22 research outputs found

    Prediction of soil water retention properties using pore-size distribution and porosity

    Get PDF
    Several models have been suggested to link a soil's pore-size distribution to its retention properties. This paper presents a method that builds on previous techniques by incorporating porosity and particles of different sizes, shapes, and separation distances to predict soil water retention properties. Mechanisms are suggested for the determination of both the main drying and wetting paths, which incorporate an adsorbed water phase and retention hysteresis. Predicted results are then compared with measured retention data to validate the model and to provide a foundation for discussing the validity and limitations of using pore-size distributions to predict retention properties. </jats:p

    Generation of shape functions for straight beam elements

    Full text link

    A geometrically-exact Finite Element Method for micropolar continua with finite deformations

    Get PDF
    Micropolar theory is a weakly non-local higher-order continuum theory based on the inclusion of independent (micro-)rotational degrees of freedom. Subsequent introduction of couple-stresses and an internal length scale mean the micropolar continuum is therefore capable of modelling size effects. This paper proposes a non-linear Finite Element Method based on the spatial micropolar equilibrium equations, but using the classical linear micropolar constitutive laws defined in the reference configuration. The method is verified rigorously with the Method of Manufactured Solutions, and quadratic Newton-Raphson convergence of the minimised residuals is demonstrated

    An hp-adaptive discontinuous Galerkin method for phase field fracture

    Get PDF
    The phase field method is becoming the de facto choice for the numerical analysis of complex problems that involve multiple initiating, propagating, interacting, branching and merging fractures. However, within the context of finite element modelling, the method requires a fine mesh in regions where fractures will propagate, in order to capture sharp variations in the phase field representing the fractured/damaged regions. This means that the method can become computationally expensive when the fracture propagation paths are not known a priori. This paper presents a 2D -adaptive discontinuous Galerkin finite element method for phase field fracture that includes a posteriori error estimators for both the elasticity and phase field equations, which drive mesh adaptivity for static and propagating fractures. This combination means that it is possible to be reliably and efficiently solve phase field fracture problems with arbitrary initial meshes, irrespective of the initial geometry or loading conditions. This ability is demonstrated on several example problems, which are solved using a light-BFGS (Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton algorithm. The examples highlight the importance of driving mesh adaptivity using both the elasticity and phase field errors for physically meaningful, yet computationally tractable, results. They also reveal the importance of including -refinement, which is typically not included in existing phase field literature. The above features provide a powerful and general tool for modelling fracture propagation with controlled errors and degree-of-freedom optimised meshes

    Modelling Screwpile Installation Using the MPM

    Get PDF
    Screwpiles are, as the name suggests, piled foundations which are screwed into the ground. They provide restraint to both upwards and downward loading directions and are commonly used for light structures subject to overturning or wind loading, such as sign gantries at the sides of motorways. An EPSRC-funded project led by University of Dundee has recently started, with Durham and Southampton as partners, in which the use of screwpiles (individual or in groups) for offshore foundations is under investigation. At Durham, a numerical modelling framework based on the material point method (MPM) is being developed for the installation phase of a screwpile. The aim is to use the model to provide an accurate representation of the in situ ground conditions once the pile is installed, as during installation the ground is disturbed and any model that “wishes in place” a screwpile may not provide representative long-term performance predictions. Following modelling of installation, the soil state will be transferred to a standard finite element package for the subsequent modelling of in-service performance (the MPM being considered unnecessary and computationally expensive for this phase of the life of a screwpile). In this preliminary work, we present the development of features of this numerical tool to simulate the screwpile installation. These features include a moving mesh concept (both translation and rotation) and interface elements. The effectiveness of the algorithm is illustrated through simple examples

    Modelling Seabed Ploughing Using the Material Point Method

    Get PDF
    Ploughing of the seabed is needed for the installation of cables and pipelines and is an area of construction likely to increase given plans in the UK and elsewhere for offshore marine energy (wind and tidal). Seabed ploughing is an expensive and sometimes risky operation for which there are limited guidelines as to what the tow force and speed is for an expected trenching profile within a specified ground condition. Most ploughing schemes are designed using semi-empirical approaches, with very few computational tools able to take into account the geometric and material nonlinearity inherited by the ploughing problem. In this paper we describe how the Material Point Method (MPM) is being used as a numerical tool to model seabed ploughing with the aim of providing an improved predictive tool for the future, via an EPSRC-funded research project at Durham and Dundee Universities. Various issues are discussed in the paper including the means of modelling moving essential boundaries and the choice of basis functions, and this new method in MPM is demonstrated on a simple ploughing problem

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Numerical modelling of tunnelling processes for assessment of damage to buildings

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:D198122 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore