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Abstract. Micropolar theory is a weakly non-local higher-order continuum theory based on the inclusion
of independent (micro-)rotational degrees of freedom. Subsequent introduction of couple-stresses and
an internal length scale mean the micropolar continuum is therefore capable of modelling size effects.
This paper proposes a non-linear Finite Element Method based on the spatial micropolar equilibrium
equations, but using the classical linear micropolar constitutive laws defined in the reference configu-
ration. The method is verified rigorously with the Method of Manufactured Solutions, and quadratic
Newton-Raphson convergence of the minimised residuals is demonstrated.
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1 Introduction

The modelling of materials with microstructures has become an important research topic in the field of
solid mechanics. The use of micropolar continua, first proposed by the Cosserat brothers in 1909 [1],
has been proven to be an effective approach for capturing the complex behaviour of such materials,
especially granular media. The theory introduces an additional kinematic field of rigid-body proper
orthogonal rotations to the conventional continuum formulation, which occur in the microstructure (e.g.
soil grains) independently of the macro-deformation. Micropolar continua therefore have six degrees of
freedom: three for the translations and three for the rotations. A kinematic measure of the gradient of
these rotations is included in the thermodynamic formulation, which is conjugate to couple-stress (torque
per unit area). As a result, the theory is characterised as weakly non-local and a characteristic length is
introduced, allowing the observation of size effects and the natural evolution of strain localisation.

To date, few numerical methods have been developed to model micropolar continua in the finite strain and
micro-rotation (meaning occurring in the microstructure, not of the order 10−6) regime. Although others
have focused on both material and geometric non-linearity [2,3], the only Finite Element Method (FEM)
implementations dealing with purely geometric non-linearity appear to be [4] and [5]. However, the
constitutive model used in [4] is based on a small strain assumption, and [5] provides a total Lagrangian
formulation. The present contribution is therefore the first fully geometrically-exact updated Lagrangian
formulation which still makes rigorous use of the linear micropolar constitutive equations.

2 Micropolar theory

2.1 Kinematics

Let a micropolar continuum occupy a volume Ω in its current (deformed) configuration. The translation
vector ui emanates from the Cartesian reference position Xi of each point in the undeformed volume Ω0 to
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its current position xi in Ω, and the deformation gradient tensor Fiθ =
∂xi
∂Xθ

provides the fundamental link
between reference and current coordinates. At every point in the micro-continuum there exists a rigid
body, attached to which is a set of axes that are free to rotate independently of deformation occurring at
the continuum scale. Each rotated axis ki in the current configuration is related to its counterpart Wψ in
the reference configuration via ki = QiψWψ, where Qiψ ∈ SO(3) is a proper orthogonal tensor termed the
micro-rotation tensor. The rotation may also be parameterised as a vector ϕk of Euler angles around the
reference axes; alternatively ϕk may be identified as the axis of rotation with the angle its magnitude. A
skew-symmetric tensor Φi j =−ei jkϕk (where ei jk is the third-order Levi-Civita, or permutation, tensor)
is then used to compute the micro-rotation tensor using the (Euler-)Rodrigues formula

Qiψ = δiψ +
sin |ϕ|
|ϕ|

Φiψ +
1− cos |ϕ|

|ϕ|2
Φi jΦ jψ, (1)

where δiψ denotes the Kronecker delta and |ϕ| is the magnitude of ϕk. Two Lagrangian measures are used
to quantify micropolar deformation: a strain tensor, and a measure of the rotation gradient (curvature),
named the wryness tensor which endows the theory with its non-local property

Eγπ = QiγFiπ −δγπ and Γγπ =−1
2

eγτηQpτ

∂Qpη

∂Xπ

. (2)

2.2 Constitutive and balance equations

To preserve objectivity the constitutive laws are defined only in the reference frame. Biot-like stress Bαβ

and couple-stress Sαβ are obtained directly from the Lagrangian strain and wryness measures as

Bαβ = λδαβEγγ +(µ+ν)Eαβ +(µ−ν)Eβα = DαβγπEγπ (3)

Sαβ = αδαβΓγγ +(β+ γ)Γαβ +(β− γ)Γβα = D̂αβγπΓγπ (4)

where Dαβγπ and D̂αβγπ are constitutive tensors which include the Lamé parameters λ and µ and microp-
olar constants ν, α, β and γ based on information about the material’s characteristic length scale [6]. The
inverse Piola transformation leads to the Cauchy stress and couple-stress

σi j = J−1QiαBαβFjβ and mi j = J−1QiαSαβFjβ (5)

respectively, where J = det(F) is the volume ratio between the original and deformed states. The spatial
forms of linear and angular momentum balance in the quasi-static case read

∂σi j

∂x j
+ pi = 0 and

∂mi j

∂x j
− ei jkσ jk +qi = 0, (6)

where pi and qi are the body force and body couple respectively. Note that the presence of couples in the
angular momentum balance equation, which is satisfied trivially in classical continua through equality of
complementary shear stresses, means the stress tensor is not required to be symmetric.

3 Numerical formulation

Discretisation and application of Galerkin’s method produces weak forms of (6) at a node I,∫
Ω

∂NI

∂x j
σi j dΩ =

∫
Ω

NI pi dΩ and
∫

Ω

(
∂NI

∂x j
mi j +NIei jkσ jk

)
dΩ =

∫
Ω

NIqi dΩ , (7)
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where NI is the shape function associated with node I. Solution of the discretised boundary-value prob-
lem for a fixed external load with a Newton-Raphson scheme requires an iterative sequence of lineari-
sation and incrementation of the internal force pint

Ii and couple qint
Ii expressions (the LHS of (7)1 and

(7)2 respectively) until a convergence criterion is met. The linearisation procedure produces a tangent
stiffness matrix KIiJ j which essentially relates an increment in deformation to an increment in force and
couple, such that

∆pint
Ii = K pu

IiJ j∆uJ j +K pw
IiJ j∆wJ j and ∆qint

Ii = Kqu
IiJ j∆uJ j +Kqw

IiJ j∆wJ j (8)

for deformations at all nodes J, where ∆wJ j denotes an incremental rotation at J around axis k j as oriented
at the beginning of the current iteration. Once the deformation increments are obtained, the kinematic
field is updated for the (k+1)th iteration from that in the kth with

xk+1
i = xk

i +∆ui and Qk+1
iψ = (∆Qi j)Qk

jψ (9)

where ∆Qi j is computed by substituting ∆wk for ϕk in (1). As noted in [4], the complete consistent
linearisation of pint

Ii and qint
Ii with respect to nodal displacement and rotation increments is lengthy and

arduous, and although it has been completed and used in this work, its inclusion lies beyond the scope of
this contribution.

4 Verification

The formulation’s accuracy and convergence properties are assessed by means of the Method of Manu-
factured Solutions (MMS). In the MMS, a synthetic solution field is designed and the corresponding body
force/couple and boundary conditions generated via the governing equations. Numerical accuracy is then
observed by comparing the numerically-approximated solution of the problem with the pre-determined
analytical solution. To that end, the arbitrary displacement-rotation field

u1 = · · ·= ϕ3 = asin(2πX1)sin(2πX2)sin(2πX3), (10)

was chosen, where Xi ∈ [0,1] defines a unit cube domain and a = 1
100 ensures displacement is sufficiently

small to ensure numerical stability. This particular trigonometric function was selected as it is contin-
uously and infinitely differentiable and cannot be captured exactly by Lagrange interpolation. In this
study, the problem is simulated using a three-dimensional FE implementation of the formulation, with
a discretisation of tri-linear hexahedral elements. The Euclidean norms of the displacement error and
Cauchy stress error (normalised by the analytical norm) are then integrated over the domain; the result-
ing convergence graphs for elements of decreasing dimension h are shown on log-log scales in Figures
1(a) and (b). As linear elements are used, quadratic displacement and (approaching) linear stress error
decay is observed. Asymptotically quadratic Newton-Raphson convergence is demonstrated in Figure
1(c) for a separate problem involving very large displacements and rotations. The force residual is com-
puted by taking its Euclidean norm normalised by the external load, and the energy residual is the scalar
product of the force residual and the incremental deformations.

5 Conclusions

A geometrically-exact FEM for modelling the behaviour of micropolar continua under finite strains and
micro-rotations has been presented. The governing equations are solved in the spatial frame, making the
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Figure 1: Convergence with mesh refinement of (a) translations/rotations and (b) Cauchy stress/couple-
stress. Newton-Raphson convergence through a single loadstep is depicted in (c).

method updated Lagrangian, however the constitutive parameters used are defined in the reference frame
and therefore all have physical meaning. Additionally, the method is computationally efficient (in terms
of its convergence rate) and can be used to model complex problems accurately.
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