23 research outputs found

    The Paramecium histone chaperone Spt16-1 is required for Pgm endonuclease function in programmed genome rearrangements.

    Get PDF
    In Paramecium tetraurelia, a large proportion of the germline genome is reproducibly removed from the somatic genome after sexual events via a process involving small (s)RNA-directed heterochromatin formation and DNA excision and repair. How germline limited DNA sequences are specifically recognized in the context of chromatin remains elusive. Here, we use a reverse genetics approach to identify factors involved in programmed genome rearrangements. We have identified a P. tetraurelia homolog of the highly conserved histone chaperone Spt16 subunit of the FACT complex, Spt16-1, and show its expression is developmentally regulated. A functional GFP-Spt16-1 fusion protein localized exclusively in the nuclei where genome rearrangements take place. Gene silencing of Spt16-1 showed it is required for the elimination of all germline-limited sequences, for the survival of sexual progeny, and for the accumulation of internal eliminated sequence (ies)RNAs, an sRNA population produced when elimination occurs. Normal accumulation of 25 nt scanRNAs and deposition of silent histone marks H3K9me3 and H3K27me3 indicated that Spt16-1 does not regulate the scanRNA-directed heterochromatin pathway involved in the early steps of DNA elimination. We further show that Spt16-1 is required for the correct nuclear localization of the PiggyMac (Pgm) endonuclease, which generates the DNA double-strand breaks required for DNA elimination. Thus, Spt16-1 is essential for Pgm function during programmed genome rearrangements. We propose a model in which Spt16-1 mediates interactions between the excision machinery and chromatin, facilitating endonuclease access to DNA cleavage sites during genome rearrangements

    Telomeric Trans-Silencing in Drosophila melanogaster: Tissue Specificity, Development and Functional Interactions between Non-Homologous Telomeres

    Get PDF
    BACKGROUND: The study of P element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, "TAS") has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. TSE can show variegation in ovaries, displays a maternal effect as well as an epigenetic transmission through meiosis and involves heterochromatin and RNA silencing pathways. PRINCIPAL FINDINGS: Here, we analyze phenotypic and genetic properties of TSE. We report that TSE does not occur in the soma at the adult stage, but appears restricted to the female germline. It is detectable during development at the third instar larvae where it presents the same tissue specificity and maternal effect as in adults. Transgenes located in TAS at the telomeres of the main chromosomes can be silencers which in each case show the maternal effect. Silencers located at non-homologous telomeres functionally interact since they stimulate each other via the maternally-transmitted component. All germinally-expressed euchromatic transgenes tested, located on all major chromosomes, were found to be repressed by a telomeric silencer: thus we detected no TSE escaper. The presence of the euchromatic target transgene is not necessary to establish the maternal inheritance of TSE, responsible for its epigenetic behavior. A single telomeric silencer locus can simultaneously repress two P-lacZ targets located on different chromosomal arms. CONCLUSIONS AND SIGNIFICANCE: Therefore TSE appears to be a widespread phenomenon which can involve different telomeres and work across the genome. It can explain the P cytotype establishment by telomeric P elements in natural Drosophila populations

    Régulation de l'élément P chez Drosophila melanogaster, Trans-Silencing Effect et Paramutation

    No full text
    L'étude de la répression de l'élément transposable P chez Drosophila melanogaster a été menée à l aide d'un modèle transgénique appelé Trans-Silencing Effect (TSE). Au cours, du TSE un transgène P-lacZ télomérique réprime l'expression germinale d'un transgène homologue inséré en trans dans le génome. Le TSE présente un effet maternel et une transmission épigénétique sur plusieurs générations. Le TSE apparaît faire intervenir une boucle fonctionnelle positive entre formation d'hétérochromatine et répression par les piRNAs. Mon travail de thèse s est articulé autour de trois axes. Le premier fut l affinement de l étude phénotypique et génétique du TSE. Des transgènes répresseurs ont été identifiés à tous les télomères, et qu ils peuvent interagir fonctionnellement entre eux pour établir le TSE. De plus, plusieurs transgènes cibles peuvent être réprimés simultanément par un seul transgène répresseur. Le second a été de tester si le TSE est un phénomène cellulaire général pouvant fonctionner via des séquences différentes de l élément P. Il y est montré qu un transgène P-lacZ peut réprimer un transgène piggyBac-lacZ, l unique homologie de séquence résidant dans les séquences lacZ. Le troisième axe a concerné l analyse des propriétés épigénétiques fines du TSE ; cela a permis de montrer l existence d un premier cas de paramutation stable dans le monde animal. La paramutation chez la Drosophile correspond à l émergence d un locus producteur de piRNAs et, fournit ainsi un modèle unique pour étudier cette étape inexplorée de la voie du piRNA.PARIS-BIUSJ-Biologie recherche (751052107) / SudocSudocFranceF

    The Paramecium histone chaperone Spt16-1 is required for Pgm endonuclease function in programmed genome rearrangements.

    No full text
    In Paramecium tetraurelia, a large proportion of the germline genome is reproducibly removed from the somatic genome after sexual events via a process involving small (s)RNA-directed heterochromatin formation and DNA excision and repair. How germline limited DNA sequences are specifically recognized in the context of chromatin remains elusive. Here, we use a reverse genetics approach to identify factors involved in programmed genome rearrangements. We have identified a P. tetraurelia homolog of the highly conserved histone chaperone Spt16 subunit of the FACT complex, Spt16-1, and show its expression is developmentally regulated. A functional GFP-Spt16-1 fusion protein localized exclusively in the nuclei where genome rearrangements take place. Gene silencing of Spt16-1 showed it is required for the elimination of all germline-limited sequences, for the survival of sexual progeny, and for the accumulation of internal eliminated sequence (ies)RNAs, an sRNA population produced when elimination occurs. Normal accumulation of 25 nt scanRNAs and deposition of silent histone marks H3K9me3 and H3K27me3 indicated that Spt16-1 does not regulate the scanRNA-directed heterochromatin pathway involved in the early steps of DNA elimination. We further show that Spt16-1 is required for the correct nuclear localization of the PiggyMac (Pgm) endonuclease, which generates the DNA double-strand breaks required for DNA elimination. Thus, Spt16-1 is essential for Pgm function during programmed genome rearrangements. We propose a model in which Spt16-1 mediates interactions between the excision machinery and chromatin, facilitating endonuclease access to DNA cleavage sites during genome rearrangements

    Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression

    No full text
    Background: The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. Results: We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. Conclusions: We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3 ' and 5 ' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis regulatory motifs). The P. tetraurelia improved transcriptome resource, gene annotations for P. tetraurelia, P. biaurelia, P. sexaurelia and P. caudatum, and Paramecium-trained EuGene configuration are available through ParameciumDB (http://paramecium.i2bc.paris-saclay.fr). TrUC software is freely distributed under a GNU GPL v3 licence (https://github.com/oarnaiz/TrUC)

    Additional file 3: of Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression

    No full text
    Gene expression atlas. All P. tetraurelia v2 genes (‘ID’) with their normalized RNA-Seq counts (last 15 columns, sample labels as in Additional file 2: Table S1) are given. The mean value for biological replicates are given in the columns VEG, MEI, FRG, DEV1, DEV2/3, DEV4. The ‘P-value’ ‘Significant’ and ‘Expression profile’ refer to the differential gene expression analysis (cf. Methods). ‘Note’ is the description of the best SwissProt BLASTP match. The GO ID and GO description were inferred electronically using InterProScan. The Biological Process GO term associated with the highest scoring protein domain is given. (TSV 12379 kb
    corecore