j)℘(k)]

= −
∑

j∈ J

∑

k∈K

℘( j)℘(k)[lg ℘( j) + lg ℘(k)]

= −
∑

j∈ J

∑

k∈K

℘( j)℘(k) lg ℘( j) −
∑

j∈ J

∑

k∈K

℘( j)℘(k) lg ℘(k)

= −
∑

j∈ J

℘( j) lg ℘( j) −
∑

k∈K

℘(k) lg ℘(k)

= H ( J) + H (K), (11.55)

where in obtaining the forth equality use has been made of the
condition

∑

j∈ J

℘( j) =
∑

k∈K

℘(k) = 1. (11.56)

In other words, the joint potential information associated with
uncorrelated J and K is the sum of the potential information
associated with J and K . As a matter of fact, it can be proved that the
values of H ( J), H (K), and H ( J , K) are constrained by the inequality

H ( J) + H (K) ≥ H ( J , K). (11.57)

In other words, the sum of the entropies of the two systems taken
separately is greater than or equal to the entropy of the combined
system. Indeed, when the two systems are uncorrelated they are
more disordered. This property allows us to define an important
non-negative quantity, called the mutual information of J and K , by
[see Box 11.3]

I ( J : K) = H ( J) + H (K) − H ( J , K), (11.58)

which is a measure of the correlation between J and K and therefore
the information that is shared between the sender and the receiver
in a protocol of information transmission. For this reason, in classical
information theory if J and K represents respectively the sending and
receiving of a signal, then I ( J : K) is interpreted as the information
transmitted by the communication. However, the concept of mutual
information is much wider and covers also situations in which no
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signal at all is sent, as it happens for many quantum mechanical
situations and therefore, in its generality, only means to share some
information (and for this reason, as we shall see, it is particularly
suited to be a measure of entanglement).

Another important quantity relevant to our discussion is the
conditional entropy

H ( J |K) = −
∑

j∈ J

∑

k∈K

℘( j, k) lg ℘( j |k), (11.59)

Box 11.3 Non-negativity of mutual information

We note that the proof of the inequality (11.57) is tantamount to
proving the non-negativity of mutual information. From a pure
mathematical point of view, a function is said to be convex on an
interval if the graph of the function within the interval lies below
the line segment joining the end points of the graph in the same
interval. In general, a function f (x) is convex on an interval [a, b]
if for any two points x1 and x2 in [a, b] the following inequality
holds

f (λx1 + (1 − λ)x2) ≤ λ f (x1) + (1 − λ) f (x2), (11.60)

where 0 < λ < 1 is an arbitrary number. Examples of convex
functions include the quadratic function f (x) = x2 and the expo-
nential function f (x) = ex [see Fig. 6.2]. Moreover, a function
f (x) is said to be concave on an interval [a, b] if the function
− f (x) is convex on that interval. Examples of concave functions
are the square root function f (x) =

√
x and the logarithmic

function f (x) = logb x (with an arbitrary base b > 0).
The non-negativity of mutual information is a direct conse-

quence of the fact that for a concave function f (x) we always have
the inequality (known as the Jensen inequality)

∑

j

a j f (x j ) ≤ f
(∑

j

a j x j

)
, (11.61)
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where
∑

j a j = 1. Using the Jensen inequality (11.61) for the
logarithmic function f (x) = lg x and the fact that

∑

j∈ J

∑

k∈K

℘( j, k) = 1, (11.62)

we obtain from Eq. (11.68) that

−I ( J : K) =
∑

j∈ J

∑

k∈K

℘( j, k) lg
℘( j)℘(k)
℘( j, k)

≤ lg
(∑

j∈ J

∑

k∈K

℘( j, k)
℘( j)℘(k)
℘( j, k)

)

= lg
(∑

j∈ J

∑

k∈K

℘( j)℘(k)
)

= lg 1

= 0, (11.63)

where uses has also been made of Eq. (11.56). Therefore, it
follows that I ( J : K) ≥ 0 and the identity holds if and only if
℘( j, k) = ℘( j)℘(k), i.e., J and K are uncorrelated.

where ℘( j |k) is the condition probability of j given k. From the
above definition it follows that

H ( J |K) = −
∑

j∈ J

∑

k∈K

℘( j, k) lg ℘( j |k)

= −
∑

j∈ J

∑

k∈K

℘( j, k) lg
℘( j, k)
℘(k)

= −
∑

j∈ J

∑

k∈K

℘( j, k)[lg ℘( j, k) − lg ℘(k)]

= −
∑

j∈ J

∑

k∈K

℘( j, k) lg ℘( j, k) +
∑

k∈K

℘(k) lg ℘(k)

= H ( J , K) − H (K). (11.64)

We note that in obtaining the above result use has been made of
Eq. (10.50), the expression

℘( j, k) = ℘( j |k)℘(k), (11.65)



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

Mutual Information and Entanglement 379

the property (9.32c) of logarithms, and the fact that [see Eq. (10.56)]
∑

j∈ J

℘( j, k) = ℘(k). (11.66)

If in the above formalism, we interpret K as the input code and J
as the output code, the conditional entropy H ( J |K) as expressed in
the last line of Eq. (11.64), represents the measure of how much
the output is different from the input and therefore is a measure
of the equivocation of the signal. Indeed, by combining Eqs. (11.58)
and (11.64), we can rewrite the mutual information in terms of the
conditional entropy as

I ( J : K) = H ( J) + H (K) − [H ( J |K) + H (K)]

= H ( J) − H ( J |K). (11.67)

Upon substituting the expressions for H ( J) given by Eq. (11.53) and
for H ( J |K) by Eq. (11.59) into the above equation, we can further
rewrite I ( J : K) in terms of probability distributions as

I ( J : K) = −
∑

j∈ J

℘( j) lg ℘( j) +
∑

j∈ J

∑

k∈K

℘( j, k) lg ℘( j |k)

=
∑

j∈ J

∑

k∈K

℘( j, k) lg
℘( j |k)
℘( j)

=
∑

j∈ J

∑

k∈K

℘( j, k) lg
℘( j, k)

℘( j)℘(k)
, (11.68)

where use has been made use of Eq. (11.65) and the fact that [see
Eq. (11.66)]

℘( j) =
∑

k∈K

℘( j, k). (11.69)

Note that, as can be seen from Eq. (11.68), the mutual information is
a symmetric quantity, i.e., we have [see Problem 11.10]

I ( J : K) = I (K : J ), (11.70)

which clearly is an evidence for the fact that mutual information
as such represents not only information that is transmitted by
communication but also information that is shared even in the
absence of communication. A graphical representation of the
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H(J) H(K)

H(J|K)              I(J: K)          H(K|J)

Figure 11.14 Graphic representation of the relations between the joint
entropy, conditional entropy, and mutual information for two correlated
systems J and K . The mutual information I ( J : K) = H ( J) − H ( J |K)
is represented by the central dark gray region, where H ( J) is the circular
region on the left (i.e., the light gray and dark gray regions) and H ( J |K)
is the light gray region. Equivalently, I ( J : K) can also be expressed as
I ( J : K) = H (K) − H (K | J ), where H ( J) is the circular region on the right
(i.e., the white and dark gray regions) and H (K | J ) is the white region. The
joint entropy H ( J , K) = H ( J)+ H (K)− I ( J : K) is represented by the whole
region composed of the light gray, dark gray, and white regions.

relations between the joint entropy, conditional entropy, and mutual
information is depicted in Fig. 11.14. Moreover, using Eq. (11.64) we
can express H ( J) and H (K) respectively as

H ( J) = H ( J , K) − H (K | J), (11.71a)

H (K) = H ( J , K) − H ( J |K). (11.71b)

Then, according to Eq. (11.58) we have

H ( J , K) = H ( J) + H (K) − I ( J : K)

= [H ( J , K) − H (K | J)] + [H ( J , K) − H ( J |K)] − I ( J : K)

= 2H ( J , K) − H ( J |K) − H (K | J) − I ( J : K), (11.72)

which in turn implies

H ( J , K) = H ( J |K) + H (K | J) + I ( J : K). (11.73)

It is interesting to note that in this way we formulate the joint
entropy of systems (codes) J an K as a sum of (i) the two conditional
entropies, which express the relative independence of J on K , and
vice versa, which therefore can be taken as a measure of disorder,
and (ii) the correlation that they have in terms of the mutual
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information, representing the measure of the order of the system.
Therefore, we have succeed in qualifying our statement that entropy
expresses only in a first approximation the degree of disorder [see
Section 9.6], since we are now able to understand that it is a kind of
mix between disorder and order.

Therefore, the concept of mutual information is very important
because it quantifies the interdependence between systems, or parts
of a system, that contain certain information. In fact, by rewriting
Eq. (11.67) as

H ( J) = H ( J |K) + I ( J : K), (11.74)

we see that the information contained in a given system J is the
information contained in the system given that another system K
is known plus the mutual information between the two systems. We
also stress that this equation is formally similar to Eq. (11.73). We
can generalize the above equation by taking the system K as the
environment E (i.e., the rest of the world), then

H ( J) = H ( J |E ) + I ( J : E ). (11.75)

In other words, classically (and also quantum mechanically as we
will see below) we can treat a physical system as an open system
whose entropy depends on its entropic (or dynamic) relations with
the environment [see Sections 9.5–9.7].

Just as we have seen in Section 9.6 that the von Neumann entropy
is the extension of the classical entropy to quantum mechanics,
the joint entropy, conditional entropy, and mutual information
discussed above in the classical context can also be extended
to quantum mechanics by means of the von Neumann entropy.
In particular, the quantum mechanical counterpart of the mutual
information can be used to quantify the entanglement between
two quantum systems. In this way, we can easily understand that
entanglement is not an absolute property (a system either has it or
not) but shows degrees. For a composite system that is composed
of systems 1 and 2 and described by the density matrix ρ̂12,
traditionally the entanglement E(1, 2) of systems 1 and 2 has been
calculated as

E(1, 2) = HVN(1) + HVN(2) − HVN(1, 2), (11.76)

where HVN(1) and HVN(2) are the respective von Neumann
entropies of systems 1 and 2 (calculated from the reduced density
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matrices ρ̂1 and ρ̂2, respectively), and HVN(1, 2) is the joint von
Neumann entropy of systems 1 and 2 (calculated from the density
matrix ρ̂12) [see Section 7.9]. In other words, entanglement is a form
of quantum mutual information, in that two entangled systems are
correlated because they share an amount of information that is not
foreseen classically. Moreover, we can also define the entanglement
of quantum systems with respect to certain measurements (as
represented by observables). This is very useful for choosing the
observables that optimally express the entanglement of quantum
systems.a In this case the joint von Neumann entropy of systems
1 and 2 with respect to the measurements Ô1 and Ô2 made
respectively on systems 1 and 2 is given by

HVN(Ô1, Ô2) = −
∑

j

∑

k

⟨o1 j , o2k|ρ̂12|o1 j , o2k⟩

× ln⟨o1 j , o2k|ρ̂12|o1 j , o2k⟩, (11.77)
where ρ̂12 is the density matrix of the composite system and
|o1 j , o2k⟩ = |o1 j ⟩ ⊗ |o2k⟩ with |o1 j ⟩ and |o2k⟩ being the respective
eigenstates of Ô1 and Ô2 (here for the sake of notational simplicity
we have suppressed the subscripts 1 and 2 referring to the systems).
The joint entropy HVN(Ô1, Ô2) quantifies the information contained
in systems 1 and 2 that is accessible to the joint measurement
Ô1 of system 1 and Ô2 of system 2. We also can write the von
Neumann entropies of system 1 and 2 with respect to the respective
observables Ô1 and Ô2 as

HVN(Ô1) = −
∑

j

⟨o1 j |ρ̂1|o1 j ⟩ ln⟨o1 j |ρ̂1|o1 j ⟩, (11.78a)

HVN(Ô2) = −
∑

k

⟨o2k|ρ̂2|o2k⟩ ln⟨o2k|ρ̂2|o2k⟩, (11.78b)

where ρ̂1 and ρ̂2 are the reduced density matrices of system 1 and 2,
respectively. Similarly, the entropies HVN(Ô1) and HVN(Ô2) quantify
respectively the information contained in system 1 that is accessible
to the measurement Ô1 of system 1 and the information contained in
system 2 that is accessible to the measurement Ô2 of system 2. Then,
we may define the entanglement of systems 1 and 2 with respect to
the observables Ô1 and Ô2 by

E(Ô1, Ô2) = HVN(Ô1) + HVN(Ô2) − HVN(Ô1, Ô2), (11.79)

a(Zurek, 1983), (Barnett/Phoenix, 1989).
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which is formally similar to the entanglement E(1, 2) given by
Eq. (11.76). It is interesting to note that we always have

E(Ô1, Ô2) ≤ E(1, 2), (11.80)

namely, the mutual information of the two systems that is accessible
to two arbitrary measurements of the respective systems cannot
exceed the mutual information of the two systems. This can be
understood as a reformulation of the information accessibility
principle in the context of quantum mutual information [see
Principle 11.1].

Actually, mutual information allows us to distinguish between
classical correlations and quantum features.a As we have seen, clas-
sically we have two equivalent expressions for mutual information,
Eq. (11.58) and Eq. (11.67). Quantum mechanically it turns out that
there is a difference between the two expressions (where S and
A should be understood as the object system and the apparatus,
respectively)

I (S : A) = HVN(S) + HVN(A) − HVN(S , A), (11.81a)

C(S : A) = HVN(S) − HVN(S|A), (11.81b)

where C(S:A) represents the part of correlations that can be
attributed to classical physics and, as usual, HVN(S) and HVN(A) are
computed on the reduced density matrices of the two subsystems.
The conditional entropy HVN(S|A) requires us to specify the state
of S given the state of A. Such a statement in quantum theory is
ambiguous until the to-be-measured set of states A is selected. To
this purpose, let us consider the set of one-dimensional projectors
{ P̂ A

j }, where the label j distinguishes different outcomes of this
measurement. The state of S after the outcome corresponding to P̂ A

j
has been detected is given by [see also Eq. (9.10)]

ρ̂S| P̂ A
j

=
TrA( P̂ A

j ρ̂ P̂ A
j )

℘ j
, (11.82)

where ρ̂ is the density matrix of the composite system comprehend-
ing S and A, and

℘ j = TrS , A( P̂ A
j ρ̂). (11.83)

a(Olivier/Zurek, 2001).
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It is clear that the entropy HVN(ρ̂S| P̂ A
j

) represents the missing
information about S . Now, the conditional entropy of S given the
complete measurement { P̂ A

j } on A is represented by the probability
weighted average of HVN(ρ̂S| P̂ A

j
):

HVN(S|{ P̂ A
j }) =

∑

j

℘ j HVN(ρ̂S| P̂ A
j

), (11.84)

which allows us to write an unambiguous expression for C(S : A) as

C(S : A){ P̂ A
j } = HVN(S) − HVN(S|{ P̂ A

j }). (11.85)

In this way, we obtain the formulation for quantum discord, i.e., the
difference between the mutual information and its classical part,

Q(S : A){ P̂ A
j } = I (S : A) − C(S : A){ P̂ A

j }

= HVN(A) − HVN(S , A) + HVN(S|{ P̂ A
j }). (11.86)

This also shows that the correlation between systems that is
represented by the mutual information is the sum of a classical and
a quantum contribution [see Fig. 7.4 and comments]:

I (S : A) = C(S : A){ P̂ A
j } + Q(S : A){ P̂ A

j }. (11.87)

The quantum discord is asymmetric under exchange of S and A,
since the quantity in Eq. (11.84) involves a measurement on A that
allows the observer to infer the state of S . This typically implies an
increase of entropy. In other words, we have

HVN(S|{ P̂ A
j }) ≥ HVN(S , A) − HVN(A), (11.88)

which implies that

Q(S : A){ P̂ A
j } ≥ 0. (11.89)

The previous formalism allows us to generalize and formulate
Theorem 11.1 in mathematical terms. In fact, the classical quantity
C(S:A) in Eq. (11.85) is essentially the Holevo bound, i.e., the
maximum amount of classical information that can be extracted
from a system.a This also allows us to consider the complementarity
between local irreversibility and global reversibility in formal terms
[see Section 9.7]. In fact, each component of the object system,
when coupled with the apparatus, becomes also entangled to a

a(Zwolak/Zurek, 2013).
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component of the environment. In other words, we establish in this
way two quantum channels: one between the object system and the
apparatus and the other between the object system and the envi-
ronment. This shows that premeasurement, although still reversible,
is a real operation, as far as it establishes external conditions for
the final step of measurement [see Sections 9.3–9.4]. Now, when
we get a specific measurement result, we make accessible to the
latter kind of channel only a small part of the environment (the
local one), while all other channels are switched off. This means
that we indeed lose this part of information into the environment
[see Section 9.6]. In other words, there is here a complementarity
between quantum discord (global reversibility) and the Holevo
bound (local irreversibility):a Increasing the redundant (classical)
information stored in a small fragment of the universe decreases the
quantum information in the much larger fragment represented by
the rest of the universe. For this reason, there is also a minimum
fragment size needed by an observer to learn about the object
system.

Since C(S:A) depends on the set { P̂ A
j }, we shall usually be

concerned with the set { P̂ A
j } that minimizes the discord given a

certain ρ̂. Minimizing the discord over the possible measurements
on A corresponds to finding the measurement that disturbs least
the overall quantum state and that, at the same time, allows
one to extract the most information about S . When the quantum
discord is not zero, it indicates the presence of correlations that
are ultimately due to non-commutativity of quantum observables
[see Section 6.9]. This may be also considered the quantumness of
correlations. We remark that, in accordance with what is said in
Section 7.9, entanglement is defined by the expression in Eq. (11.76)
that is in general different from the discord precisely because
entanglement also contains classical correlations. Note also that
although classically the conditional entropy is always positive,
quantum mechanically it can be negative, and its negativity is a
sufficient condition of entanglement. A final remark concerns the
use of terms and concepts. Both discord and quantumness hint
at the same issue as the notion of features. However, the discord

a(Zwolak/Zurek, 2013).
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is a measure while the quantumness expresses a character. It is
therefore suitable to have a specific term that can stand on the
same foot as the notions of event and property but displaying
simultaneously the specificity (the quantumness) of quantum
mechanics, and this is the specific advantage of the notion of
features.

Problem 11.10 Prove Eq. (11.70), i.e., the mutual information is a
symmetric quantity.

Problem 11.11 Let J and K have the following joint probability:

J = 1 J = 2

K = 1 0 3
4

K = 2 1
8

1
8

Find H ( J , K) H ( J), H (K), H ( J |K), H (K | J), and I ( J : K).

11.8 Information and Non-Separability

We are now able to reformulate the Bell inequality in terms of the
mutual information and entropy [see Section 10.4]. Indeed, Braun-
stein and Cavesa derived an information-theoretic Bell inequality of
the form

H (Ôa|Ôb) ≤ H (Ôa|Ôb′ ) + H (Ôb′ |Ôa′ ) + H (Ôa′ |Ôb), (11.90)

where Ôa and Ôa′ are observables of system 1 while Ôb and Ôb′ are
observables of system 2. This inequality can also be considered an
information-theoretic reformulation of the CHSH inequality (10.38).
We also note that the observables Ôa , Ôb, and alike do not necessarily
represent spin components but are quite general. In the above
expression, all the conditional entropies have the same form of
Eq. (11.64). In particular, H (Ôa|Ôb) is the conditional entropy of
system 1 accessible to the observable Ôa given that system 2 is

a(Braunstein/Caves, 1988), (Braunstein/Caves, 1990).
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measured with the observable Ôb. This quantity is defined by

H (Ôa|Ôb) = H (Ôa , Ôb) − H (Ôb), (11.91)

where it is noted that the entropies appear in the above equation
(and similar ones) are understood to be calculated in a local hidden
variable theory. The information-theoretic Bell inequality (11.90)
can be derived by using the following inequalities:

(i) The inequality

H (Ôa|Ôb) ≤ H (Ôa), (11.92)

which means that the information contained in one of the
systems that is accessible to a measurement decreases given
that the other system has been already measured. This is quite
intuitive, especially considering that any measurement is a
selection act.

(ii) The inequalities

H (Ôa) ≤ H (Ôa , Ôb) and H (Ôb) ≤ H (Ôa , Ôb), (11.93)

meaning that the information contained in two systems that is
accessible to two measurements of the respective systems is
no less than the information contained in either system that is
accessible to individual measurement.

(iii) The following generalization of the inequality (11.93)

H (Ôa , Ôb) ≤ H (Ôa , Ôa′ , Ôb, Ôb′ )

= H (Ôa|Ôa′ , Ôb, Ôb′ ) + H (Ôb′ |Ôa′ , Ôb)

+ H (Ôa′ |Ôb) + H (Ôb), (11.94)

where the equality is obtained by a recursion of the definition
of the conditional entropy analogous to Eq. (11.64).

Now the information-theoretic Bell inequality (11.90) can be
obtained from the inequality (11.94) by noting that

H (Ôa|Ôa′ , Ôb, Ôb′ ) ≤ H (Ôa|Ôb′ ), (11.95a)

H (Ôb′ |Ôa′ , Ôb) ≤ H (Ôb′ |Ôa′ ), (11.95b)

which follow directly from the inequality (11.92). Substituting the
above two equalities into the equality (11.94) and using Eq. (11.91)
to rewrite the joint entropy H (Ôa , Ôb) on the left-hand side of latter
equality in terms of the conditional entropy H (Ôa|Ôb), we find that
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the unwanted H (Ôb) terms on both sides cancel and the desired
inequality follows. Braunstein and Caves succeeded in showing
that in the context of Bell’s spin-like experiments the quadrilateral
inequality (11.90) is violated by quantum mechanics.

It is possible to arrive at a result formally similar to the previous
one by using a different conceptual instrument.a Recalling the
definition of the mutual information, we now define the information
distance D(Ôa , Ôb) of two observables Ôa and Ôb by

D(Ôa , Ôb) = H (Ôa|Ôb) + H (Ôb|Ôa)

= H (Ôa , Ôb) − I (Ôa : Ôb)

= 2H (Ôa , Ôb) − H (Ôa) − H (Ôb), (11.96)

which measures the lack of correlation between the observables Ôa

and Ôb. Obviously, the information distance is positive semidefinite
and symmetric. It can also be proved that for three arbitrary
observables Ôa , Ôb, and Ôc the classical information distance
satisfies the following triangular inequality

D(Ôa , Ôb) + D(Ôb, Ôc) ≥ D(Ôa , Ôc). (11.97)

The so-called classical quadrilateral information-distance Bell in-
equality can be formulated similarly and is given by

D(Ôa , Ôb) + D(Ôb, Ôa′ ) + D(Ôa′ , Ôb′ ) ≥ D(Ôa , Ôb′ ). (11.98)

To construct a counterexample of the above quadrilateral inequality
in quantum mechanics, we consider the situation in which the
observables Ôa and Ôb represent components of spin in directions
separated by an angle θ . The quantum information distance of Ôa

and Ôb for the Bell state |6−⟩ [see Eq. (11.43b)] is given by

D6− (Ôa , Ôb) = 2 f
(

θ

2

)
, (11.99)

where

f (φ) = − cos2 φ ln cos2 φ − sin2 φ ln sin2 φ . (11.100)

Now choose the four observable Ôa , Ôb, Ôa′ , and Ôb′ as depicted
in Fig. 11.15, such that the angles between the coplanar directions

a(Schumacher, 1990), (Schumacher, 1991).
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Figure 11.15 Spin measurement yielding a violation of the information-
distance quadrilateral inequality for the Bell state |6−⟩. The angles between
the coplanar directions represented by Ôa and Ôb, by Ôb and Ôa′ , as well as
by Ôa′ and Ôb′ are all equal to π

8 .

represented by Ôa and Ôb, by Ôb and Ôa′ , as well as by Ôa′ and Ôb′ are
all equal to π

8 . Then, we have

D6− (Ôa , Ôb) = D6− (Ôb, Ôa′ ) = D6− (Ôa′ , Ôb′ ) = 2 f
( π

16

)
≃ 0.323,

(11.101a)

D6− (Ôa , Ôb′ ) = 2 f
(

3π

16

)
≃ 1.236. (11.101b)

Figure 11.16 Schematic information-distance representation of quantum
non-separability. The gray circles represent observables, and the solid
line represents the information distance of two observables in a local
hidden variable theory. The hidden-variable information distance D(Ôa , Ôb′ )
satisfies the information quadrilateral inequality (11.98), which however is
violated by the quantum mechanical result (dotted line) for the Bell state
|6−⟩.
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Since 0.323 + 0.323 + 0.323 < 1.236, it follows that

D6− (Ôa , Ôb) + D6− (Ôb, Ôa′ ) + D6− (Ôa′ , Ôb′ ) ≤ D6− (Ôa , Ôb′ ).
(11.102)

Therefore, it is evident that the quadrilateral inequality (11.98)
is violated. A schematic representation of the counterexample is
depicted in Fig. 11.16. In quantum mechanics, Ôa and Ôb′ may
be “further apart” in information distance than the information
quadrilateral inequality permits, given the “closeness” of Ôa to Ôb,
Ôb to Ôa′ , and Ôa′ to Ôb′ . Since the information distance measures the
lack of correlation between two observables, we can say that Ôa and
Ôb′ may be less correlated in quantum mechanics than it would be
possible in a local hidden variable theory.

11.9 Summary

In this chapter, we have

• Explained which kind of problems arise when considering
quantum systems as information processors and have solved
them.

• Proved the no-cloning theorem, which states that it is not
possible to create identical copies of an arbitrary unknown
quantum state.

• Introduced the fundamental concept of potential information
and shown that it has to do with encoding and sharing of
information.

• Discussed the information accessibility principle according
to which we can cannot have access to the whole potential
information.

• Learned the very basic of quantum gates and quantum
computation.

• Analyzed the quantum algorithm for solving the Deutsch
problem, which however cannot be solved by employing any
classical algorithm.

• Assimilated the amazing phenomenon called quantum telepor-
tation.
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• Analysed the Bennett and Brassard (BB84) protocol and the
Ekert protocol for quantum key distribution.

• Made general considerations about the classical and quantum
information, shown how to deal with entanglement by means
of quantum mutual information and introduced the concept of
quantum discord that allows us to distinguish between classical
and quantum correlations.

• Expressed entanglement in terms of the mutual information
and considered two information-theoretic formulations of the
Bell inequalities.
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Chapter 12

Interpretation

In this chapter, we shall collect and generalize the results of the
previous three chapters. We shall come back to the issue of quantum
correlations in terms of information. We shall consider now the
second aspect of quantum information [see Section 11.3], that is,
information selection leading to a local growth of entropy (as it is
the case during a measurement). This will be the basis for examining
again the whole process of measurement and finally assign an
ontological status to fundamental entities of quantum theory like
states, observables, and properties.

12.1 Information Acquisition

We recall that quantum mechanically, in order to recover the
information about an object system, we need the coupling with
an apparatus [see Sections 9.3–9.4]. Classically, we have a similar
situation. Here, we have an unknown parameter k whose value
we wish to know and some data d pertaining to a set D at our
disposal. This is a very important point, since we never have direct
access to things (whose properties are described by k) but always
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to things through data.a These data can be represented by the
position of the pointer of our measuring apparatus or simply by the
impulse our sensory system has received, or even by the way we
receive information about the position of the pointer through our
sensory system. It does not matter how long this chain may be. The
important point is a matter of principle.

Principle 12.1 (Information Acquisition) We can receive infor-
mation about objects and events only conditionally on the data at our
disposal.

Let us consider a classical example. Suppose that we wished
to know exactly what the distribution of matter was in the early
universe. We can know this by collecting data about the cosmic
microwave background radiation we receive now. This again shows
a very important common point between quantum and classical
physics that is not well understood, and which has been pointed out
by Wheeler’s delayed choice experiment [see Section 5.6]. We cannot
receive any information about past events unless they are received
through present effects (data). This is an equivalent formulation
of what we have said before, since any event, represented by a
parameter k, can be known only through a later effect due to
the finite speed of light. As a matter of fact, all of our perceptual
experience is mediated and slightly delayed in time. Moreover, since
we always have experience only of a part of the possible effects
produced by events, this is again an application of the principle of
information accessibility [see Principle 11.1].

Obviously, once we have observed or acquired data, we must
perform an information extrapolation that allows us to have an
“informed guess” about the value of the parameter k. This is the
process of information selection. As we know, the joint probability
℘( j, k) that we select the event j while having an event represented
by an unknown parameter k (i.e., the probability that both event k
and event j occur) is given by [see Eq. (10.50)]

℘( j, k) = ℘( j |k)℘(k), (12.1)

where ℘( j |k) is the conditional probability of the selection event j
given the source event represented by k. Now, by taking into account

a(Zurek, 2004).
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the data d that are somehow the interface between the source event
k and our selection event j we may express the probability ℘( j |k)
asa

℘( j |k) =
∑

d∈D

℘( j |d)℘(d|k), (12.2)

where the summation is over all the data d pertaining to the set D.
By substituting the above expression into Eq. (12.1) we obtain

℘( j, k) =
∑

d∈D

℘( j |d)℘(d|k)℘(k)

=
∑

d∈D

℘( j |d)℘(d, k). (12.3)

A sample probability tree illustrating the use of the above equation
is dictated in Fig. 12.1. We note that Eq. (12.3) can be considered a
generalization of the well-known formula [see Eq. (10.57)]

℘( j) =
∑

d∈D

℘( j |d)℘(d), (12.4)

and it reduces to the latter when ℘(k) = 1, i.e., when the value of the
parameter k is known with certainty. It is important to stress that the
two conditional probabilities ℘( j |d) and ℘(d|k) are quite different.
The probability ℘(d|k) represents how faithful our data are given
the event k, that is, how reliable our apparatus (or sensory system)
is. Instead, the probability ℘( j |d) represents our ability to select a
single event j which can be used to interpret the data d in the best
way. Moreover, using the Bayes theorem (10.53) we express ℘(k| j)
in terms of ℘( j |d) and ℘(d|k) as

℘(k| j) = ℘(k)℘( j |k)
℘( j)

= ℘(k)
℘( j)

∑

d∈D

℘( j |d)℘(d|k). (12.5)

In other words, we can invert the kind of question we pose and try to
infer the unknown parameter k conditioned on having selected the
event j .

Having made these considerations, we immediately see that
Eq. (12.2) or (12.3) represents the classical analogue of the quantum

a(Helstrom, 1976).
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1

k

j

l

m

n

d1

d2

d3

Figure 12.1 A tree diagram for calculating conditional probabilities (from
left to right). Suppose that we have an event k, occurring with a probability
℘(k) = 1

2 , and a particular set of effects (data at our disposal) d1, d2,
and d3, each one occurring with conditional probability 1

3 given k. It is
easy to see then that the probability to select events j and k is ℘( j, k) =
[℘( j |d1)℘(d1|k) + ℘( j |d2)℘(d2|k)]℘(k) =

(
1 × 1

3 + 1
2 × 1

3

)
× 1

2 = 1
4 , while

the probability to select events n and k is ℘(n, k) = ℘(n|d3)℘(d3|k)℘(k) =
1
2 × 1

3 × 1
2 = 1

12 . Note that when ℘(k) = 1, we have ℘(di |k) = ℘(di ) for
any of the data and ℘( j, k) = ℘( j |k) = ℘( j ). Note also that the sum of the
probabilities leaving any node is equal to 1.

measurement process analyzed in Chapter 9. The conditional proba-
bility ℘(d|k) corresponds to the coupling between the object system
and apparatus in quantum mechanics. Obviously, the difference
between the classical and the quantum case is that, when we have
an entanglement, we can have a perfect correlation between the
apparatus and object system, which is difficult to obtain in classical
situations. According to the analysis developed in Section 11.7, the
quantity

H ( J |K) = −
∑

j∈ J

∑

k∈K

℘( j, k) lg ℘( j |k), (12.6)

given by Eq. (11.59) but whose conditional probability ℘( j |k) is
given now by Eq. (12.2), expresses the incertitude of the selection
(or detection) j ∈ J when the parameter k ∈ K varies. On the other
hand, the surprisal I ( j |k) = − lg[℘( j |k)] represents the surprisal of
the result j given k and therefore the amount of the information that
we have effectively gained through the selection of j .
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We would like now to show that the counterpart of the condi-
tional probabilitiy ℘( j |k) in quantum mechanics is the probability of
a final detection event, which, given a certain experimental context
(a premeasurement), allows us to finally ascribe a property to the
object system (the system that has been measured). Let us for
the moment consider only the object system and the apparatus (with
the exclusion of the environment), and in particular the premesure-
ment that describes the type of transformation given by Eq. (9.13).
Suppose that the initial state of the apparatus is some ready state
|A0⟩ while the state of the object system is some superposition state
|ψS⟩. For the sake of simplicity, we shall consider a two-state system
as the object system. Then, the transformation (9.13) takes the form

|ψS⟩|A0⟩ −→ c0|0⟩|a0⟩ + c1|1⟩|a1⟩, (12.7)
where |0⟩ and |1⟩ are the system states representing the eigenstates
of some system observable to be measured, while |a0⟩ and |a1⟩ are
respectively the apparatus states corresponding to |0⟩ and |1⟩. In the
density matrix formalism the initial state of the subject system and
the apparatus appearing on the left-hand side of the transformation
(12.7) may be described by the (factorized) density matrix ρ̂S ρ̂A ,
where

ρ̂S = |ψS⟩⟨ψS | and ρ̂A = |A0⟩⟨A0|. (12.8)
This is in agreement with the assumption that the entanglement
between the object system and the apparatus created during the
premeasurement step is the result of a unitary transformation
(for instance through a Hadamard gate, as shown in the previous
chapter). Indeed, we remind the reader that only the final step
of selection or detection is not unitary. Therefore, we have the
following unitary transformation [see Eq. (7.121)]

ρ̂S ρ̂A −→ Û tρ̂S ρ̂AÛ †
t , (12.9)

where Û t is the time evolution operator whose form depends on
the coupling of the system and the apparatus, and for the sake of
notational simplicity the time dependence in the above expression
has been suppressed. It is easy to find that in the case under
consideration we have

Û tρ̂S ρ̂AÛ †
t = |c0|2|0⟩⟨0| ⊗ |a0⟩⟨a0| + |c1|2|1⟩⟨1| ⊗ |a1⟩⟨a1|

+ c0c∗
1|0⟩⟨1| ⊗ |a0⟩⟨a1| + c∗

0c1|1⟩⟨0| ⊗ |a1⟩⟨a0|.
(12.10)
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Just before the detection, the probability that the apparatus will read
the value aj ( j = 0, 1) is given by

℘(aj ) = TrA
[

P̂aj TrS
(

Û tρ̂S ρ̂AÛ †
t
)]

, (12.11)

where P̂aj = |aj ⟩⟨aj | is the projector onto the apparatus state |aj ⟩.
Note that the previous probability only takes into account correlated
terms due to the entanglement between the object system and
apparatus. The above result can be verified quite easily. Indeed, the
partial trace over the system will sum only the diagonal terms in
the system Hilbert space HS , while the subsequent application of
the projector P̂aj projects out a single term in the apparatus Hilbert
space HA , yielding

P̂aj TrS
(

Û tρ̂S ρ̂AÛ †
t
)
= |c j |2|aj ⟩⟨aj |. (12.12)

Finally tracing out the apparatus, we shall get the probability, which,
in our case, is simply given by |c j |2. Using the cyclic property of the
trace (7.115c) and the fact that TrS does not act on the apparatus,
we may rewrite Eq. (12.11) as

℘(aj ) = TrA
[

P̂aj TrS
(

Û tρ̂S ρ̂AÛ †
t
)]

= TrA
[
TrS

(
Û †

t P̂aj Û tρ̂S ρ̂A
)]

= TrA
[
TrS

(
Û †

t |aj ⟩⟨aj |Û tρ̂S
)
ρ̂A

]
. (12.13)

It is convenient to define a new Hermitian operator Ê j in the
apparatus Hilbert space HA by

Ê j = TrS
(

Û †
t P̂aj Û tρ̂S

)
, (12.14)

in terms of which the above equation can be written in a form
formally similar to Eq. (9.9) as

℘(aj ) = TrA(Ê j ρ̂A). (12.15)

The projection-like operator Ê j is called the effect operator (or effect
for short), which plays an important role in the theory of generalized
measurement. From the definition (12.14), it follows that∑

j

Ê j = Î , (12.16)

where Î is the identity operator (in the apparatus Hilbert space
HA) and use has been made of the completeness relation for the
apparatus states ∑

j

P̂a j = Î . (12.17)
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It can be shown that Ê j is positive semidefinite, i.e.,

⟨φA|Ê j |φA⟩ ≥ 0 for all |φA⟩ ∈ HA . (12.18)

However, unlike the projectors, the effect operators in general does
not satisfy the requirement of orthogonality [see Eq. (3.62)], namely,

Ê j Êk ̸= δ jk Êk. (12.19)

This can be used to generalize the concept of property, which
however is an issue that goes beyond the scope of this book.
Moreover, substituting ρ̂S = |ψS⟩⟨ψS | into Eq. (12.14), we can
explicitly calculate the trace over the system to obtain

Ê j = TrS
(

Û †
t |aj ⟩⟨aj |Û t|ψS⟩⟨ψS |

)

=
∑

k=0, 1

⟨k|Û †
t |aj ⟩⟨aj |Û t|ψS⟩⟨ψS |k⟩

= ⟨ψS |Û †
t |aj ⟩⟨aj |Û t|ψS⟩

= ϑ̂
†
j ϑ̂ j , (12.20)

where

ϑ̂ j = ⟨aj |Û t|ψS⟩, ϑ̂
†
j = ⟨ψS |Û †

t |aj ⟩. (12.21)

Note that ϑ̂ j and ϑ̂
†
j do not represent probability amplitudes

because the time evolution operator Û t describes the coupling of the
apparatus and the system, whereas the kets |aj ⟩ and |ψS⟩ represent
respectively only the apparatus state and the system state. As a
result, ϑ̂ j is called the amplitude operator. From its definition, it is
clear that the amplitude operator ϑ̂ j describes the three steps of the
measurement of a given observable [see Section 9.5]:

(i) Preparation of the initial state of the system (i.e., the input
|ψS⟩),

(ii) Unitary time evolution (i.e., the coupling or premeasurement)
that entangles the system with the apparatus and allows us to
select an observable (i.e., the process represented by Û t).

(iii) Detection by the apparatus (i.e., the output |aj ⟩) that allows us
to assign a property to the system.

We can also summarize what is said here by writing [see Eq. (9.10)]

ρ̂
( f )
A = 1

℘(aj )
ϑ̂ j ρ̂Aϑ̂

†
j , (12.22)
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where ρ̂
( f )
A is the state of the apparatus after the detection corre-

sponding to the value aj . Let the parameter j be associated with one
of the detection outcomes aj that corresponds to the apparatus state
|aj ⟩ and the parameter k with one of the state vectors |ψk⟩ in a given
orthonormal basis for the object system. Then, following a similar
analysis as above and using Eqs. (12.15) and (12.20), we have

℘( j |k) = TrA(ϑ̂ jkρ̂Aϑ̂
†
jk), (12.23)

where

ϑ̂ jk = ⟨aj |Û t|ψk⟩. (12.24)

Therefore, we have shown that the amplitude operator ϑ̂ jk is
the quantum mechanical counterpart of the classical conditional
probability ℘( j |k) given by Eq. (12.2).

Problem 12.1 Show that the effect operator Ê j is Hermitian and
positive semidefinite.

12.2 Bounds on Information Acquisition

The general question that we like to address now is whether there
are specific quantum mechanical bounds on information acquisition.
Is the bound set by the Bell inequality (10.35) a necessity or
are there more stringent bounds? And if there are, what is their
meaning? The present section is devoted to the exploration of these
issues. Let us take advantage of the CHSH inequality (10.38). Since,
as can be seen from Eq. (10.22), each of the terms in Eq. (10.38)
lies between −1 and +1, the natural upper bound for the entire
expression is +4. This is precisely the case if we demand that the
probabilities satisfy only the causal communication requirement,
i.e., that they do not violate relativistic (or Einstein’s) locality (what
is called the no-signaling requirement).a In this case, we have

∣∣⟨a, b⟩ + ⟨a, b′⟩ + ⟨a′, b⟩ − ⟨a′, b′⟩
∣∣ ≤ 4. (12.25)

This can be proved as follows. The only requirement of relativistic
locality is that the operations one perform locally here are not

a(Popescu/Rohrlich, 1994), (Hillery/Yurke, 1995).
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influenced by the operations someone performs far away elsewhere
[see Section 10.6]. This implies in particular that the probability that
one obtains a certain outcome (say 1) when choosing the direction
a is independent of the outcomes (either +1 or −1) when someone
elsewhere choses a direction b or b′, that is,

℘(1, 1|a, b) + ℘(1, −1|a, b) = ℘(1, 1|a, b′) + ℘(1, −1|a, b′).
(12.26)

Similar considerations hold for arbitrary directions. If we consider
only this requirement, we are allowed to build the set of probabili-
ties

℘(1, 1|a, b) = ℘(−1, −1|a, b) = 1
2

, (12.27a)

℘(1, 1|a, b′) = ℘(−1, −1|a, b′) = 1
2

, (12.27b)

℘(1, 1|a′, b) = ℘(−1, −1|a′, b) = 1
2

, (12.27c)

℘(1, −1|a′, b′) = ℘(−1, 1|a′, b′) = 1
2

, (12.27d)

while all other probabilities are zero. In fact, when we measure
particle 1 along the direction a and particle 2 along the direction
b, we can obtain both 1 or both −1. We also note that here
only the probabilities ℘(1, −1|a′, b′) and ℘(1, −1|a′, b′) show
anticorrelation. Abstractly speaking, we could write the expectation
values occurring in inequality (12.25) as

⟨a, b⟩ = ℘(1, 1|a, b) + ℘(−1, −1|a, b)

− ℘(1, −1|a, b) − ℘(−1, 1|a, b), (12.28)
where the negative sign of the latter two probabilities is due to the
fact that both represent anticorrelations. However, this expectation
value in the paramount case in which all the four probabilities in the
above equation are equal mirrors the separability condition (10.16),
that is, the absence of correlations (or ⟨a, b⟩ = 0) between the two
systems. This can be easily acknowledged when considering that all
possible combinations would occur with equal probability [see, for
instance, the state given by Eq. (7.128)]. However, in the model of the
no-signalling case that we have chosen, the latter two probabilities
in the above equation are zero. Therefore, the expectation value
⟨a, b⟩ reduces to

⟨a, b⟩ = ℘(1, 1|a, b) + ℘(−1, −1|a, b). (12.29a)
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Similarly, for the other three expectation values we have

⟨a, b′⟩ = ℘(1, 1|a, b′) + ℘(−1, −1|a, b′), (12.29b)

⟨a′, b⟩ = ℘(1, 1|a′, b) + ℘(−1, −1|a′, b), (12.29c)

⟨a′, b′⟩ = −℘(1, −1|a′, b′) − ℘(−1, 1|a′, b′). (12.29d)

In this way, taking into account the probabilities given by
Eqs. (12.27), we obtain the upper bound 4 set by Eq. (12.25).

We have already seen that quantum mechanical correlations
violate the much stronger bound (i.e., 2) imposed by Eq. (10.38).
As a consequence of this situation, the question arises naturally as
to whether quantum mechanical correlations fill the gap between
2 and 4 or, in other words, whether there is an upper bound for
quantum mechanical correlations smaller than 4? Tsirelson proved
the following theorem:a

Theorem 12.1 (Tsirelson) Let Ôa , Ôa′ , Ôb, Ôb′ be arbitrary
Hermitian operators on a two-dimensional Hilbert space, each hav-
ing eigenvalues 1 and −1 and satisfying the conditions [Ôa , Ôb] = 0,
and so on, for the other pairs (a, b′), (a′, b), and (a′, b′), then the
following equality holds in quantum mechanics:

∣∣⟨Ôa Ôb⟩ + ⟨Ôa′ Ôb⟩ + ⟨Ôa Ôb′ ⟩ − ⟨Ôa′ Ôb′ ⟩
∣∣ ≤ 2

√
2. (12.30)

To prove the theorem, let us define the operator

B̂ = Ôa Ôb + Ôa′ Ôb + Ôa Ôb′ − Ôa′ Ôb′ , (12.31)

which is analogous to the Bell operator B̂ defined for the spin
observables in Section 10.3 [see Eq. (10.36)]. Since each of the
Hermitian operators Ôa , Ôa′ , Ôb, and Ôb′ has eigenvalues 1 and −1, it
follows that their squares Ô2

a , Ô2
a′ , Ô2

b , and Ô2
b′ are equal to the identity

operator Î . This allows us to define a new Hermitian operator Â by

Â = 2
√

2 Î − B̂

= 1√
2

(
Ô2

a + Ô2
a′ + Ô2

b + Ô2
b′
)

− B̂, (12.32)

which in turn can be rewritten as [see Problem 12.2]

Â = 1√
2

[(
Ôa − Ôb + Ôb′

√
2

)2

+
(

Ôa′ − Ôb − Ôb′
√

2

)2]
. (12.33)

a(Tsirelson, 1980).
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Since Â is in the form of the sum of squares of Hermitian operators, it
is evidently positive semidefinite and has a non-negative expectation
value [see Eq. (6.158) and the discussion thereafter], that is,

⟨Â⟩ = 2
√

2 − ⟨B̂⟩ ≥ 0, (12.34)

which leads to

⟨B̂⟩ ≤ 2
√

2. (12.35)

A similar argument with the Hermitian operator Â′ = 2
√

2 Î + B̂
leads to [see Problem 12.3]

⟨B̂⟩ ≥ −2
√

2. (12.36)

Therefore, we conclude that
∣∣⟨B̂⟩

∣∣ ≤ 2
√

2, (12.37)

which proves the theorem.
The importance of the Tsirelson theorem lies in the fact that

it proves that quantum mechanics does not fill the entire gap
between the two bounds set by Eqs. (10.38) and (12.25). The
former inequality sets bound 2 for classical separable theories while
quantum mechanics satisfy the bound 2

√
2, which is still stricter

than the bound 4 imposed by Eq. (12.25). In other words, quantum
mechanics certainly allows correlations that are not allowed by
local hidden variable theories. However, there is a wide spectrum of
“hyper-correlations” that satisfy the bound imposed by Eq. (12.25)
but are nevertheless not allowed by quantum mechanics, since they
do not satisfy the Tsirelson inequality (12.30). Therefore, we need
still to clarify the relations between these different bounds. To
examine this point, let us reformulate the CHSH inequality (10.38)
in terms of the numerical parameter

D = B
2

− 1. (12.38)

where B is the expectation value of the Bell operator B̂ evaluated
in a local hidden variable theory [see Eq. (10.37)]. It is clear that
when D = 0, we have B = 2 and the upper bound of the CHSH
inequality is attained. In other words, the parameter D is a measure
of the deviation of B from the bound set by classical separability,
in that classical separability is satisfied for D ≤ 0 but violated for
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D > 0. Moreover, it proves convenient to formulate the problem
under current consideration in information-theoretic terms. In spe-
cific, we consider the situation in which Alice and Bob respectively
choose the inputs j and k (where j, k = 0, 1) with the possible
outputs of each input given by 0 and 1. Given the respective inputs j
and k of Alice and Bob, the correlation of their outputs C jk for the no-
signaling case can be expressed as the sum of two joint conditional
probabilities as

C00 = ℘(11|00) + ℘(00|00), (12.39a)

C01 = ℘(11|01) + ℘(00|01), (12.39b)

C10 = ℘(11|10) + ℘(00|10), (12.39c)

C11 = −℘(10|11) − ℘(01|11), (12.39d)

where the two digits following the vertical lines are the respective
inputs of Alice and Bob, while those preceding the vertical line are
the corresponding outputs. It is evident that C00, C01, C10, and C11 are
respectively reformulation of the expectation values ⟨a, b⟩, ⟨a, b′⟩,
⟨a′, b⟩, and ⟨a′, b′⟩ [see Eqs. (12.29)]. Again, we remark that only
the latter one is an anticorrelation (expressed by the anticorrelated
outputs 10 and 01). The expectation value B can be written in term
of C jk as

B = C00 + C00 + C10 − C11, (12.40)

which yieldsa

D = B
2

− 1

= 1
2

(C00 + C01 + C10 − C11) − 1. (12.41)

Let us now consider the simplest case in which

C00 = C01 = C10 = −C11 = C > 0, (12.42)

which implies B = 4C. Then, we can rewrite the expression (12.41)
as

D(C) = 2C − 1. (12.43)

It is easy to distinguish, in terms of the value of C, the following three
cases:

a(Masanes et al., 2006).
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(i) Classical case: for 0 < C ≤ 1
2 we have −1 < D ≤ 0 and 0 < B ≤

2. Indeed, in this case we have classical separability.
(ii) Quantum case: for 1

2 < C ≤ 1√
2

we have 0 < D ≤
√

2 − 1 and

2 < B ≤ 2
√

2. This is the case in which correlations are purely
quantum mechanical and we have quantum non-separability.

(iii) Hyper-correlation case: for 1√
2

< C ≤ 1 we have
√

2 − 1 < D ≤
1 and 2

√
2 < B ≤ 4. This is precisely the case in which the

causal no-signaling requirement is respected, but there exist
correlations stronger than the strongest quantum correlations.

The quantum and the hyper-correlation cases can be further dis-
tinguished by using the recently proposed principle of information
causality,a which can be formulated as follows.

Principle 12.2 (Information Causality) The information gain that
Bob can reach about a previously unknown to him data set of Alice,
by using all his local resources (which may be correlated with Alice’s
resources) and m classical bits communicated by Alice, is at most m
bits.

To illustrate this principle, let us consider the quantum tele-
portation protocol discussed in Section 11.5. As said it suffices
that two bits of classical information is sent by Alice (according
to a previously established code, like the binary numbers 00, 01,
10, and 11) so that Bob may perform the required operation as
per the prearranged rules and to recover the encoded one qubit
of quantum information. However, Bob can gain at most one bit
of information [see Theorem 11.1] but not the whole amount of
potential information contained in the qubit. Otherwise, Bob would
be able to know exactly the state of the qubit teleported by Alice [see
also Section 7.8]. In this simple case, the information gain I of Bob is
bound by the two bits of information communicated by Alice, i.e.,

I ≤ 2. (12.44)

The amazing results found by Pawłowski et al. are that the principle
of information causality is respected by both classical and quantum
mechanics, whereas it is violated by all hypothetical theories that

a(Pawlowski et al., 2009).
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fulfill the no-signaling requirements (known as the no-signaling
theories) but are endowed with correlations that are stronger than
the strongest quantum correlations. In other words, all non–local
theories that exceed the Tsirelson bound also violate the principle
of information causality. Therefore, the Tsirelson bound sets a limit
on the possibility of acquiring information that is stronger than the
no-signaling requirement.

Now, an important question arises naturally as to what would
happen in a world in which the Tsirelson bound is violated but
the no-signaling requirement is satisfied? Let us come back to the
Eberhard theorem and in particular let us reformulate Eqs. (10.48)
and (10.49) in analogy with Eq. (12.26) as

℘(1|a) = ℘(1, 1|a, b) + ℘(1, −1|a, b), (12.45a)

℘(1|b) = ℘(1, 1|a, b) + ℘(−1, 1|a, b), (12.45b)

respectively, and similarly for the other outcomes. This clearly
confirms that quantum mechanics requires a full independence
between apparatus settings (here represented by a and b). These
settings correspond to local operations performed in complete
separation from other operations that could be performed far away
elsewhere.a As we have stressed in Sections 10.6 and 11.3, quantum
correlations represent indeed interdependences between possible
measurement outcomes, but not interdependences between possi-
ble apparatus settings. In other words, violation of the quantum
mechanical bound (and of the information causality principle)
would imply that there are correlations between possible apparatus
settings (although in the absence of any signal exchange). Let us
consider the correlations C jk given by Eqs. (12.39) that enter the
CHSH inequality. We have expressed these correlations in terms of
the probabilities ℘(11|00), ℘(00|00), etc. Following the standard
approach in quantum mechanics (and our physical experience) we
have naturally interpreted those probabilities as the conditional
probabilities that both Alice and Bob get the outcome 1 given
that they have both chosen the setting 0, both Alice and Bob get
the outcome 0 given that they have both chosen the setting 0,

a(Auletta, 2011b).
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etc. This is displayed by the fact that we find quite natural in
a quantum framework to say that, if Bob knows which was the
setting of Alice (whether 0 or 1), he is able to infer which was her
outcome (whether 0 or 1). This is another way to say that quantum
entanglement is a non-local interdependence between possible
measurement outcomes. This is indeed the quantum-information
resource that is used in quantum cryptography [see Section 11.6].
Moreover, this fully justifies our analysis of Schrödinger’s point of
view [Section 10.2] that correlations forbid ascription of reality only
to properties but not to observables (which are singled out through
measurement settings). However, nothing forbids us to interpret
such a probability ℘(11|00) as meaning that, in the context of
Bayesian inferences (10.53) and (12.5), Bob is able to predict the
probability that Alice has chosen the setting 0, once he knows that
Alice and him have obtained the outcome 1. This is still allowed by
the no-signaling condition (12.26). In such a case we would have
hyper-correlations that are quantum mechanically (and physically)
forbidden by the principle of information causality.

Now, in such a world in which settings (and not only outcomes)
are shared, this would imply that also the encoding of information
is shared. Indeed, we have shown in Section 11.2 that the latter
deals with the choice of a basis, which in a measurement context
is the choice of apparatus settings. In other words, in a world
endowed with hyper-correlations associated with the sharing of
settings, the encoding of information would be no longer a local
procedure. Because quantum mechanics satisfies and saturates
the bound imposed by the principle of information causality, and
because in so doing it also sets specific constraints on both the
possible correlations and the possible interactions (also causal
interconnections) in our universe, the fact that non-local encoding
of information is forbidden in quantum mechanics justifies quantum
information as both a general theory of information and a general
theory of causality.

Problem 12.2 Verify the operator Â defined by Eq. (12.32) indeed
can be written in the form given by Eq. (12.33).

Problem 12.3 Complete the proof of the Tsirelson theorem by
explicitly working out the lower bound of the inequality (12.30).
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Problem 12.4 Consider an observable Â of a two-state system
defined by

Â = 1√
2

(Ô2 + Ô′2),

where Ô = |1⟩⟨1| − |2⟩⟨2| and Ô′ = |3⟩⟨3| − |4⟩⟨4|, with {|1⟩, |2⟩}
begin an orthonormal basis and

|3⟩ = 1√
2

(|1⟩ + |2⟩), |4⟩ = 1√
2

(|1⟩ − |2⟩).

Show that the expectation value ⟨ Â⟩ψ of Â on an arbitrary state |ψ⟩
is non-negative.

12.3 Operations

As a consequence of the previous two sections, we are authorized
to consider the quantum mechanical process of information
acquisition as the most general way in which information is
exchanged in our universe. Following the analysis of measurement,
which is a good model of information acquisition as well as of
dynamic interactions between open systems, we can affirm that
any information acquisition can be thought of as a three-system
and three-step process.a Indeed, as discussed in Sections 9.5 and
12.1, the whole measurement process can be divided into three
steps: A first step in which we prepare the system, then a second
step in which the premeasurement (i.e., coupling or entanglement
of the system and the apparatus) is established, and finally a
third step in which the selection is made by the detector. Hence,
the preparation, premeasurement, and measurement (or detection)
constitute the three fundamental local operations a system can
undergo in quantum mechanics. Such operations should be thought
of as concrete interventions on the physical world that can somehow
affect the system at hand.b Again, this does not imply at all
any subjectivism, since analogues of the three operations can
happen spontaneously in nature. The only difference between the

a(Auletta, 2011a, Chapter 2).
b(Braginsky/Khalili, 1992).
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operations and their spontaneous analogues is that the former, being
instantiated in a controlled way, allow us to make an inference
about the object system (and therefore making ascription of reality
possible).

A state of the form |ψ⟩ = c0|0⟩ + c1|1⟩ can always be
prepared. For instance, the state |0⟩ may represent horizontal
photon polarization state, while the state |1⟩ may represent vertical
photon polarization state. Then, the state |ψ⟩ may represent certain
polarization orientation, determined by the coefficients c0 and c1. A
preparation can be understood as the determination of the state of
a system (indeed, it is also called determinative measurement). It is
the procedure through which only systems in a certain (previously
theoretically defined) state are selected and delivered for further
procedures, that is, allowed to undergo subsequent operations
(premeasurement and measurement). A premasurement consists
in an interrogation of a quantum system with respect to some
degree of freedom (such as position, momentum, energy, angular
momentum, and so on). Quantum mechanics seems to imply that
the specific basis used for the expansion of the system–apparatus
composite state is irrelevant, and therefore that premeasurement is
not about a specific observable. The fact is that, at a rather abstract
level, different bases for the same system–apparatus composite state
are possible [see Section 9.4]. This also reflects the equivalence
of the Schrödinger and Heisenberg pictures in describing the time
evolution of the composite system [see Section 7.5].

However, we should not mix measurement procedures with
algorithms. When we consider a specific physical situation (that
is, once a particular setting of the apparatus is chosen), we
introduce a further degree of determination and are no longer
authorized to treat different experimental contexts as equivalent
[see Sections 10.2 and 11.3]. It would be highly unphysical to
consider all observables as equivalent in a concrete experimental
context since changing the apparatus basis (i.e., the settings) means
a concrete change in the apparatus as such, so that we may no
longer assume to have the same or an equivalent measurement
process. For this reason, choosing a certain experimental context
univocally individuates a certain observable. This is exactly the
reason why we said that actual external conditions are needed to
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obtain an event. That an experimental context individuates a certain
observable (better, a certain degree of freedom) is also true, to a
certain extent, from a classical point of view, since each apparatus
is better suited for measuring a certain observable and not others.
Finally, we stress that, as features are an intrinsic characteristic
of entanglement and since premeasurement essentially consists in
entangling the object system with the apparatus, features play an
important role in premeasurement operations.

A detection (or a measurement in the strict sense of the word) is
an answer to our interrogation. When we establish an entanglement,
we are actually also entangling the object system with some detector.
Although a detector is in general considered part of an apparatus,
they have here two conceptually very different functions. An
apparatus is a coupling device, while a detector is a selection device
(we may then use the term apparatus to cover both functions but
we should avoid any confusion on this point). This justifies the fact
that, properly speaking, the apparatus is an interface between the
detector and the object system. When a suitable selection is made,
the detection apparatus is in one of its basis states and, through the
coupling with the object system, it tells information about the latter,
and therefore allow us to ascribe a property to the object system. In
other words, this connection allows for a certain random outcome
that tells us something about the input state. On this basis, as already
announced in Section 10.2, we may consider that each step here
(from preparation through premeasurement up to detection) can be
understood as a further degree of determination, or that the whole
process can be seen as a dynamical process through which, starting
from some potential reality and a suitable context, the actual reality
(the event) is activated.

12.4 Theoretical Entities

In conclusion of this examination, we ask about the ontological
meaning of terms like state, observable, and property. Since a state
can be prepared using different procedures, we can understand
the state as an equivalence class of preparations. Indeed, different
preparations can lead to the same state (they can be considered
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equivalent) and also different systems may be prepared in the same
state.a It is true that when a system is in a given eigenstate of
an observable (say, |x⟩), we often assume that it has the property
associated with this state. However, in so doing, we are mixing two
different issues:

(i) One issue is that the state is the complete catalogue of all
probabilities that may be calculated (the algorithm level).

(ii) Another issue is that whether or not this state is subjected to
measurement in order to establish the associated property (the
operational aspect).

This distinction is very important and we have already stressed it
in the previous section when speaking of premeasurement. Indeed,
any output state, from a pure formal point of view, can be also
considered a superposition [see Section 11.2]. In other words, if
the system would undergo another experimental procedure, the
output state would no longer instantiate the property we assumed
to be real. It would be indeed a weird situation if properties did
appear and disappear depending on the expansion of the state we
are considering. For this reason, we suggest that properties are
never acquired but only inferred given certain detection events. They
can also be ascribed in the preparation or premeasurement step,
but only in a conditional and probabilistic sense when taking into
account the whole measurement procedure the system is submitted
to. However, in this case we probabilistically associate possible
properties to the components of the prepared system but not to the
prepared state itself. This obviously does not mean that the state
is a pure formal entity either. However, it is an interpreted piece of
ontology referring, in a non-mirroring way, to the deep and hidden
dynamical interplay between features and events that is involved in
any dynamic process between open systems. On the other hand, an
observable is a physical magnitude, namely, a collection of possible
properties and each of them can be represented by or associated
with a projector. Following EPR,b we can say that an observable
is an interpreted element of reality [see Section 10.2]. Indeed, it

a(Auletta/Torcal, 2010).
b(Einstein et al., 1935).
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represents a “dimension” of the system through which the latter
is defined. Moreover, since when measuring a certain observable
a number of slightly different concrete physical contexts (setups)
could be equally good, an observable is an equivalence class of
premeasurements. This sheds light on our previous examination.
The fact that an observable is an equivalence class of operations
clearly confirms that it is an element of reality, although interpreted.
We finally stress that properties may be operationally understood
as an equivalence class of detection events. This also shows that
properties cannot be identified with events, nor with any actual form
of reality, and, as anticipated, are rather inferred given a certain
event and a certain premeasurement.

Both classically and quantum mechanically, states are equiva-
lence classes of preparations, observables are equivalence classes of
premeasurements, and properties are equivalence classes of events.
The main difference is that quantum systems present non-local
features that deeply affect the way in which we can define and
treat theoretical entities. Since in classical mechanics all observables
commute, there is no fundamental conceptual distinction between
event, property, observable, and state. Moreover, this gives the
illusion that properties (and also physical magnitudes and states)
can be directly identified with events and therefore are actual forms
of reality. For this reason, quantum mechanics teaches us a quite
general lesson, since the existence of features deeply affects the
notion of the state (which is not simply a sum but a combination of
properties), the definition of observables (they may not commute),
and the conception of properties (they cannot be all compatible,
and the possibility to infer some of them excludes the simultaneous
consideration of the other ones). Obviously, the specific aspects
mentioned are typical of quantum systems. However, the general les-
son is that quantum theory prevents the illusion of identifying these
physical concepts with directly experienceable, actual realities. In
fact, quantum realities are very elusive. Non-local features cannot be
experienced at all but they frame possible local events, while these
local events can be experienced but they happen randomly or in an
uncontrolled way and precisely for this reason they do not allow
an access to the hidden correlations. We discover in this way that
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reality is something not only much more complex but also much
more beautiful than previously thought of.

12.5 Fundamental Information Triad

The final choice that happens at the detectors can be random or
not (in the quantum mechanical case it is random). However, there
is always some sort of incertitude affecting the final selection act.
Viewing the whole from the point of view of the involved systems,
we have that the object (measured) system which represents, as
we have stressed, encoded information evolving reversibly in time
can be considered an information processor [see Section 11.2].
Its time evolution, which could be considered a change in some
informational content (a change that can be either random or
according to a program) provides the starting point of the whole
process. The measuring device that is coupled to the object system
is a regulator, while the final operation of detection is done through
a decider. The regulator owes its name to the fact that choosing a
certain apparatus with a certain experimental setup and a certain
pointer indeed contributes to determine the conditions in which
information is acquired. However, since these conditions cannot
provide the necessary variety of bits (which is guaranteed at the
source by the processor), this determination is rather a tuning of the
measurement process. The only encoded activity that is necessary
is in the processor and in the final detection, since the regulator
connects previously independent systems. Obviously, the decider
can provide a selection that, thanks to the indirect connection with
the processor through the regulator, will finally consist in an option
within a set of alternative possibilities.

The whole process can be represented in Fig. 12.2 as the fun-
damental information triad. The relation established between the
regulator and the processor is coupling, which allows information
to be subsequently acquired. The relation between the decider
and the regulator is information selection. Finally, the decider can
acquire information about the processor (or the event resulting from
processing) by performing in this way the analogue of inferring (the
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decider

regulator processorcoupling

se
lec

tin
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Figure 12.2 The fundamental information triad is consists of three
elements (processor, regulator, and decider) and three relations (coupling,
selection, and inferring). Adapted from (Auletta, 2011a, p. 48).

experimenter performs in this way precisely such an inference). In
other words, when a decider (even randomly) selects and eventually
stores some information which through an appropriate coupling
reveals something about another system, we have something that
at a pure physical level bears some structural relation to what we
are authorized to call a true inference. Therefore, this inferring, or
the whole measuring process, must not be understood merely in
subjective terms. It is also important to realize that this inferring
could be considered part of a further preparation procedure in
which a processor is determined. For instance, we may decide
to measure our system again (when it is not annihilated in the
detection event) starting from its output state. The reason could be
that we are not sure of our inference because of some doubts about
the apparatus reliability. In this way, the whole process presents a
certain circularity, as shown in Fig. 12.2.

Also Shannon understood very well that information is con-
cerned with a reduction of incertitude (a choice between alternative
possibilities) and that, in order to have an exchange of information,
we need both a variety and an interdependence.a However, he
mainly dealt with engineering problems of communications, in
which the task is to increase the fidelity between an input and

a(Shannon, 1948).
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an output in controlled situations. In this case, the reduction of
incertitude already happens at the source (by the sender who
chooses a certain message among many possible ones). This is
rather a limiting case in ordinary life, and the problem was that
Shannon’s followers took this specific model as a general model of
information. The worry consists in the fact that, in the most general
case, the reduction of incertitude is only at the output and not at
the input. This is evident for quantum systems since qubits are
not selected messages, otherwise they could be cloned, which is
impossible due to non-local features [see Theorem 11.2]. A good
example is provided by the delayed choice experiment discussed in
Section 5.6. The reason is that, in most (even classical) situations,
nobody has the control on the source, and therefore, even in the
case in which a particular message has been selected by a sender, it
remains unknown to the receiver (it is as if it were undetermined).a

In such a situation, one is obliged to make an inference about
the input starting from a certain selection at the output (again
in the context of Bayesian inference). This is also sometimes true
for the senders; if they desired to be certain about the message
that has been sent, they need to process it again, and in this way
reduce the incertitude that may affect (their knowledge about)
the input message. On the contrary, the selection operated by the
receiver is the received message (it is the event that has happened).
Obviously, the receivers may also try to verify again whether their
understanding is correct. However, this understanding concerns the
inference about the input message, not the act of selection, i.e., the
event itself by which a reduction of incertitude at the output has
been produced forever. This is an irreversible event and therefore
an ultimate fact. We have already generalized this by saying that it is
the final act of information selection that introduces irreversibility
in any information exchange or processing.

Summarizing, there are only two ways to deal with information
apart from processing it: either by sharing it (which represents
the non-local aspect) or by selecting it (which represents the local
aspect).b Quantum mechanics allows us to deeply understand this

a(Auletta et al., 2008).
b(Auletta, 2005).
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point. Here, the input information is intrinsically uncertain although
shared and the only event we have is at the output. Again, we see
how helpful quantum mechanics is in order to really understand
how the world is.

12.6 Summary

In this chapter, we have

• Studied the classical and quantum processes of information
acquisition and introduced the effect and amplitude operators.

• Introduced the Tsirelson bound as a limit of information
acquisition as such.

• Explained that violation of the Tsirelson bound by a non–local
theory would imply a world in which the settings and the
encoding of information are shared.

• Shown that the three steps of measurement (preparation,
premeasurement, and detection) correspond to the three stages
in the determination of a system.

• Interpreted states, observables, and properties as equivalence
classes of preparations, premeasurements, and events, respec-
tively.

• Provided a very general model for information acquisition in
which the three elements (processor, regulator, and decider)
and three relations (coupling, selection, and inferring) consti-
tute the fundamental information triad.
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Crépeau, Claude, 364
Crick, F. H. C., 335
Cullerne, John P., 123

D’Ariano, G. Mauro, 192, 343, 347
Dalibard, J., 315
Davisson, C. J., 87
de Broglie, Louis, 17, 18, 175
De Paula, Julio, 276, 289
Debye, Peter, 66
DeWitt, Bryce S., 266
Dieks D., 342
Dirac, Paul A. M., 27
Dreyer, J., 290
Duetsch, David, 348, 360

Eberhard, Philippe H., 319
Eibl, Manfred, 367



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

434 Author Index

Einstein, Albert, 12, 17, 65, 293,
294, 411

Ekert, Artur K., 316, 373
Elitzur, A. C., 88
Ellis, George F. R., 415
Everett, Hugh III, 265

Fermi, Enrico, 250
Feynman, Richard P., 348
Fortunato, Mauro, 4, 91, 173, 180,

205, 216, 294, 307, 315
Fredkin, Edward, 284
Freedman, S. J., 315
Freimund, Daniel L., 88
Friedman, R., 289
Friedrich, Bretislav, 236
Fuchs, Christopher A., 367
Furusawa, A., 367

Gerlach, Walther, 235
Germer, L. H., 87
Giorgio, Parisi, 4, 173, 180, 205,

216
Gisin, N., 404
Gordan, Paul, 247
Goudsmit, Samuel A., 235
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149

canonical conjugate, 145
cartesian coordinates, 11
Cauchy–Schwarz inequality, 151
central potential, 224
centrifugal potential barrier, 226
CERN, 252
channel, 368

classical, 368
quantum, 367

CHSH inequality, 313, 386, 400,
403
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classical mechanics, 9, 12, 13, 15,
65, 153, 166, 287, 307, 412

classically forbidden region, 186
Clebsch–Gordan coefficients, 247
CNOT gate, 353
code, 340
commutation relation, 148

between position and
momentum, 148

of components of angular
momentum, 209

commutativity, 80
commutator, 148
complementarity principle, 100,

103
completeness

of a theory, 294
completeness relation, 58, 110

for momentum eigenstates, 140
for position eigenstates, 109,

118
complex conjugate transpose, 44
complex number, 24

polar form of, 31
composite system, 192
compound system, 192; see

composite system
Compton effect, 66
computational basis, 340
concave function, 377
conjugate transpose, 44; see

complex conjugate transpose
conjunction, 281
conservative force, 157
continuity, 13, 62–65
controlled-unitary gate, 356
convex function, 377
Copenhagen interpretation, 291
correctness (of a theory), 294
correlation, 266, 334, 393, 404
correspondence principle, 160,

207, 271, 291
coupling, 396, 408, 413
creation operator, 180

cross product, 203
cryptography, 369; see quantum

cryptography

d–state, 221
data, 394, 395
de Broglie equation, 175
De Morgan’s laws, 282, 283
decider, 413
decoherence, 270, 271
degeneracy, 232
degeneracy pressure, 253
degenerate states, 232
del ∇, 133; see gradient operator
del squard ∇2, 135; see Laplacian
delayed choice experiment, 101,

394
density matrix, 187

reduced, 197
derivative, 124

partial, 132–133
total, 135

derivative rule, 127
detection, 410, 413
detector, 21, 408, 410, 413
determinism, 12, 14, 166
determinism of probabilities, 166
Deutsch problem, 360
Deutsch’s algorithm, 360
differential, 112, 119

total, 136
differential equation, 140

ordinary, 141
partial, 141

differentiation, 126
Dirac delta function, 119
Dirac picture, 173
direct product, 193

basis, 193
discord, 84, 384, 385
disjunction, 282
disorder, 274, 278
dot product, 46
double slit experiment, 93, 94



April 28, 2014 10:57 PSP Book - 9in x 6in auletta

Subject Index 439

eavesdropping, 369, 373
Eberhard theorem, 322, 406
ebit, 345, 369
effect (operator), 398
eigenbasis, 72
eigenstate, 69, 73
eigenvalue, 69, 70

equation, 68, 109
Ekert protocol, 373
electromagnetic force, 251
electromagnetic wave, 62
electron, 88, 235, 251
electron shell, 232
elementary charge, 227
elementary particles, 250, 251
emission spectrum of hydrogen,

232
energy, 158

expenditure, 347, 348
kinetic, 158
potential, 158
total, 158

energy, 12
energy level, 66
energy representation, 161
entangled bit, 345; see ebit
entanglement, 196, 264, 302, 316,

381
swapping, 316

entropy
Boltzmann, 274
conditional, 377
Gibbs, 275
information, 271; see Shannon
joint, 375
maximal Shannon, 275
Shannon, 271, 274
state of zero, 375
von Neumann, 271, 277

environment, 269, 348
EPR state, 365
Euclidean space, 43
Euler angles, 208
Euler formula, 31

European Organization for Nuclear
Research, 252; see CERN

event, 22, 100, 412
detection, 61, 102, 166, 261,

302, 397
exchange operator, 249
exclusion principle, 252; see Pauli

exclusion principle
exclusive disjunction, 282
expectation value, 149
exponential function, 28
exponential time, 359

f –state, 221
falsificationism, 294
feature, 84, 91, 95, 98, 100, 102,

155, 261, 264, 270, 286, 324,
341, 344, 375, 412, 415

features, 385
fermion, 250
fidelity (communication), 414
filter, 41, 81, 84
force, 9, 137
force carrier, 251
Fourier transform, 145
free particle, 175

gate, 281
gluon, 250
gradient, 133
gradient operator, 133
Greenberger–Yasin equality, 99
ground state, 183

Hadamard gate, 351, 352
Hadamard operator, 78, 351
Hamilton equation, 158
Hamiltonian, 159
Hamiltonian formulation, 158
Hamiltonian operator, 160

of harmonic oscillator, 179
harmonic oscillator, 178, 180
Heisenberg equation, 173
Heisenberg picture, 167, 171
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helium–3, 252
helium–4, 252
hidden variable theory, 307
hidden variables, 307
Higgs boson, 252
Hilbert space, 43

direct product, 194
Holevo theorem, 341
hyper-correlation, 403, 407

identical particles, 249
identity operator, 58
imaginary unit, 24
implication, 295
incertitude, 272, 413, 414

reduction, 415
induction, 67
inertial reference frame, 10
inferring, 413, 415
infinitesimal, 125
information, 271, 335

accessibility, 153, 264
accessibility principle, 343, 394
acquisition, 272, 341, 344, 394,

408, 413
activation principle, 346
actual, 345, 346
causality principle, 405, 406
content, 271
distance, 388
encoded, 346, 347, 413
encoding of, 335, 339, 407
erasure, 348
extrapolation, 394
mutual, 379, 381
potential, 343, 345, 375
processing, 347
selection, 393, 394, 408, 413,

415
source, 415

integral
definite, 110–116
indefinite, 113, 114, 129

interaction picture, 173; see Dirac
picture

interdependence, 91, 277, 321, 381
interference, 18, 20, 36, 91, 92,

100, 101, 196
constructive, 18, 20
destructive, 19, 20
visibility, 98, 99

interference, 102
irreversibility, 262, 415

local, 271, 278, 286, 287

Jacobi identity, 148
Jensen inequality, 377

kaon, 250
Kapitza–Dirac effect, 88
ket, 23
key distribution problem, 370
Kochen–Specker graph

10-point, 326
117-point, 327

Kochen–Specker theorem, 328,
331

Kolmogorov complexity, 346
Kronecker delta, 48

Landauer’s principle, 347
Laplacian, 135
Large Hadron Collider (LHC), 252
Larmor law, 233
laser, 269
law

classical, 64–66, 155
quantum, 166, 271, 277, 303

law of inertia, 10
Legendre polynomials, 222

associated, 222
lepton, 251
light, 39, 88

as undulatory, 18
Limit, 54, 112, 125

of integration, 112
one-sided, 273
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linearity, 13, 14, 18, 339
locality, 102, 295, 319, 344
logarithm, 273, 274

Mach–Zehnder interferometer, 20,
88, 96, 352

many-minds theory, 266
many-worlds interpretation, 266,

288
matrix, 51, 68

conjugate transpose of, 71
Hermitian, 72
Hermitian conjugate of, 71
rectangular, 51
square, 51

inverse of, 77
unitary, 77

matter, 88
as undulatory, 18

measurement, 58, 155, 257, 260,
262, 263, 265, 267, 269–271,
278, 348, 399, 408, 410

finite resolution of, 344
interaction-free, 93, 155
non-demolition, 155
objectivist interpretation of,

265, 266
subjectivist interpretation of,

263–265
measurement error, 15, 343
mind, 262, 265, 288
mixed state, 188
mixture, 188, 261
modular arithmetic, 354
momentum

eigenfunction, 140, 146
in classical mechanics, 136
operator, 139–146
representation, 143–146

momentum, 12
muon, 251

nabla ∇, 133; see gradient operator
NAND gate, 283

negated conjunction, 283
negation, 281
neutrino, 251
neutron, 235, 250
neutron star, 253
Newton’s laws of motion

first law, 10
second law, 10

Newton’s second law, 14, 137, 204
no-cloning theorem, 192, 342, 368
no-signaling requirement, 400,

405
no-signaling theory, 406
Noether’s theorem, 205
non-locality, 102, 271, 307, 321,

324
normalization condition, 25
NOT gate, 281, 351
number operator, 181

observable, 68, 69, 411
choice, 341

observer, 153, 155, 262, 265, 341
Occam’s razor, 266
omnimoda determinatio, 13
open system, 269, 288
operator, 51, 68

Hermitian, 70, 72
linear, 51
positive semidefinite, 57, 190
unitary, 78; see unitary operator

OR gate, 282
orbital, 232; see atomic orbital
order, 274, 278, 286, 375
orthogonality, 47
orthonormal condition, 48
orthonormality, 48; see

orthonormal condition

π
8 gate, 350
p–state, 221
parallelogram rule, 11, 14
particle

point, 9
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passive transformation, 167
path predictability, 97, 99
Pauli exclusion principle, 252
Pauli matrices, 238, 351
Pauli-X gate, 351
Pauli-Y gate, 351
Pauli-Z gate, 351
phase, 19, 20

relative, 19, 28, 337
shifter, 21, 28, 32

phase gate, 350
phase shift gate, 350
phase space, 153
photoelectric effect, 65, 232
photon, 21, 61, 64, 65, 87, 250
pion, 250
Pitowsky lemma, 326
Planck constant, 63

reduced, 139
Planck postulate, 64; see quantum

postulate
Poincaré sphere, 336; see Bloch

sphere
polar angle, 11
polarization, 39
polynomial time, 359
position, 9, 12
position eigenfunction, 121, 122
position operator

continuous, 117–123
discrete, 107–109

position representation, 121
positron, 252
premeasurement, 268, 269, 397,

408, 412
preparation, 258, 345, 408, 410
primitive function, 113
private-key protocol, 369
probability, 24, 35, 90, 95

amplitude, 24, 35, 50
classical, 91
conditional, 319, 320
density, 119, 125
joint, 23

quantum, 91, 95
processor, 413
projection operator, 49; see

projector
projection postulate, 262, 290
projector, 49, 51, 55–58, 68
property, 13, 84, 411, 412
proton, 235, 250
public-key protocol, 369
pure state, 188
Pythagorean trigonometric

identity, 32

quantization principle, 67
quantum bit, 337; see qubit
quantum correlation, 322, 324,

402
quantum cryptography, 346,

369–374, 407
quantum gate, 350
quantum non-locality, 307
quantum number, 180

azimuthal, 211
magnetic, 211
principal, 227, 230
spin, 237
spin magnetic, 237

quantum postulate, 64
quantum teleportation, 346,

364–368, 405
quantum tunneling, 186
quantumness, 84, 385, 386
quark, 251
qubit, 337, 344, 345

control, 353
target, 353

radioactive decay, 289
random experiment, 22
reality, 95, 100, 156, 411

principle of physical, 295, 296,
325

reduced mass, 227
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reduction of the wave packet, 262,
290

reductionism, 13, 14
regulator, 413
relative state, 266, 267
relativity

special, 307
resolution of the identity, 58; see

completeness relation
reversibility, 262, 277, 280, 347

global, 271, 279
reversible transformation, 78
right-hand rule, 203
rotation, 202, 205

in Hilbert space, 78; see unitary
transformation

operator, 206; see unitary
operator

rotation matrix
for spin 1

2 , 241
Rydberg unit of energy, 228

s–state, 221
sample point, 22
sample space, 22
scalar product, 45

of Euclidean vectors, 46; see dot
product

scanning tunneling microscope,
186

Schrödinger cat, 289, 290
Schrödinger equation, 172, 262

time-dependent, 161
Schrödinger picture, 167, 171
self-interference, 27, 61, 88
separability, 194, 294, 296, 297,

307, 319, 403, 405
condition, 308, 401
principle, 294, 307, 308, 313,

325, 334
Shannon entropy, 336
singlet state, 248, 303
space translation, 137

operator, 138; see unitary
operator

specific heat, 66
spectral decomposition, 110, 118,

277
spectrum

of an observable, 110
spherical coordinates, 217
spherical harmonics, 221
spin, 235

down, 237
up, 237

spinor, 238
square modulus, 24
state, 23, 24, 26, 27, 410

normalized, 47
vector, 42

statement (logic), 295
atomic, 325

stationary state, 164
statistically independence, 320
Stern–Gerlach experiment, 236
strong force, 251
superconductivity, 252
superfluidity, 252
superluminal communication, 321
superposition, 61, 74, 102, 196,

258, 262
principle, 26

surprisal, 272, 396
swap gate, 363

tau lepton, 251
Taylor series, 131
teleportation, 346, 367; see

quantum teleportation
time evolution operator, 163
time translation, 162
Toffoli gate, 284
torque, 204
trace, 189

partial, 197
triangle inequality, 25

for integrals, 113
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trigonometric function, 29
cosine, 28
inverse, 29
sine, 28
tangent, 217

triplet state, 248
Tsirelson bound, 406; see Tsirelson

theorem
Tsirelson theorem, 402, 403
Turing machine, 348, 349

uncertainly principle, 147,
297

uncertainty, 151
uncertainty relation

conceptual consequences of,
153–156

for position and momentum,
152

generalized, 152
unitary operator, 78

rotation, 206, 208
space translation, 138, 140
spin Rotation, 239
time translation, 163; see time

evolution operator
unitary transformation, 77

vacuum permittivity, 227
variance, 150
vector

Euclidean, 10
vector product, 203; see cross

product
velocity, 9
virtual particle, 287
von Neumann equation, 190

W boson, 250
wave function

in momentum space, 143
in position space, 118

wave number, 175
weak force, 251
white dwarf, 253
work, 157, 277

X gate, 351; see Pauli-X gate
XOR gate, 282

Y gate, 351; see Pauli-Y gate

Z boson, 250
Z gate, 351; see Pauli-Z gate
zero-point energy, 185
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Chapter 2

2.1 This is straightforward.

(2 + i)∗ = 2 − i, (1 + 3i)∗ = 1 − 3i,

|2 + i|2 = (2 + i)(2 − i) = 5,

|1 + 3i|2 = (1 + 3i)(1 − 3i) = 10.

2.2 Using the Euler formula (2.12) and Table 2.1, we have

ei0 = cos 0 + i sin 0 = 1,

ei π
4 = cos

π

4
+ i sin

π

4
= 1√

2
(1 + i),

ei π
2 = cos

π

2
+ i sin

π

2
= i,

ei 3π
4 = cos

3π

4
+ i sin

3π

4
= − 1√

2
(1 − i),

eiπ = cos π + i sin π = −1.

2.5 The square of a complex number is in general another complex
number but probabilities should be real non-negative numbers
and less than or equal to 1 [see Box 2.1]. Therefore, we need to
compute the square modulus of the corresponding coefficient.

2.6 This is straightforward.

℘2 =
∣∣∣∣

1
2

(
1 − eiφ

)∣∣∣∣
2

= 1
4

(
1 − eiφ

) (
1 − e−iφ

)

= 1
4

(
2 − eiφ − e−iφ

)
= 1

2
(1 − cos φ) .
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2.7 Since

c2
1 =

[
1
2

(
1 + eiφ

)]2

= 1
4

(
1 + eiφ

) (
1 + eiφ

)

= 1
4

(
1 + e2iφ + 2eiφ

)
,

c2
2 =

[
1
2

(
1 − eiφ

)]2

= 1
4

(
1 − eiφ

) (
1 − eiφ

)

= 1
4

(
1 + e2iφ − 2eiφ

)
,

their sum is

c2
1 + c2

2 = 1
4

(
1 + e2iφ + 2eiφ

)
+ 1

4
(

1 + e2iφ − 2eiφ
)

= 1
2

(
1 + e2iφ

)
,

which for almost all values of φ is not equal to 1.
2.8 The detection probabilities at D1 and D2 are

℘1 = 1
2

(1 + cos φ) and ℘2 = 1
2

(1 − cos φ) ,

respectively. Since for φ = 0 (in radians) we have cos φ = 1, it
is clear that for this value D2 never clicks. Moreover, since for
φ = π we have cos φ = −1, it follows that for this value D1 to
never clicks.

Chapter 3

3.1 This is straightforward.

|ψ⟩ = 1√
2

(|a⟩ + |a′⟩) = 1√
2

(
1
1

)
,

|ψ ′⟩ = 1√
2

(|a⟩ − |a′⟩) = 1√
2

(
1

−1

)
.

3.2 We have

|a⟩ =
(

1
0

)
, |a′⟩ =

(
0
1

)
,

therefore

⟨a|a′⟩ =
(

1 0
) (

0
1

)
=

(
0
0

)
= 0.
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3.3 This is straightforward.

⟨ψ |a⟩ =
(

c∗
a c∗

a′

)(
1
0

)
= c∗

a , ⟨ψ |a′⟩ =
(

c∗
a c∗

a′

)(
0
1

)
= c∗

a′ .

3.4 Let us first expand the state vector |φ⟩ as

|φ⟩ = d|b⟩ + d′|b′⟩

= 1√
2

[
d(|a⟩ + |a′⟩) + d′(|a⟩ − |a′⟩)

]

= 1√
2

[
(d + d′)|a⟩ + (d − d′)|a′⟩

]
.

Then, we have

⟨ψ |ϕ⟩ = 1√
2

(
c∗ c′∗)

(
d + d′

d − d′

)

= 1√
2

[
c∗(d + d′) + c′∗(d − d′)

]
.

3.5 This is straightforward.
(
⟨a| + ⟨a′|

) (
|a⟩ + |a′⟩

)
= ⟨a|a⟩ + ⟨a|a′⟩ + ⟨a′|a⟩ + ⟨a′|a′⟩

= ⟨a|a⟩ + 0 + 0 + ⟨a′|a′⟩

= ⟨a|a⟩ + ⟨a′|a′⟩.

3.6 This is straightforward.

Â =
[

3 9
9 9

]
, B̂ =

[
21 28
49 64

]
.

3.8 This is straightforward.

P̂a|a⟩ = |a⟩⟨a|a⟩ = |a⟩, P̂a′ |a′⟩ = |a′⟩⟨a′|a′⟩ = |a′⟩,

P̂a|a′⟩ = |a⟩⟨a|a′⟩ = 0, P̂a′ |a⟩ = |a′⟩⟨a′|a⟩ = 0.

3.9 We have

P̂a|ψ⟩ =
[

1 0
0 0

] (
ca

ca′

)
=

[
1 0
0 0

] (
⟨a|ψ⟩
⟨a′|ψ⟩

)

=
(

⟨a|ψ⟩
0

)
= ⟨a|ψ⟩|a⟩,

P̂a′ |ψ⟩ =
[

0 0
0 1

] (
ca

c′
a

)
=

[
0 0
0 1

] (
⟨a|ψ⟩
⟨a′|ψ⟩

)

=
(

0
⟨a′|ψ⟩

)
= ⟨a′|ψ⟩|a′⟩.
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3.12 We have

Î P̂a =
[

1 0
0 1

] [
1 0
0 0

]
=

[
1 0
0 0

]
= P̂a ,

Î P̂a′ =
[

1 0
0 1

] [
0 0
0 1

]
=

[
0 0
0 1

]
= P̂a′ ,

Î |ψ⟩ =
[

1 0
0 1

](
ca

ca′

)
=

(
ca

ca′

)
= |ψ⟩.

3.11 This is straightforward.

P̂ 2
a = (|a⟩⟨a|)(|a⟩⟨a|) = (|a⟩⟨a|)⟨a|a⟩ = |a⟩⟨a| = P̂a ,

P̂ 2
a′ = (|a′⟩⟨a′|)(|a′⟩⟨a′|) = (|a′⟩⟨a′|)⟨a′|a′⟩ = |a′⟩⟨a′| = P̂a′ ,

P̂a P̂a′ = (|a⟩⟨a|)(|a′⟩⟨a′|) = (|a⟩⟨a′|)⟨a|a′⟩ = 0,

P̂a′ P̂a = (|a′⟩⟨a′|)(|a⟩⟨a|) = (|a′⟩⟨a|)⟨a′|a⟩ = 0.

Chapter 4

4.1 This is straightforward.

P̂a′ |a′⟩ = |a′⟩ = +1 (|a′⟩),

P̂a′ |a⟩ = 0 = 0 (|a⟩).

4.2 Since

Ô′|a⟩ =
[
−1 0
0 +1

] (
1
0

)
= −

(
1
0

)
= −|a⟩,

Ô′|a′⟩ =
[
−1 0
0 +1

] (
0
1

)
=

(
0
1

)
= +|a′⟩,

then the eigenvalues of the eigenstates |a⟩ and |a′⟩ are −1 and
+1, respectively.

4.3 This is straightforward.

P̂ †
a = (|a⟩⟨a|)† = |a⟩⟨a| = P̂a ,

P̂ †
a′ = (|a′⟩⟨a′|)† = |a′⟩⟨a′| = P̂a′ .
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4.4 This is straightforward.
P̂h|ψ⟩ = |h⟩⟨h|⟨h|ψ⟩|h⟩ + |h⟩⟨h|⟨v|ψ⟩|v⟩ = ⟨h|ψ⟩|h⟩,

P̂v |ψ⟩ = |v⟩⟨v|⟨h|ψ⟩|h⟩ + |v⟩⟨v|⟨v|ψ⟩|v⟩ = ⟨v|ψ⟩|v⟩.
4.5 The reason is that probabilities are calculated as square

moduli of the corresponding probability amplitudes.
4.6 This is straightforward.

ca = ⟨a| Î |ψ⟩

= ⟨a| (|v⟩⟨v| + |h⟩⟨h|) |ψ⟩

= ⟨a|v⟩cv + ⟨a|h⟩ch ,

ca′ = ⟨a′| Î |ψ⟩

= ⟨a′| (|v⟩⟨v| + |h⟩⟨h|) |ψ⟩

= ⟨a′|v⟩cv + ⟨a′|h⟩ch .
4.7 This is straightforward.

Û †Û =
[

⟨h|a⟩∗ ⟨v|a⟩∗

⟨h|a′⟩∗ ⟨v|a′⟩∗

] [
⟨h|a⟩ ⟨h|a′⟩
⟨v|a⟩ ⟨v|a′⟩

]

=
[

⟨a|h⟩⟨h|a⟩ + ⟨a|v⟩⟨v|a⟩ ⟨a|h⟩⟨h|a′⟩ + ⟨a|v⟩⟨v|a′⟩
⟨a′|h⟩⟨h|a⟩ + ⟨a′|v⟩⟨v|a⟩ ⟨a′|h⟩⟨h|a′⟩ + ⟨a′|v⟩⟨v|a′⟩

]

=
[

⟨a| (|h⟩⟨h| + |v⟩⟨v|) |a⟩ ⟨a| (|h⟩⟨h| + |v⟩⟨v|) |a′⟩
⟨a′| (|h⟩⟨h| + |v⟩⟨v|) |a⟩ ⟨a′| (|h⟩⟨h| + |v⟩⟨v|) |a′⟩

]

=
[

⟨a|a⟩ ⟨a|a′⟩
⟨a′|a⟩ ⟨a′|a′⟩

]

=
[

1 0
0 1

]
= Î .

4.9 If we write

|1⟩ =
(

1
0

)
and |2⟩ =

(
0
1

)
,

then

Û BS

[
1√
2

(
|d⟩ + eiφ|u⟩

)]
= 1√

2

[
1 1
1 −1

]
1√
2

(
1

eiφ

)

= 1
2

(
1 + eiφ

1 − eiφ

)
,

which is the same as the result in Eq. (2.29).
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4.10 Since the phase shifter does not affect the state |d⟩ and
produces a phase shift φ to the state |u⟩, we can express Ûφ

in the basis {|d⟩, |u⟩} as

Ûφ =
[

1 0
0 eiφ

]
.

Moreover, we have

Û †
φ Ûφ =

[
1 0
0 e−iφ

] [
1 0
0 eiφ

]
=

[
1 0
0 1

]
= Î ,

and also ÛφÛ †
φ = Î , hence Ûφ is unitary.

4.11 Assuming that |a′⟩ = cv |v⟩ − ch|h⟩, we have

P̂a′ = (cv |v⟩ − ch|h⟩)
(

c∗
v ⟨v| − c∗

h⟨h|
)

= |cv |2 |v⟩⟨v| + |ch|2 |h⟩⟨h| − cv c∗
h|v⟩⟨h| − c∗

v ch|h⟩⟨v|.
Applying it to the state cv |v⟩, we obtain

P̂a′ (cv |v⟩) = cv
(
|cv |2 |v⟩⟨v| + |ch|2 |h⟩⟨h| − cv c∗

h|v⟩⟨h|
− c∗

v ch|h⟩⟨v|
)
|v⟩

= cv
(
|cv |2 |v⟩ − c∗

v ch|h⟩
)

= |cv |2 (cv |v⟩ − ch|h⟩)

= |cv |2 |a′⟩,

which is formally similar to that obtained in the text.
This means that it does not matter in which direction the
intermediate polarization filter is (the only requirement is
that it is different from both the vertical and horizontal
directions) because the output state will always have a
nonzero probability along that direction.

4.12 We have

P̂h
(

P̂v
(

P̂a′ |a⟩
))

=
[

1 0

0 0

] {[
0 0

0 1

] {[∣∣c′
h

∣∣2 c′
hc′∗

v

c′
v c′∗

h

∣∣c′
v

∣∣2

] (
ch

cv

)}}

=
[

1 0

0 0

] ⎧
⎨

⎩

[
0 0

0 1

] ⎛

⎝ch
∣∣c′

h

∣∣2 + c′
hc′∗

v cv

c′
v c′∗

h ch + cv
∣∣c′

v

∣∣2

⎞

⎠

⎫
⎬

⎭

=
[

1 0

0 0

] (
0

c′
v c′∗

h ch + cv
∣∣c′

v

∣∣2

)

= 0
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and

P̂h
(

P̂a′
(

P̂v |a⟩
))

=
[

1 0

0 0

] {[∣∣c′
h

∣∣2 c′
hc′∗

v

c′
v c′∗

h

∣∣c′
v

∣∣2

]{[
0 0

0 1

] (
ch

cv

)}}

=
[

1 0

0 0

] {[∣∣c′
h

∣∣2 c′
hc′∗

v

c′
v c′∗

h

∣∣c′
v

∣∣2

](
0

cv

)}

=
[

1 0
0 0

] (
c′

hc′∗
v cv∣∣c′

v

∣∣2 cv

)

=
(

c′
hc′∗

v cv

0

)

= c′
hc′∗

v cv |h⟩.

Chapter 5

5.1 This is straightforward. For the state | f ⟩ in Eq. (5.4)

| f ⟩ = eiφ

2
(|1⟩ − |2⟩),

we have

℘1 = |⟨1| f ⟩|2 =
∣∣∣∣

eiφ

2

∣∣∣∣
2

= 1
4

, ℘2 = |⟨2| f ⟩|2 =
∣∣∣∣

eiφ

2

∣∣∣∣
2

= 1
4

.

For the state | f ⟩ in Eq. (5.5)

| f ⟩ = 1
2

(|1⟩ − |2⟩),

we have

℘1 = |⟨1| f ⟩|2 =
∣∣∣∣

1
2

∣∣∣∣
2

= 1
4

, ℘2 = |⟨2| f ⟩|2 =
∣∣∣∣

1
2

∣∣∣∣
2

= 1
4

.

Therefore state vectors that differ by a global phase factor
represent the same physical state.

5.2 In the case in which the upper path is blocked, we have
1√
2

(|d⟩ + |u⟩) S−→ 1√
2

|d⟩.

Then, the final state after BS2 is

| f ⟩ = 1
2

(|1⟩ + |2⟩),
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where we have used the transformation (4.36). The detection
probabilities at D1 and D2 are, respectively,

℘1 = ℘2 = 1
4

,

in which case we have no dark output (the two detectors receive
on average an equal number of photons independent of the
phase). Since these probabilities are precisely the same when
it is the lower path that is blocked, in both cases we can only
infer that one of the paths is blocked but cannot tell which one.

5.3 In this case, we use the probability ℘2 in Eq. (2.34):

℘2 = 1
2

(1 − cos φ) .

Also in this case we have violation of the inequality (5.6)
whenever ℘2 > 1/2, although the violation is maximum when
φ = π .

5.5 Since T2 and R2 are respectively the probabilities of a photon
being transmitted and reflected by a beam splitter and since
transmission and reflection are the only two possible mutually
exclusive cases, the sum of whose probabilities has to be one.

5.6 Making use of the unitary operator Ûφ representing the phase
shifter that is obtained in Prob. 4.10, we have

Û BS2ÛφÛ BS1|i⟩ = 1√
2

[
1 1
1 −1

] [
1 0
0 eiφ

] [
T R
R −T

] (
1
0

)

= 1√
2

[
1 1
1 −1

] [
1 0
0 eiφ

] (
T
R

)

= 1√
2

[
1 1
1 −1

] (
T

eiφR

)

= 1√
2

(
T + eiφR
T − eiφR

)
,

which is the same as the result in Eq. (5.11).
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5.7 We have

℘3 = 1
2

(
T + eiφR

) (
T + e−iφR

)

= 1
2

(
T2 + eiφTR + e−iφTR + R2)

= 1
2

(
T2 + R2) + TR cos φ

= 1
2

+ TR cos φ ,

℘4 = 1
2

(
T − eiφR

) (
T − e−iφR

)

= 1
2

(
T2 − eiφTR − e−iφTR + R2)

= 1
2

(
T2 + R2) − TR cos φ

= 1
2

− TR cos φ ,

where use has been made of the formula (2.20). A comparison
with the probabilities in Eqs. (2.33) and (2.34) shows that the
latter represent a special case of the above result for T = R =

1√
2

.
5.8 Recall that we have assumed T and R to be real and non-

negative, hence

Û BS1Û †
BS1 =

[
T R
R −T

] [
T R
R −T

]

=
[

T2 + R2 TR − TR
TR − TR T2 + R2

]

=
[

1 0
0 1

]
= Î ,

which shows that Û BS1 is unitary.
5.9 In the case in which the detectors are located after BS2, the

experiment is the same as that described in Secs. 2.3–2.6. In the
case in which we decide to place the detectors before BS2, the
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final state of the photon is [see, e.g., Eq. (2.25)]

| f ⟩ = 1√
2

(
|d⟩ + eiφ|u⟩

)
.

It is evident that the probabilities of detecting the photon at DA

and DB are the same and equal to 1
2 . Most importantly, since the

component |u⟩ is detected at detector DA while the component
|d⟩ at DB, we can tell unequivocally from which path the photon
came once one of the two detectors clicks.

Chapter 6

6.1 The eigenbasis of x̂ can be written as
⎧
⎪⎪⎨

⎪⎪⎩
|x0⟩ =

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ , |x1⟩ =

⎛

⎜⎜⎝

0
1
0
0

⎞

⎟⎟⎠ , |x2⟩ =

⎛

⎜⎜⎝

0
0
1
0

⎞

⎟⎟⎠ , |x3⟩ =

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭
.

The state |ψ⟩ can then be expanded as

|ψ⟩ =

⎛

⎜⎜⎝

⟨x0|ψ⟩
⟨x1|ψ⟩
⟨x2|ψ⟩
⟨x3|ψ⟩

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

c0

c1

c2

c3

⎞

⎟⎟⎠ .

6.2 The first two integrals are straightforward.

1
4

∫ 3

−2
x3dx = 1

4
x4

4

∣∣∣∣
3

−2
= 1

16
[
34 − (−2)4]

= 1
16

(81 − 16) = 65
16

,

∫ π

0
sin x dx = − cos x

∣∣∣
π

0
= 1 − (−1) = 2.

The third one can be computed by observing that if we rescale
kx = y, then the area under the graph of ekx between x = 0
and x = t is scaled by a factor of k (in the horizontal direction)
to become the area under the graph of ey between y = 0 and
y = kt. Hence

∫ t

0
ekx dx = 1

k

∫ kt

0
eydy = ey

k

∣∣∣∣
kt

0
= ekt − 1

k
.
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Indeed, this observation is very general and the corresponding
method of evaluating integrals is called the change of variables.

6.3 Partial fraction expansion and the property that integrals are
invariant under translations (6.22) are used here. Write

3x
x2 + x − 2

= 1
x − 1

+ 2
x + 2

,

then we have

∫ 4

2

3x
x2 + x − 2

dx =
∫ 4

2

(
1

x − 1
+ 2

x + 2

)
dx

=
∫ 3

1

1
x

dx +
∫ 6

4

2
x

dx

= (ln 3 − ln 1) + 2(ln 6 − ln 4)

= ln 3 + 2 ln 3 − 2 ln 2

= 3 ln 3 − 2 ln 2,

where we recall that ln(ab) = ln a + ln b.
6.4 It is easy to see that we have

1 = ⟨ψ |ψ⟩ = ⟨ψ | Î |ψ⟩ =
∫ +∞

−∞
⟨ψ |x⟩⟨x|ψ⟩dx =

∫ +∞

−∞
|ψ(x)|2dx

and

1 = ⟨ψ |ψ⟩ = ⟨ψ | Î |ψ⟩ =
∫ +∞

−∞
⟨ψ |r⟩⟨r|ψ⟩d3r =

∫ +∞

−∞
|ψ(r)|2d3r.

It is also clear that the above two expressions correspond to the
normalization condition for the discrete case that can be written
as

∑

j

℘ j = 1,

which in turn shows that the true probabilities are |ψ(x)|2 dx
and |ψ(r)|2 d3r .
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6.5 From the normalization condition

1 =
∫ +∞

−∞
dx |ψ(x)|2

=
∫ +∞

−∞
dx(N e−λ|x|/!)2

= N 2
∫ 0

−∞
dxe−2λ|x|/! + N 2

∫ +∞

0
dxe−2λ|x|/!

= 2N 2
∫ ∞

0
dx e−2λx/!

= N 2!
λ

,

we find

N =
√

λ

!
.

6.6 The product rule, quotient rule, and the chain rule are used
here.

d
dx

√
x = 1

2
x− 1

2 = 1
2
√

x
,

d
dx

(x cos x) = cos x − x sin x ,

d
dx

(
sin x

x

)
= x cos x − sin x

x2 = cos x
x

− sin x
x2 ,

d
dx

(
1

1 +
√

x

)
= −

(
1 + x

1
2

)−2
(

1
2

x− 1
2

)
= − 1

2
√

x(1 +
√

x)2 .

6.7 Assuming term-by-term differentiation is permissible (which
can be justified), we have

dex

dx
=

∞∑

n=1

xn−1

(n − 1)!
=

∞∑

n=0

xn

n!
.

Hence we conclude that the derivative of the exponential is the
exponential itself.
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6.8 The quotient rule and the chain rule are used here.
∂

∂x

(
x − y
x + y

)
= 1

x + y
− x − y

(x + y)2 ,

∂

∂y

(
x − y
x + y

)
= − 1

x + y
− x − y

(x + y)2 ,

∂2

∂y∂x

(
x − y
x + y

)
= ∂

∂y

(
1

x + y
− x − y

(x + y)2

)
= 2(x2 − y2)

(x + y)4 ,

∂2

∂x∂y

(
x − y
x + y

)
= − ∂

∂x

(
1

x + y
+ x − y

(x + y)2

)
= 2(x2 − y2)

(x + y)4 .

6.9 This is straightforward.
∂ f
∂t

= 2t − 8x = 2t − 8 sin t,

d f
dt

= ∂ f
∂t

+ ∂ f
∂x

dx
dt

= 2t − 8x + (−8t − 2x) cos t

= 2t − 8 sin t − (8t + 2 sin t) cos t.

6.11 From Eq. (6.114), we have

Û †
x (a) =

(
e− i

! a p̂x

)†
= e

i
! a p̂x .

To prove the unitarity of Û x (a), it suffices to show that

Û x (a)Û †
x (a) = Û †

x (a)Û x (a) = Î .

We prove the first part:

Û x (a)Û †
x (a) = e− i

! a p̂x e
i
! a p̂x = e− i

! a p̂x + i
! a p̂x = e0 = Î .

6.12 From Eq. (6.131) and the unitarity of Û x (a), we have

Û †
x (a)|x⟩ = Û −1

x (a)|x⟩ = |x − a⟩,

which implies

⟨x|Û †
x (a)x̂Û x (a)|x ′⟩ = ⟨x|Û †

x (a)x̂|x ′ + a⟩
= (x ′ + a)⟨x|Û †

x (a)|x ′ + a⟩
= (x ′ + a)⟨x|x ′⟩
= ⟨x|(x̂ + a)|x ′⟩.

Since the above equation is valid for arbitrary ⟨x| and |x ′⟩, it
follows that Û †

x (a)x̂Û x (a) = x̂ + a.
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6.13 We have

1 = ⟨ψ |ψ⟩ =
∫ +∞

−∞
⟨ψ |px⟩⟨px |ψ⟩dpx =

∫ +∞

−∞
|ψ̃( px )|2dpx .

We can proceed in a similar way if we like to obtain the three–
dimensional counterpart of this proof.

6.14 We have

ψ̃( px ) = 1√
2π!

∫ 1

0
ψ(x) e− i

! px x dx

= 1√
2π!

∫ 1

0
e− i

! px x dx

= i!√
2π!px

e− i
! px x

∣∣∣
x=1

x=0

= i!√
2π!px

(
e− i

! px − 1
)

.

6.15 The properties of the commutators (6.151) and the commuta-
tion relation [x̂ , p̂x ] = i!x̂ are used here.

[x̂2, p̂x ] = x̂[x̂ , p̂x ] + [x̂ , p̂x ]x̂ = 2i!x̂ ,

[x̂ , p̂2
x ] = p̂x [x̂ , p̂x ] + [x̂ , p̂x ] p̂x = 2i! p̂x ,

[x̂ p̂x , p̂x x̂] = [ p̂x x̂ + i!, p̂x x̂] = 0.

6.17 The expression for (2
ψ Ô in Eq. (6.158) can be simplified to

(2
ψ Ô =

〈
Ô2〉

ψ
−

〈
Ô
〉2

ψ
,

where use has been made of the properties of the expectation
value given by Eqs. (6.157). Since

Ô2 =
(
|h⟩⟨h| − |v⟩⟨v|

)(
|h⟩⟨h| − |v⟩⟨v|

)
= |h⟩⟨h| + |v⟩⟨v| = Î ,

we have ⟨Ô2⟩ψ = 1 and (2
ψ Ô = ⟨Ô2⟩ψ − ⟨Ô⟩2

ψ = 1.

Chapter 7

7.1 Let the displacement of the object be x , then the force acting
on the subject is F (x) = −kx , where the minus sign means the
direction of the force is opposite to the of the displacement. It
is straightforward to show that F (x) is a conservative force
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and the corresponding potential energy is V (x) = 1
2 kx2 [see

Eq. (7.1)]. Hence, the Hamiltonian of the object is

H ( px , x) = p2
x

2m
+ kx2

2
,

where px is the momentum of the object. The Hamilton
equations can be found by direct substitution [see Eq. (7.3)]

dx
dt

= px

m
,

dpx

dt
= −kx .

7.2 From Eqs. (7.4) and (7.13), we obtain

i!
∂

∂t
ψ(x , t) = − !2

2m
∂2

∂x2 ψ(x , t) + mgx ψ(x , t),

where the gravitational field is chosen to point in the negative
x direction.

7.4 The states |E1⟩ and |E2⟩ are energy eigenstates, so they are
stationary states whose time evolution are respectively given
by

|E1(t)⟩ = e− i
! E1t|E1⟩, |E2(t)⟩ = e− i

! E2t|E2⟩.
By expanding the initial state |ψ(0)⟩ as a superposition of the
energy eigenstates |E1⟩ and |E2⟩ as

|ψ(0)⟩ = |1⟩ = 1√
2

(|E1⟩ + |E2⟩),

we can express the state of the system at time t as

|ψ(t)⟩ = 1√
2

(e− i
! E1t|E1⟩ + e− i

! E2t|E2⟩).

Hence, probability of finding the system in the state |1⟩ is

℘1(t) = |⟨1|ψ(t)⟩|2 = 1
4

∣∣∣e− i
! E1t + e− i

! E2t
∣∣∣

2

= 1
2

[
1 + cos

(E1 − E2)t
!

]
.

7.5 From Eq. (7.40) and the similar ones for Ŷ and Ẑ , we have

[X̂ , Ŷ ] Û−→ [X̂ ′, Ŷ ′] = [Û † X̂ Û , Û †Ŷ Û ]

= Û † X̂ Û Û †Ŷ Û − Û †Ŷ Û Û † X̂ Û

= Û † X̂ Ŷ Û − Û †Ŷ X̂ Û

= Û †[X̂ , Ŷ ]Û

= Û † Ẑ Û

= Ẑ ′,
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where in the third line use has been made of the property
Û Û † = Î .

7.6 From Eqs. (7.40) and (7.44), we have

⟨ψ ′|X̂ |ψ ′⟩ = ⟨Û ψ ′|X̂ |Û ψ ′⟩ = ⟨ψ ′|Û † X̂ Û |ψ ′⟩ = ⟨ψ |X̂ ′|ψ⟩,

where we note that ⟨Û ψ ′| = |Û ψ ′⟩† = (Û |ψ ′⟩)† = ⟨ψ ′|Û †.
7.7 The Hamiltonian in the Heisenberg picture is given by [see

Eq. (7.54)]

Ĥ (t) = Û †
t (t) Ĥ Û t(t) = Ĥ Û †

t (t) Û t(t) = Ĥ ,

where Ĥ (without time dependence) is the Hamiltonian in
the Schrödinger picture. In the derivation above use has been
made of the fact that Ĥ and Û t(t) commute.

7.8 From Eq. (7.54), we have

Ô(t) = Û †
t (t) Ô Û t(t)

= Û †
t (t) [Ô1, Ô2] Û t(t)

= Û †
t (t) Ô1 Ô2 Û t(t) − Û †

t (t) Ô2 Ô1 Û t(t)

= [Û †
t (t) Ô1 Û t(t)] [Û †

t (t) Ô2 Û t(t)]

− [Û †
t (t) Ô2 Û t(t)] [Û †

t (t) Ô1 Û t(t)]

= Ô1(t)Ô2(t) − Ô2(t)Ô1(t)

= [Ô1(t), Ô2(t)],

where in the forth line the identity operator Î = Û t(t)Û †
t (t)

has been inserted and the square parentheses have only the
purpose to help the reader to single out the relevant parts of
the expression.

7.10 We have

[
â, â†] = m

2!ω

(
ω2 [x̂ , x̂] + i

ω

m
[ p̂x , x̂]

− i
ω

m
[x̂ , p̂x ] + 1

m2 [ p̂x , p̂x ]

)

= − i
!

[x̂ , p̂x ] = Î ,

where we have made use of the commutation relation
[x̂ , p̂x ] = i!.
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7.11 We perform a similar derivation for the annihilation operator.
First, let us write

N̂â†|n⟩ =
(

N̂â† − â† N̂ + â† N̂
)
|n⟩

=
(

[N̂ , â†] + â† N̂
)
|n⟩

= −â†|n⟩ + nâ†|n⟩
= (n + 1)â†|n⟩,

where in the first line we have simply added and subtracted
the same quantity and in the third line we have made use of
both Eq. (7.81) and the following commutation relation [see
Eq. (7.78)]:

[N̂ , â†] = [â†â, â†] = â†[â, â†] = â†.

From the previous it follows that â†|n⟩ = |â†n⟩ is an eigenstate
of N̂ with eigenvalue n + 1, that is, we have

N̂|â†n⟩ = (n + 1)|â†n⟩,

but from Eq. (7.81) it follows that

N̂|n + 1⟩ = (n + 1)|n + 1⟩.

Since the eigenstates â|n⟩ and |n + 1⟩ correspond to the same
eigenvalue, they have to be proportional to each other. Hence
we have

â|n⟩ = c′
n|n + 1⟩,

where c′
n is a proportional constant that is formally given by

c′
n = ⟨n + 1|â†n⟩. To find c′

n, we left multiply both sides of the
previous equation by ⟨ân| and take the norm squared of the
state vector â†|n⟩

⟨ân|⟨n + 1|â†n⟩|n + 1⟩ =
∣∣c′

n

∣∣2 = ⟨n|ââ†|n⟩
= ⟨n|(N̂ + Î )|n⟩ = n + 1,

since ââ† = ââ† − â†â + â†â = N̂ + Î . Therefore, we find c′
n =√

n + 1 up to a global phase factor, which can be absorbed into
|n + 1⟩. Then, the desired result follows.
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7.12 We prove this relation by induction. From Eq. (7.90) we
immediately obtain

|1⟩ = â†|0⟩.

Assuming that the relation holds for a given n, we must prove
that it holds for n + 1 as well, that is

|n + 1⟩ =
(

â†)n+1

√
(n + 1)!

|0⟩.

In fact, we have
(

â†)n+1

√
(n + 1)!

|0⟩ = â†
√

n + 1

(
â†)n

√
n!

|0⟩

= â†
√

n + 1
|n⟩ = |n + 1⟩.

7.13 Taking advantage of Eqs. (6.52) and (6.117), we have

0 =
√

m
2!ω

(
ωx + !

m
d

dx

)
⟨x|n⟩

=
(

ωx + !
m

d
dx

)
ψ0(x)

= !
m

(
d

dx
ψ0(x) + mω

!
xψ0(x)

)
,

where we have used ordinary derivative in the place of partial
derivative due to the considerations expressed in Footnote a,
p. 139.

7.14 From Eq. (7.98) and the normalization condition, it follows
that

|N |2
∫ +∞

−∞
dx e− mω

! x2 = 1.

Using the known mathematical formula
∫ +∞

−∞
dy e−ay2 =

√
π

a
,

and setting a = mω/!, we obtain

|N |2

√
π!
mω

= 1.

Taking N real for simplicity and without loss of generality, we
finally have

N =
(mω

π!

) 1
4

.
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7.15 (a) This part is straightforward.

[x̂ , Ĥ ] = i! p̂x

m
, [ p̂x , Ĥ ] = −i!mω2 x̂ .

(b) From the commutators in (a), the Heisenberg equations
for x̂(t) and p̂x (t) are given by [see Eq. (7.55)]

dx̂(t)
dt

= p̂x (t)
m

,

d p̂x (t)
dt

= −mω2 x̂(t).

Taking time derivative of the first equation and using the
second equation to eliminate d p̂x/dt, we obtain

d2 x̂(t)
dt2 + ω2x(t) = 0.

The above equation has the solution [see Box 7.1 and in
particular Eq. (7.72)]

x̂(t) = c1 cos ωt + c2 sin ωt,

which yields

p̂x (t) = mω(c2 cos ωt − c1 sin ωt).

Substituting the initial condition x̂(0) = x̂ and p̂x (0) =
p̂x , we finally obtain

x̂(t) = x̂ cos ωt + p̂x

mω
sin ωt,

p̂x (t) = p̂x cos ωt − mωx̂ sin ωt.

7.16 In the basis

|h⟩ =
(

1
0

)
and |v⟩ =

(
0
1

)
,

we have

ρ̂ = |ch|2
(

1
0

) (
1 0

)
+ |cv |2

(
0
1

)(
0 1

)

+ chc∗
v

(
1
0

)(
0 1

)
+ c∗

hcv

(
0
1

) (
1 0

)
.

Then the desired result is easily obtained.



April 21, 2014 15:20 PSP Book - 9in x 6in solution

464 Solutions to Selected Problems

7.17 In both cases, Tr ρ̂ is a restatement of the normalization
condition that the sum of all probabilities of a set of mutually
exclusive events be equal to one. In the basis where the density
matrix is diagonal, the corresponding diagonal elements are
precisely the probabilities that the system may be found in
a certain set of mutually exclusive pure states. Therefore,
the sum of the diagonal elements has to be one because the
trace of a matrix is invariant under a change of basis [see
Eq. (7.116)].

7.18 For the mixture (7.110), we have

ρ̂ ′2 =
[
|ch|2 0

0 |cv |2

] [
|ch|2 0

0 |cv |2

]
=

[
|ch|4 0

0 |cv |4

]
̸= ρ̂,

Instead, for the pure state (7.108) we have

ρ̂2 =
[
|ch|2 chc∗

v
c∗

hcv |cv |2

] [
|ch|2 chc∗

v
c∗

hcv |cv |2

]

=
[

|ch|4 + |ch|2 |cv |2 |ch|2 chc∗
v + chc∗

v |cv |2

c∗
hcv |ch|2 + |cv |2 c∗

hcv |ch|2 |cv |2 + |cv |4

]

=
[
|ch|2 (

|ch|2 + |cv |2) chc∗
v
(
|ch|2 + |cv |2)

c∗
hcv

(
|ch|2 + |cv |2) |cv |2 (

|ch|2 + |cv |2)
]

=
[
|ch|2 chc∗

v
c∗

hcv |cv |2

]
= ρ̂,

where use has been made of |ch|2 + |cv |2 = 1.
7.19 This is straightforward but tedious.

ρ̂ ′
12 = |+⟩⟨+|12

= 1
4

(|h1 ⊗ h2⟩ + |h1 ⊗ v2⟩ + |v1 ⊗ h2⟩ + |v1 ⊗ v2⟩)

(⟨h1 ⊗ h2| + ⟨h1 ⊗ v2| + ⟨v1 ⊗ h2| + ⟨v1 ⊗ v2|)

= 1
2

(|h1⟩⟨h1| + |h1⟩⟨v1| + |v1⟩⟨h1| + |v1⟩⟨v1|)

⊗ 1
2

(|h2⟩⟨h2| + |h2⟩⟨v2| + |v2⟩⟨h2| + |v2⟩⟨v2|) .

In other words, the total density matrix ρ̂12 can be factorized
into a direct product of two density matrices, one describing
system 1 and the other one system 2, that is, we have

ρ̂12 = ρ̂1 ⊗ ρ̂2.
This is what we mean by separable.
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7.20 Let us make us of the transformations

|v⟩ = 1√
2

(|a⟩ + |a′⟩), |h⟩ = 1√
2

(|a⟩ − |a′⟩),

which allows us to rewrite the entangled state |,⟩12 as [see
Eq. (7.131)]

|,⟩12 = 1
2
√

2

[ (
|a⟩ − |a′⟩

)
1 ⊗

(
|a⟩ − |a′⟩

)
2

+
(
|a⟩ + |a′⟩

)
1 ⊗

(
|a⟩ + |a′⟩

)
2

]

= 1
2
√

2

(
|a⟩1|a⟩2 − |a⟩1|a′⟩2 − |a′⟩1|a⟩2 + |a′⟩1|a′⟩2

+ |a⟩1|a⟩2 + |a⟩1|a′⟩2 + |a′⟩1|a⟩2 + |a′⟩1|a′⟩2
)

= 1
2
√

2

(
|a⟩1|a⟩2 + |a′⟩1|a′⟩2 + |a⟩1|a⟩2 + |a′⟩1|a′⟩2

)

= 1√
2

(
|a⟩1|a⟩2 + |a′⟩1|a′⟩2

)
,

where in the last lines we have omitted the symbol ⊗ for the
sake of simplicity. The above state is clearly entangled, since it
pairs the states |a⟩1 and |a⟩2 on the one hand, and the states
|a′⟩1 and |a′⟩2 on the other.

7.21 This is straightforward. We have

ρ̂2 = Tr1 ρ̂12 = ⟨h|ρ̂12|h⟩1 + ⟨v|ρ̂12|v⟩1 = 1
2

(|h⟩⟨h|2 + |v⟩⟨v|2),

which also describes a mixture.
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Chapter 8

8.2 This is straightforward.
[

L̂y , L̂z
]

= [ẑ p̂x − x̂ p̂z, x̂ p̂y − ŷ p̂x ]

= [ẑ p̂x , x̂ p̂y] + [x̂ p̂z, ŷ p̂x ]

= ẑ[ p̂x , x̂] p̂y + ŷ[x̂ , p̂x ] p̂z

= ŷ[x̂ , p̂x ] p̂z − ẑ[x̂ , p̂x ] p̂y

= i!(ŷ p̂z − ẑ p̂y)

= i!L̂x .
[

L̂z, L̂x
]

= [x̂ p̂y − ŷ p̂x , ŷ p̂z − ẑ p̂y]

= [x̂ p̂y , ŷ p̂z] + [ŷ p̂x , ẑ p̂y]

= x̂[ p̂y , ŷ] p̂z + ẑ[ŷ, p̂y] p̂x

= ẑ[ŷ, p̂y] p̂x − x̂[ŷ, p̂y] p̂z

= i!(ẑ p̂x − x̂ p̂z)

= i!L̂y .

8.3 Writing L̂
2 = L̂2

x + L̂2
y + L̂2

z , we have
[

L̂x , L̂
2] =

[
L̂x , L̂2

y + L̂2
z
]

since
[

L̂x , L̂2
x
]

= 0. Moreover, we have
[

L̂x , L̂2
y
]

= L̂y
[

L̂x , L̂y
]
+

[
L̂x , L̂y

]
L̂y = i!(L̂y L̂z + L̂z L̂y),

[
L̂x , L̂2

z
]

= L̂z
[

L̂x , L̂z
]
+

[
L̂x , L̂z

]
L̂z = −i!(L̂z L̂y + L̂y L̂z).

Thus, we obtain
[

L̂x , L̂
2] = 0. It is easy to verify that this holds

true also for L̂y and L̂z, which proves the desired result.
8.5 From l̂+|l , m⟩ = c+

lm|l , m + 1⟩ and Eq. (8.39), we have

∣∣c+
lm

∣∣2 = ⟨l , m|l̂−l̂+|l , m⟩

= ⟨l , m|
(

l̂
2 − l̂2

z − !l̂z

)
|l , m⟩

= l(l + 1) − m2 − m

= [l(l + 1) − m(m + 1)] .

Therefore, we find c+
lm =

√
l(l + 1) − m(m + 1) up to a global

phase factor, which can be absorbed into |l , m + 1⟩.
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8.6 The first part is straightforward.

[
L̂z, l̂−

]
=

[
L̂z,

1
!

L̂x − i
!

L̂y

]

=
[

L̂z,
1
!

L̂x

]
− i

[
L̂z,

1
!

L̂y

]

= iL̂y − L̂x

= −!l̂−.

From

L̂zl̂−|l , m⟩ =
(

L̂zl̂− − l̂− L̂z + l̂− L̂z
)
|l , m⟩

=
([

L̂z, l̂−
]
+ l̂− L̂z

)
|l , m⟩

= l̂− L̂z|l , m⟩ − !l̂−|l , m⟩
= m!l̂−|l , m⟩ − !l̂−|l , m⟩
= (m − 1)!l̂−|l , m⟩,

it follows that the eigenstates l̂−|l , m⟩ and |l , m−1⟩ correspond
to the same eigenvalue. Hence they have to be proportional to
each other.

8.7 The first part is straightforward.

l̂+l̂− =
(
l̂x + il̂ y

) (
l̂x − il̂ y

)

= l̂2
x + l̂2

y + i
[
l̂ y , l̂x

]

= l̂
2 − l̂2

z + l̂z.

From l̂−|l , m⟩ = c−
lm|l , m − 1⟩ and the above result, we have

∣∣c−
lm

∣∣2 = ⟨l , m|l̂+l̂−|l , m⟩

= ⟨l , m|
(

l̂
2 − l̂2

z + l̂z

)
|l , m⟩

= l(l + 1) − m2 + m

= [l(l + 1) − m(m − 1)] .

Therefore, we find c−
lm =

√
l(l + 1) − m(m − 1) up to a global

phase factor, which can be absorbed into |l , m − 1⟩.
8.8 From

⟨1, m|L̂z|1, m′⟩ = m!δmm′ ,
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we have

L̂z = !

⎡

⎣
1 0 0
0 0 0
0 0 −1

⎤

⎦ .

To find the matrix elements of L̂x and L̂y , we use

1
!

L̂x = 1
2

(l̂+ + l̂−),
1
!

L̂y = 1
2i

(l̂+ − l̂−).

From

⟨1, m|l̂±|1, m′⟩ =
√

2 − m′(m′ ± 1)δm, m′±1,

we have

l̂+ =
√

2

⎡

⎣
0 1 0
0 0 1
0 0 0

⎤

⎦ , l̂− =
√

2

⎡

⎣
0 0 0
1 0 0
0 1 0

⎤

⎦ .

Hence

L̂x = !√
2

⎡

⎣
0 1 0
1 0 1
0 1 0

⎤

⎦ , L̂y = !√
2

⎡

⎣
0 −i 0
i 0 −i
0 i 0

⎤

⎦ .

8.9 Taking into account that

∂

∂ cos θ
= − 1

sin θ

∂

∂θ
and

∂

∂ tan φ
= cos2 φ

∂

∂φ
,

we have

∂

∂x
= ∂r

∂x
∂

∂r
+ ∂ cos θ

∂x
∂

∂ cos θ
+ ∂ tan φ

∂x
∂

∂ tan φ

= x
r

∂

∂r
+ xz

r3

1
sin θ

∂

∂θ
− y

x2 cos2 φ
∂

∂φ

= sin θ cos φ
∂

∂r
+ 1

r
sin θ cos φ cos θ

1
sin θ

∂

∂θ

− 1
r

sin θ sin φ

sin2 θ cos2 φ
cos2 φ

∂

∂φ

= sin θ cos φ
∂

∂r
+ 1

r
cos φ cos θ

∂

∂θ
− 1

r
sin φ

sin θ

∂

∂φ
.
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Similarly, we have

∂

∂y
= ∂r

∂y
∂

∂r
+ ∂ cos θ

∂y
∂

∂ cos θ
+ ∂ tan φ

∂y
∂

∂ tan φ

= y
r

∂

∂r
+ yz

r3

1
sin θ

∂

∂θ
− 1

x
cos2 φ

∂

∂φ

= sin θ sin φ
∂

∂r
+ 1

r
sin θ sin φ cos θ

1
sin θ

∂

∂θ

+ 1
r

1
sin θ cos φ

cos2 φ
∂

∂φ

= sin θ sin φ
∂

∂r
+ 1

r
sin φ cos θ

∂

∂θ
+ 1

r
cos φ

sin θ

∂

∂φ

and

∂

∂z
= ∂r

∂z
∂

∂r
+ ∂ cos θ

∂z
∂

∂ cos θ
+ ∂ tan φ

∂z
∂

∂ tan φ

= z
r

∂

∂r
−

(
1
r

− z2

r3

)
1

sin θ

∂

∂θ

= cos θ
∂

∂r
− 1

r
(1 − cos2 θ)

1
sin θ

∂

∂θ

= cos θ
∂

∂r
− 1

r
sin θ

∂

∂θ
.

8.10 From Eqs. (8.56), we can express the z component of the
orbital angular momentum in spherical coordinates as

L̂z = −i!
(

x
∂

∂y
− y

∂

∂x

)

= −i!
[

r sin θ cos φ

(
sin θ sin φ

∂

∂r
+ cos θ sin φ

r
∂

∂θ
+ cos φ

r sin θ

∂

∂φ

)

−r sin θ sin φ

(
sin θ cos φ

∂

∂r
+ cos θ cos φ

r
∂

∂θ
− sin φ

r sin θ

∂

∂φ

)]

= −i!
(

cos2 φ + sin2 φ
) ∂

∂φ

= −i! ∂

∂φ
,

In other words, L̂z generates rotations about the z axis, i.e.,
translations in φ. Similarly, for the x component of the orbital
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angular momentum we have

L̂x = −i!
(

y
∂

∂z
− z

∂

∂y

)

= −i!
[

r sin θ sin φ

(
cos θ

∂

∂r
− sin θ

r
∂

∂θ

)

−r cos θ

(
sin θ sin φ

∂

∂r
+ cos θ sin φ

r
∂

∂θ
+ cos φ

r sin θ

∂

∂φ

)]

= −i!
[
−

(
sin2 θ + cos2 θ

)
sin φ

∂

∂θ
− cos φ

cos θ

sin θ

∂

∂φ

]

= i!
(

sin φ
∂

∂θ
+ cos φ cot θ

∂

∂φ

)
,

and for the y component we have

L̂y = −i!
(

z
∂

∂x
− x

∂

∂z

)

= −i!
[

r cos θ

(
sin θ cos φ

∂

∂r
+ cos θ cos φ

r
∂

∂θ
− sin φ

r sin θ

∂

∂φ

)

−r sin θ cos φ

(
cos θ

∂

∂r
− sin θ

r
∂

∂θ

)]

= −i!
[(

cos2 θ + sin2 θ
)

cos φ
∂

∂θ
− sin φ

cos θ

sin θ

∂

∂φ

]

= −i!
(

cos φ
∂

∂θ
− sin φ cot θ

∂

∂φ

)
.

Hence, we obtain

L̂2
x = −!2

(
sin φ

∂

∂θ
+ cos φ cot θ

∂

∂φ

)2

,

L̂2
y = −!2

(
cos φ

∂

∂θ
− sin φ cot θ

∂

∂φ

)2

,

L̂2
z = −!2 ∂2

∂φ2 .

Collecting the terms, we find after some straightforward but
tedious algebra

L̂
2 = L̂2

x + L̂2
y + L̂2

z = −!2
[

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
.
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8.11 Using Eqs. (8.63), (8.64), and the first few Legendre
polynomials

P0(x) = 1, P1(x) = x , P2(x) = 1
2

(3x2 − 1),

we obtain the desired results after some straightforward
algebra.

8.12 From Eqs. (8.56), we have

∂2

∂x2 =
(

sin θ cos φ
∂

∂r
+ cos θ cos φ

r
∂

∂θ
− sin φ

r sin θ

∂

∂φ

)2

,

∂2

∂y2 =
(

sin θ sin φ
∂

∂r
+ cos θ sin φ

r
∂

∂θ
+ cos φ

r sin θ

∂

∂φ

)2

,

∂2

∂z2 =
(

cos θ
∂

∂r
− sin θ

r
∂

∂θ

)2

.

Collecting the terms, we find after some straightforward but
tedious algebra

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

= 1
r2

[
∂

∂r

(
r2 ∂

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
.

8.13 Using Eqs. (8.50) and (8.56), after some straightforward
but tedious algebra we can write the gradient operator in
spherical coordinates as [see Eq. (6.97)]

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z

= er
∂

∂r
+ eθ

1
r

∂

∂θ
+ eφ

1
r sin θ

∂

∂φ
,

where er , eθ , and eφ are the spherical unit basis vectors.
Therefore, the orbital angular momentum L̂ = r̂ × p̂ = −i!r̂ ×
∇ in spherical coordinates is given by

L̂ = −i!rer ×
(

er
∂

∂r
+ eθ

1
r

∂

∂θ
+ eφ

1
r sin θ

∂

∂φ

)

= i!
(

eθ

1
sin θ

∂

∂φ
− eφ

∂

∂θ

)
,
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where use has been made of the properties er × er = 0, er ×
eθ = eφ , and er × eφ = −eθ [see Eq. (8.52)]. In other words,
we have

L̂r = 0, L̂θ = i!
1

sin θ

∂

∂φ
, L̂φ = −i!

∂

∂θ
.

8.14 In order to derive Eq. (8.86), we first write Eq. (8.83) in terms
of the constant n as

d2

dr̃2 ξ(r̃) +
[

1
n2 − l(l + 1)

r̃2 + 2
r̃

]
ξ(r̃) = 0.

Using the assumption (8.85), we then express the derivatives
of ξ(r̃) in terms of those of W(r̃) as

d
dr̃

ξ(r̃) =
(

r̃ l+1e− r̃
n W

)′
= (l + 1)r̃ l e− r̃

n W − 1
n

e− r̃
n r̃ l+1W + r̃ l+1e− r̃

n W ′

=
(

l + 1
r̃

− 1
n

+ W ′

W

)
r̃ l+1e− r̃

n W =
(

l + 1
r̃

− 1
n

+ W ′

W

)
ξ ,

d2

dr̃2 ξ(r̃) =
(

l + 1
r̃

− 1
n

+ W ′

W

)′
ξ +

(
l + 1

r̃
− 1

n
+ W ′

W

)
ξ ′

=
[

− l + 1
r̃2 + W ′′

W
− (W ′)2

W2 +
(

l + 1
r̃

− 1
n

+ W ′

W

)2
]

ξ ,

where a prime denotes the derivative with respective to r̃ and
the dependence on r̃ of W and ξ has been suppressed. Now
substituting the latter equations into the first one and making
use of the general mathematical formula (a + b + c)2 = a2 +
b2 + c2 + 2(ab + ac + bc), which is true for arbitrary a, b, and
c, we obtain[

W ′′

W
+

(
2(l + 1)

r̃
− 2

n

)
W ′

W
+ 2

r̃

(
1 − l + 1

n

)]
ξ = 0,

which upon multiplying by r̃W yields
[

r̃W ′′(r̃) + 2
(

l + 1 − r̃
n

)
W ′(r̃) + 2(n − l − 1)

n
W(r̃)

]
ξ(r̃) = 0,

where the dependence on r̃ of W and ξ has been restored.
Since ξ(r̃) ̸= 0, dividing both sides of the above equation by
ξ(r̃) we finally obtain Eq. (8.86).

8.15 This is straightforward.
n−1∑

l=0

(2l + 1) = 2
n−1∑

l=0

l + n = 2
n(n − 1)

2
+ n = n2.
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8.16 From the recurrence relation (8.93), for n = 2 and l = 0 we
have

c1 = 1 − 2
2

c0 = −1
2

c0, c2 = 2 − 2
6

c1 = 0,

with all other c j = 0 for j > 2. This means

W(η) = c0

(
1 − 1

2
η

)
= c0

(
1 − r̃

2

)
.

By taking into account Eqs. (8.85) and (8.87), we have

ξ(r̃) = c0 r̃ e− r̃
2

(
1 − r̃

2

)
,

which finally gives [see Eqs. (8.73) and (8.81)]

f20 = N20

(
1 − r

2a0

)
e− r

2a0 ,

where N20 is the normalization constant.
For n = 2 and l = 1, the only non-zero coefficient is c0. This
means W(η) = c0 and

ξ(r̃) = c0 r̃2 e− r̃
2 .

Hence, we have

f21 = N21

(
r
a0

)
e− r

2a0 ,

where N21 is the normalization constant.
8.17 The states |↑z⟩ and |↓z⟩ are eigenstates of Ŝ

2
with eigenvalue

3!2

4 , hence Ŝ
2

is diagonal in the basis {|↑z⟩, |↓z⟩} and
proportional to the identity matrix with the proportional
constant being 3!2

4 . The same result can be obtained from

⟨ 1
2 , m|Ŝ2| 1

2 , m′⟩ = 3!2

4 δmm′ .
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8.18 This is straightforward.

[
σ̂x , σ̂y

]
=

[
0 1
1 0

] [
0 −i
i 0

]
−

[
0 −i
i 0

] [
0 1
1 0

]

=
[
i 0
0 −i

]
−

[
−i 0
0 i

]
= 2i

[
1 0
0 −1

]
= 2iσ̂z,

[σ̂z, σ̂x ] =
[

1 0
0 −1

] [
0 1
1 0

]
−

[
0 1
1 0

] [
1 0
0 −1

]

=
[

0 1
−1 0

]
−

[
0 −1
1 0

]
= 2i

[
0 −i
i 0

]
= 2iσ̂y ,

[
σ̂y , σ̂z

]
=

[
0 −i
i 0

] [
1 0
0 −1

]
−

[
1 0
0 −1

]
−

[
0 −i
i 0

]

=
[

0 i
i 0

]
−

[
0 −i
−i 0

]
= 2i

[
0 1
1 0

]
= 2iσ̂x .

8.19 It suffices to show that
[

Ĵ x , Ĵ y
]

= [ Ĵ 1x + Ĵ 2x , Ĵ 1y + Ĵ 2y]

= [ Ĵ 1x , Ĵ 1y] + [ Ĵ 2x + Ĵ 2y]

= i!( Ĵ 1z + Ĵ 2z)

= i! Ĵ z.

Commutation relations for other components can be obtained
in a similar manner.

8.20 (a) The particles has a probability of 1
2 in both states |↑z⟩1 ⊗

|↓z⟩2 and |↓z⟩1 ⊗ |↑z⟩2, hence the probability for Alice to
obtain S1z = !

2 is 1
2 .

(b) If particle 1 is in the state |↑z⟩, which has a probability of 1
2 ,

the probability for Alice to obtain S1x = !
2 is |⟨↑x |↑z⟩|2 =

1
2 . If it is in the state |↓z⟩, which also has a probability of 1

2 ,
the probability for Alice to obtain S1x = !

2 is |⟨↑x |↓z⟩|2 =
1
2 . Hence the probability for Alice to obtain S1x = !

2 is 1
2 ×

1
2 + 1

2 × 1
2 = 1

2 .
(c) After Bob’s measurement, the particles are in the state

|↓z⟩1 ⊗ |↑z⟩2. Hence the outcome of Alice’s measurement
is S1z = −!

2 with a probability 1.
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(d) The outcome of Alice’s measurement is S1x = !
2 with

a probability |⟨↑x |↓z⟩|2 = 1
2 and S1x = −!

2 with a
probability |⟨↓x |↓z⟩|2 = 1

2 .

Chapter 9

9.1 The fact that the first row of the unitary operator Û BS has
elements of the same sign while the second row has elements
of opposite sign means that the lower component of |ψ⟩ is
preserved while the upper component is annihilated.

9.2 This is straightforward.

Û ′
BS|ψ⟩ = 1

2

[
1 −1
1 1

] (
1
1

)
= 1

2

(
0
2

)
= |u⟩.

9.3 The conjugate transpose of the operator Û ′
BS is

Û ′†
BS = 1√

2

[
1 1

−1 1

]
,

and we have

Û ′
BSÛ ′†

BS = 1
2

[
1 −1
1 1

] [
1 1

−1 1

]
= 1

2

[
2 0
0 2

]
= Î ,

Û ′†
BSÛ ′

BS = 1
2

[
1 1

−1 1

] [
1 −1
1 1

]
= 1

2

[
2 0
0 2

]
= Î .

9.4 Because it cannot be expressed in terms of a single projector but
as a combination of projectors.

9.5 Since we have

|o′
k⟩ =

∑

j

c j ⟨a′
k|aj ⟩|o j ⟩,

|a′
k⟩ =

∑

j

|aj ⟩⟨aj |a′
k⟩,
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we can write

∑

k

|o′
k⟩|a′

k⟩ =
∑

k

∑

j

c j ⟨aj |a′
k⟩⟨a′

k|aj ⟩|o j ⟩|aj ⟩

=
∑

j

c j ⟨aj |
(∑

k

|a′
k⟩⟨a′

k|
)

|aj ⟩|o j ⟩|aj ⟩

=
∑

j

c j ⟨aj |aj ⟩|o j ⟩|aj ⟩

=
∑

j

c j |o j ⟩|aj ⟩.

9.6 From the property (9.33) it is conceivable that (based on
continuity arguments) we may define 0 logb 0 = 0 for an
arbitrary base b > 0, then the conclusion follows.

9.7 From Eq. (9.34), the Shannon entropy of the source is given by

H = −x lg x − (1 − x) lg(1 − x).

The plot of H as a function of x for 0 ≤ x ≤ 1 is depicted in the
figure below, which shows clearly that H is maximum at x = 1

2 .

9.8 This is straightforward as the following truth table of ¬( p ∧ q)
is identical to that of ¬p ∨ ¬q in Table 9.5.

9.9 The rows are the first, third and fifth ones. The relative equation
is

(r = 0) ∧ ¬( p ∧ q) or (r = 0) ∧ (¬p ∨ ¬q).
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Input Output

p q ¬( p ∧ q)

1 1 0
1 0 1
0 1 1
0 0 1

Chapter 10

10.2 Using the actions of σ̂y on |↑z⟩ and |↓z⟩ tabulated in Table 8.1,
we obtain

(σ̂1y ⊗ σ̂2y)|+0⟩ = 1√
2

(σ̂1y|↑z⟩1 ⊗ σ̂2y|↓z⟩2

− σ̂1y|↓z⟩1 ⊗ σ̂2y|↑z⟩2)

= 1√
2

[i|↓z⟩1 ⊗ (−i)|↑z⟩2

− (−i)|↑z⟩1 ⊗ i|↓z⟩2]

= −|+0⟩.

10.3 Making use of the inverse of Eq. (8.114b),

|↑z⟩ = 1√
2

(|↑y⟩ + |↓y⟩), |↓z⟩ = − i√
2

(|↑y⟩ − |↓y⟩),

we can rewrite |+0⟩ in terms of |↑y⟩ and |↓y⟩ as

|+0⟩ = 1√
2

(|↑z⟩1 ⊗ |↓z⟩2 − |↓z⟩1 ⊗ |↑z⟩2)

= − i
2
√

2
[(|↑y⟩1 + |↓y⟩1) ⊗ (|↑y⟩2 − |↓y⟩2)

− (|↑y⟩1 − |↓y⟩1) ⊗ (|↑y⟩2 + |↓y⟩2)]

= i√
2

(|↑y⟩1 ⊗ |↓y⟩2 − |↓y⟩1 ⊗ |↑y⟩2),

which, apart from the global phase factor i, is a singlet state
but with the projection of the spin along the y direction.
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10.4 This is straightforward.

⟨+0|σ̂1yσ̂2x |+0⟩ = ⟨+0|σ̂1yσ̂2x
(
|↑z⟩1|↓z⟩2 − |↓z⟩1|↑z⟩2

)

= ⟨+0|
[
i|↓z⟩1|↑z⟩2 − (−i)|↑z⟩1|↓z⟩2

]

= i
(
⟨↑z |1⟨↓z |2 − ⟨↓z |1⟨↑z |2

)

×
(
|↑z⟩1|↓z⟩2 + |↓z⟩1|↑z⟩2

)

= 0,

⟨+0|σ̂1yσ̂2z|+0⟩ = ⟨+0|σ̂1yσ̂2z
(
|↑z⟩1|↓z⟩2 − |↓z⟩1|↑z⟩2

)

= ⟨+0|
[
−i|↓z⟩1|↓z⟩2 − (−i)|↑z⟩1|↑z⟩2

]

= i
(
⟨↑z |1⟨↓z |2 − ⟨↓z |1⟨↑z |2

)

×
(
|↑z⟩1|↑z⟩2 − |↓z⟩1|↓z⟩2

)

= 0,

⟨+0|σ̂1zσ̂2x |+0⟩ = ⟨+0|σ̂1zσ̂2x
(
|↑z⟩1|↓z⟩2 − |↓z⟩1|↑z⟩2

)

= ⟨+0|
[
|↑z⟩1|↑z⟩2 − (−1)|↓z⟩1|↓z⟩2

]

=
(
⟨↑z |1⟨↓z |2 − ⟨↓z |1⟨↑z |2

)

×
(
|↑z⟩1|↑z⟩2 + |↓z⟩1|↓z⟩2

)

= 0,

⟨+0|σ̂1zσ̂2y|+0⟩ = ⟨+0|σ̂1zσ̂2y
(
|↑z⟩1|↓z⟩2 − |↓z⟩1|↑z⟩2

)

= ⟨+0|
[
−i|↑z⟩1|↑z⟩2 − (−i)|↓z⟩1|↓z⟩2

]

= −i
(
⟨↑z |1⟨↓z |2 − ⟨↓z |1⟨↑z |2

)

×
(
|↑z⟩1|↑z⟩2 − |↓z⟩1|↓z⟩2

)

= 0,

where use has been made of Table 8.1 and Eq. (7.125).
10.5 For coplanar unit vectors a, b, and c, another counterexample

could be the case that both b and c make an angle of π
4 with a

(but in the opposite sense) and the angle between b and c is π
2 .

From Eq. (10.26) we have

⟨a, b⟩+0 = −a · b = − cos
π

4
= − 1√

2
,

⟨a, c⟩+0 = −a · c = − cos
π

4
= − 1√

2
,

⟨b, c⟩+0 = −b · c = − cos
π

2
= 0.
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Therefore, we obtain
∣∣⟨a, b⟩+0 + ⟨a, c⟩+0

∣∣ + ⟨b, c⟩+0 =
√

2 > 1,

which obviously violates the Bell inequality (10.35).
10.6 A straightforward but tedious algebra leads to

|+⟩ = 1
2

(
|++⟩14|++⟩23 − |+−⟩14|+−⟩23 − |,+⟩14|,+⟩23

+ |,−⟩14|,−⟩23

)

= 1
4

[(|h1v4⟩ + |v1h4⟩)(|h2v3⟩ + |v2h3⟩) − (|h1v4⟩ − |v1h4⟩)

× (|h2v3⟩ − |v2h3⟩)

− (|h1h4⟩ + |v1v4⟩)(|h2h3⟩ + |v2v3⟩) + (|h1h4⟩ − |v1v4⟩)

× (|h2h3⟩ − |v2v3⟩)]

= 1
2

(|h1v2⟩|h3v4⟩ − |h1v2⟩|v3h4⟩ − |v1h2⟩|h3v4⟩

+ |v1h2⟩|v3h4⟩)

= 1
2

(|h1v2⟩ − |v1h2⟩)(|h3v4⟩ − |v3h4⟩)

= |ψ⟩12 ⊗ |ψ⟩34.

where in the intermediate steps we have used the condensed
notation for product states, i.e., |h1v2⟩ = |h⟩1|v⟩2, |v3h4⟩ =
|v⟩3|h⟩4, etc.

10.7 We have

℘(oa|ob, a, b) = Tr
(

P̂oa , a ρ̂ ′′)

=
Tr

(
P̂oa , a P̂ob , b ρ̂ P̂ob , b

)

℘(ob|b)
,

where

ρ̂ ′′ = P̂ob , b ρ̂ P̂ob

℘(ob|b)
and P̂oa , a = |oa , a⟩⟨oa , a|.

Then, it follows that

℘(oa , ob|a, b) = Tr
(

P̂oa , a P̂ob , b ρ̂ P̂ob , b
)

= Tr
(

P̂oa , a P̂ob , b ρ̂
)

.
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This allows us to finally obtain

℘(oa|a) =
∑

ob

℘(oa , ob|a, b)

=
∑

ob

Tr
(

P̂oa , a P̂ob , b ρ̂
)

= Tr

[
P̂oa , a

(∑

ob

P̂ob , b

)
ρ̂

]

= Tr
(

P̂oa , a ρ̂
)

,

where use has been made of the property that
∑

ob
P̂ob ,b = Î

for any complete set of orthogonal projectors [see Sec. 3.7].

Chapter 11

11.1 Since two antipodal points on the Bloch sphere have angular
coordinates (θ , φ) and (π − θ , φ +π), the corresponding two
state vectors are given by [see Eq. (11.2)]

|ψ1⟩ = cos
θ

2
|0⟩ + eiφ sin

θ

2
|1⟩,

|ψ2⟩ = cos
π − θ

2
|0⟩ + ei(π+φ) sin

π − θ

2
|1⟩

= sin
θ

2
|0⟩ − eiφ cos

θ

2
|1⟩,

where use has been made of Eqs. (2.19) and (2.22).
Hence, the states |ψ1⟩ and |ψ2⟩ are mutually orthogonal as
⟨ψ1|ψ2⟩ = 0.

11.2 This is straightforward.

|1⟩ ÛH−−→ 1√
2

(|0⟩ − |1⟩)

Ûφ−−→ 1√
2

(|0⟩ − eiφ|1⟩)

ÛH−−→ 1
2

[(1 − eiφ)|0⟩ + (1 + eiφ)|1⟩],

where use has been made of Eqs. (11.7) and (11.12).
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11.3 The action of the CZ gate on the computational basis states is
given by

Û CZ|00⟩ = |00⟩, Û CZ|01⟩ = |01⟩,

Û CZ|10⟩ = |10⟩, Û CZ|11⟩ = −|11⟩,

where where the first qubit is the control qubit and the
second the target qubit, and used has been made of Table 8.1.
Hence we have

Û CZ =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤

⎥⎥⎦ ,

which is a unitary matrix.
11.6 Let |ψ⟩ = a|0⟩ + b|1⟩ and |φ⟩ = c|0⟩ + d|1⟩, then we have

|ψ⟩|φ⟩ = ac|00⟩ + ad|01⟩ + bc|10⟩ + bd|11⟩,

|φ⟩|ψ⟩ = ac|00⟩ + bc|01⟩ + ad|10⟩ + bd|11⟩.

Therefore, the action of the swap gate on the computational
basis states is given by

Û swap|00⟩ = |00⟩, Û swap|01⟩ = |10⟩,

Û swap|10⟩ = |01⟩, Û swap|11⟩ = |11⟩,

which implies

Û swap =

⎡

⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥⎥⎦ .

11.7 The state |+⟩123 can be expanded in the Bell basis as

|+⟩ = c−|+−⟩ + c+|++⟩ + d−|,−⟩ + d+|,+⟩,
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where the subscripts have been suppressed for the sake of
notational simplicity. The expansion coefficients are given by

c∓ = ⟨+∓|+⟩

= 1
2

(⟨0|1⟨1|2 ∓ ⟨1|1⟨0|2)
[
α(|0⟩1|0⟩2|1⟩3 − |0⟩1|1⟩2|0⟩3)

+ β(|1⟩1|0⟩2|1⟩3 − |1⟩1|1⟩2|0⟩3)
]

= −1
2

(α|0⟩3 ± β|1⟩3),

d∓ = ⟨,∓|+⟩

= 1
2

(⟨0|1⟨0|2 ∓ ⟨1|1⟨1|2)
[
α(|0⟩1|0⟩2|1⟩3 − |0⟩1|1⟩2|0⟩3)

+ β(|1⟩1|0⟩2|1⟩3 − |1⟩1|1⟩2|0⟩3)
]

= 1
2

(α|1⟩3 ± β|0⟩3),

from which we obtain the desired result.
11.8 Each Bell state is as good as the other for implementing

quantum teleportation as the four Bell states are related
by unitary transformations. The reader can check their
equivalence by explicit calculations.

11.9 Let a, b, and c denote respectively the directions given by
the B, ⊕, and ⊗ bases, then from Footnote a in p. 371 and
Footnote a in p. 374 it follows that

a = 1√
2

(ez + ex ), b = ez, c = ex .

Since |+−⟩ and |+0⟩ represent the same Bell state, using
Eq. (10.26) we have

⟨a, b⟩+− = −a · b = − 1√
2

,

⟨a, c⟩+− = −a · c = − 1√
2

,

⟨b, c⟩+− = −b · c = 0.

Therefore, we obtain

|⟨a, b⟩+− + ⟨a, c⟩+− | + ⟨b, c⟩+− =
√

2 > 1,

which indeed violates the Bell inequality (10.35).
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11.10 It suffices to consider the definition (11.58).
11.11 From the given information

℘( J = 1, K = 1) = 0, ℘( J = 2, K = 1) = 3
4

,

℘( J = 1, K = 2) = 1
8

, ℘( J = 2, K = 2) = 1
8

.

it follows that

℘( J = 1) = 1
8

+ 0 = 1
8

, ℘( J = 2) = 3
4

+ 1
8

= 7
8

℘(K = 1) = 0 + 3
4

= 3
4

, ℘(K = 2) = 1
8

+ 1
8

= 1
4

.

Hence, we have

H ( J , K) = −3
4

lg
3
4

− 1
8

lg
1
8

− 1
8

lg
1
8

≃ 1.061 bits,

H ( J ) = −1
8

lg
1
8

− 7
8

lg
7
8

≃ 0.544 bits,

H (K) = −3
4

lg
3
4

− 1
4

lg
1
4

≃ 0.811 bits,

from which we obtain

I ( J : K) = H ( J ) + H (K) − H ( J , K)

= −7
8

lg
7
8

− 1
4

lg
1
4

+ 1
8

lg
1
8

≃ 0.294 bits,

H ( J |K) = H ( J ) − I ( J : K)

= 1
4

lg
1
4

− 1
8

lg
1
8

− 1
8

lg
1
8

= 1
4

bits,

H (K | J ) = H (K) − I ( J : K)

= −3
4

lg
3
4

+ 7
8

lg
7
8

− 1
8

lg
1
8

≃ 0.518 bits.
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Chapter 12

12.1 From the definition of Ê j , we have

Ê †
j = TrS

[(
Û †

t P̂aj Û tρ̂S
)†]

= TrS
(
ρ̂SÛ †

t P̂aj Û t
)

= TrS
(

Û †
t P̂aj Û tρ̂S

)

= Ê j ,

where use has been made of the fact that the density matrix
and projector are Hermitian, and the cyclic property of the
trace (7.115c). Alternatively, from Eq. (12.20) we find

Ê †
j = ϑ̂

†
j ϑ̂ j = Ê j .

Let |φA⟩ be an arbitrary state in HA , then again from
Eq. (12.20) we have

⟨Ê j ⟩φA = ⟨φA|ϑ̂†
j ϑ̂ j |φA⟩ =

∥∥ϑ̂ j |φA⟩
∥∥2 ≥ 0.

12.2 This is straightforward but tedious.

Â = 1√
2

[
Ô2

a + (Ôb + Ôb′ )2

2
− 2

Ôa(Ôb + Ôb′ )√
2

+ Ô2
a′

+ (Ôb − Ôb′ )2

2
− 2

Ôa′ (Ôb − Ôb′ )√
2

]

= 1√
2

1
2
√

2

[
2
√

2Ô2
a +

√
2Ô2

b +
√

2Ô2
b′ +

√
2(Ôb Ôb′ + Ôb′ Ôb)

− 4Ôa Ôb − 4Ôa Ôb′ + 2
√

2Ô2
a′ +

√
2Ô2

b +
√

2Ô2
b′

−
√

2(Ôb Ôb′ + Ôb′ Ôb) − 4Ôa′ Ôb + 4Ôa′ Ôb′

]

= 1
4

[
2
√

2(Ô2
a + Ô2

a′ + Ô2
b + Ô2

b′ )

− 4(Ôa Ôb + Ôa′ Ôb + Ôa Ôb′ − Ôa′ Ôb′ )
]

= 2
√

2 Î − B̂,

wherein the second equality it is noted that Ôb Ôb′ + Ôb′ Ôb ̸=
2Ôb Ôb′ since Ôb and Ôb′ do not commute.
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12.3 Consider the Hermitian operator

Â′ = 2
√

2 Î + B̂

= 1√
2

(
Ô2

a + Ô2
a′ + Ô2

b + Ô2
b′
)

+ B̂,

which can be written as [see Problem 12.2]

Â′ = 1√
2

[(
Ôa + Ôb + Ôb′

√
2

)2

+
(

Ôa′ + Ôb − Ôb′
√

2

)2]
.

Since Â′ is in the form of the sum of squares of Hermitian
operators, it is positive semidefinite and has a non-negative
expectation value, that is,

⟨Â′⟩ = 2
√

2 + ⟨B̂⟩ ≥ 0.

Hence, we have

⟨B̂⟩ ≥ −2
√

2,

which completes the proof.
12.4 The squares of the observables Ô and Ô′ are given by

Ô2 = (|1⟩⟨1| − |2⟩⟨2|)(|1⟩⟨1| − |2⟩⟨2|) = |1⟩⟨1| + |2⟩⟨2|,
Ô′2 = (|3⟩⟨3| − |4⟩⟨4|)(|3⟩⟨3| − |4⟩⟨4|) = |3⟩⟨3| + |4⟩⟨4|,

which yields

Â = 1√
2

(|1⟩⟨1| + |2⟩⟨2| + |3⟩⟨3| + |4⟩⟨4|)

=
√

2(|1⟩⟨1| + |2⟩⟨2|).

In obtaining the last equality, we have made use of the
relations

|3⟩⟨3| = 1
2

(|1⟩⟨1| + |2⟩⟨2| + |1⟩⟨2| + |2⟩⟨1|),

|4⟩⟨4| = 1
2

(|1⟩⟨1| + |2⟩⟨2| − |1⟩⟨2| − |2⟩⟨1|),

The main lesson here is that the square of a Hermitian
operator turns out to be a sum of only positive semidefinite
operators. Let

|ψ⟩ = c1|1⟩ + c2|2⟩,
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where c1 and c2 are probability amplitudes satisfying the
normalization condition |c1|2 + |c2|2 = 1, then ⟨ Â⟩ψ is given
by

⟨ Â⟩ψ =
√

2(⟨ψ |1⟩⟨1|ψ⟩ + ⟨ψ |2⟩⟨2|ψ⟩)

=
√

2(|c1|2 + |c2|2)

=
√

2 ≥ 0.

It is noted that the equality holds if and only if |ψ⟩ = 0.
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