184 research outputs found

    On preconditioning strategies for geotechnics

    Get PDF
    Iterative solvers are of increasing interest in geomechanics with the move towards 3D finite element modelling. Potentially, these methods can lead to reduced computational complexity as, unlike direct methods, they do not require the full system matrix to be assembled. In general, however, iterative solvers have not been widely adopted in geomechanics due to problems with convergence. This paper reviews the background to iterative methods for elastic and elasto-plastic material models. In some cases, existing numerical methods can be taken from research in the mathematics community. For other systems, further work is needed. The paper provides demonstrations of the capabilities of some strategies

    Investigation into the shear behaviour of rammed earth using shear box tests.

    Get PDF
    Scientific investigations into the structural properties of rammed earth (RE) are gaining momentum and a number of parameters (e.g. suction, particle size distribution and water content), influential on material strength and other properties, have been identified and investigated. Cement stabilisation is undergoing continued investigation, while fibrous stabilisation, also known as fibre reinforcement, is beginning to gain attention. Recent experiments have shown that the addition of fibres such as straw or wool to RE or other earthen materials can improve its flexural strength. Less attention, however, has been paid to the fracture behaviour of RE, and to its shearing behaviour. This paper presents a preliminary investigation into the shearing behaviour of stabilised and unstabilised RE reinforced with waste natural fibres. The Direct Shear Test (DST) is used to obtain peak shear stresses and displacements, from which strength parameters (φ’) and cohesion (c’) are obtained. This paper also presents some scanning electron microscope (SEM) images of these materials. The results show that wool fibres decrease the density and peak shear strength of RE. The effect of water, wool and cement content on φ’ and c’ are also discussed

    Local Maximum Entropy Shape Functions Based FE-EFGM Coupling

    Get PDF
    In this paper, a new method for coupling the finite element method (FEM)and the element-free Galerkin method (EFGM) is proposed for linear elastic and geometrically nonlinear problems using local maximum entropy shape functions in theEFG zone of the problem domain. These shape functions possess a weak Kroneckerdelta property at the boundaries which provides a natural way to couple the EFGand the FE regions as compared to the use of moving least square basis functions.In this new approach, there is no need for interface/transition elements between theEFG and the FE regions or any other special treatment for shape function continuity across the FE-EFG interface. One- and two-dimensional linear elastic and two-dimensional geometrically nonlinear benchmark numerical examples are solved by the new approach to demonstrate the implementation and performance of the current approach

    On the use of Reuleaux plasticity for geometric non-linear analysis.

    Get PDF
    Three dimensional analyses including geometric and material non--linearity require robust, efficient constitutive models able to simulate engineering materials. However, many existing constitutive models have not gained widespread use due to their computational burden and lack of guidance on choosing appropriate material constants. Here we offer a simple cone-type elasto-plastic formulation with a new deviatoric yielding criterion based on a modified Reuleaux triangle. The perfect plasticity model may be thought of as a hybrid between Drucker-Prager (D-P) and Mohr-Coulomb (M-C) that provides control over the internal friction angle independent of the shape of the deviatoric section. This surface allows an analytical backward Euler stress integration on the curved surface and exact integration in the regions where singularities appear. The attraction of the proposed algorithm is the improved fit to deviatoric yielding and the one--step integration scheme, plus a fully defined consistent tangent. The constitutive model is implemented within a lean 3D geometrically non-linear finite-element program. By using an updated Lagrangian logarithmic strain--Kirchhoff stress implementation, existing infinitesimal constitutive models can be incorporated without modification

    Implicit essential boundaries in the Material Point Method

    Get PDF
    The Material Point Method (MPM) is a numerical boundary value problem (BVP) solver developed from particle- in-cell (PIC) methods that discretises the continuum into a set of material points. Information at these material points is mapped to a background Eulerian grid which is used to solve the governing equations. Once solved information is updated at the material points and these points are convected through the grid. The background grid is then reset, allowing the method to easily handle problems involving large deformations without mesh distortion. However, imposition of essential boundary conditions in the (MPM) is challenging when the physical domain does not conform to the background grid. In this research, an implicit boundary method (IBM), based on the work of Kumar et al. [1], is proposed to ensure that essential boundary conditions are satisfied in elastostatic MPM problems

    A review of the Material Point Method and its links to other computational methods.

    Get PDF
    There is considerable interest in development of solid mechanics modelling which can cope with both material and geometric nonlinearity, particularly in areas such as computational geotechnics, for applications such as slope failure and foundation installation. One such technique is the Material Point Method (MPM), which appears to provide an efficient way to model these problems. The MPM models a problem domain using particles at which state variables are kept and tracked. The particles have no restriction on movement, unlike in the Finite Element Method (FEM) where element distortion limits the level of mesh deformation. In the MPM, calculations are carried out on a regular background grid to which state variables are mapped from the particles. It is clear, however, that the MPM is actually closely related to existing techniques, such as ALE and in this paper we review the MPM for solid mechanics and demonstrate these links

    A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields

    Get PDF
    A new meshless sub-region radial point interpolation method (MS-RPIM) is proposed for linear elastic fracture mechanics. The Williams expansions of stress field for mode I/II crack is used as the trial functions in crack tip region, the meshless radial point interpolation is used for the rest of domain, and a mixed variational principle is used for discretisation. In contrast to existing meshless formulations, the present MS-RPIM requires only very few nodes around the crack tip to obtain smooth stress and accurate results and the SIFs can be directly obtained as part of the solution and no additional effort via post-processing

    70-line 3D finite deformation elastoplastic finite-element code.

    Get PDF
    Few freeware FE programs offer the capabilities to include 3D finite deformation inelastic continuum analysis; those that do are typically expressed in tens of thousands of lines. This paper offers for the first time compact MATLAB scripts forming a complete finite deformation elasto–plastic FE program. The key modifications required to an infinitesimal FE program in order to include geometric non–linearity are described and the entire code given

    On the use of advanced material point methods for problems involving large rotational deformation

    Get PDF
    The Material Point Method (MPM) is a quasi Eulerian-Lagrangian approach to solve solid mechanics problems involving large deformations. The standard MPM [1] discretises the physical domain using material points which are advected through a standard finite element background mesh. The method of mapping state variables back and forth between the material points and background mesh nodes in the MPM significantly influences the results. In the standard MPM (sMPM), a material point only influences its parent element (i.e. the background element in which it is located), which can cause spurious stress oscillations when material points cross between elements. The instability is due to the sudden transfer of stiffness between elements. It can also result in some elements having very little stiffness or some internal elements loosing all stiffness. Therefore, several extensions to the sMPM have been proposed, each of which replaces the material point with a deformable particle domain. The most notable of these extensions are the Generalised Interpolation Material Point (GIMP), the Convected Particle Domain Interpolation (CPDI1) and Second-order CPDI (CPDI2) methods [2]. In this paper, the sMPM, CPDI1 and CPDI2 approaches are unified for geometrically non-linear elasto-plastic problems using an implicit solver and their performance investigated for large rotational problems. This type of deformation is common in applications in the area of soil mechanics, for example the vane shear test and, specifically of interest here, the installation of screw piles. Screw piles are currently used as an onshore foundation solution and research being undertaken at Durham, Dundee and Southampton universities is exploring their use in the area of offshore renewables. The numerical modelling using the MPM aims to predict the installation torque and vertical force as well as understanding the “state” of the soil around the screw pile which is critical in understanding the long term performance of the foundation. In the analysis, the pile is assumed to be a rigid body and no-slip boundary condition is used at the pile-soil interface. The boundary condition is imposed using the moving mesh concept within an unstructured mesh fixed to the pile. It will be shown that the CPDI2 approach produces erroneous torque due to particle domain distortion, while the CPDI1 approach and sMPM predict physically realistic mechanical responses

    Branched crack modelling with the Cracking Particle Method

    Get PDF
    Multiple crack simulation is of great importance in failure analysis since fracture in brittle materials in practice usually comprises multiple cracks. Traditional numerical methods like the extended finite element and the element free Galerkin methods meet dilemmas when solving this kind of problem, as the computational expense increases with the number of level set functions used for crack descriptions. The cracking particle method (CPM) developed by Rabczuk, by which crack patterns are simplified and discretized through a set of cracking segments, has shown to be a promising alternative. The branched crack problem, as a representative of multiple crack problems, is studied here to demonstrate the advantages of the CPM. Cracking particles can be split multiply due to the use of bilinear cracking lines and then the discontinuity at the intersection is fulfilled easily. An adaptivity strategy is adopted to control the size of cracking segments and the number of degrees of freedom. Stress intensity factors at the crack tips are calculated and show good agreement with previous results
    • …
    corecore