

On the use of the Material Point Method for large rotation problems

Lei Wang, Will Coombs, Charles Augarde & Michael Cortis

Associate Professor in Computational Mechanics Department of Engineering, Durham University, UK w.m.coombs@durham.ac.uk

www.screwpilesforoffshorewind.co.uk

14th June 2018

(implicit) Material Point Method focus at Durham University

seabed ploughing (Cortis) screwpile installation (Wang)

overcoming volumetric locking (CMAME, 2018) IGA-based MPM (Ghaffari-Motlagh) B-spline representation & enforcement of boundaries (Bing) generalised interpolation & gradient plasticity (Charlton)

Will Coombs (Durham)

(implicit) Material Point Method focus at Durham University

seabed ploughing (Cortis) screwpile installation (Wang)

overcoming volumetric locking (CMAME, 2018) IGA-based MPM (Ghaffari-Motlagh) B-spline representation & enforcement of boundaries (Bing) generalised interpolation & gradient plasticity (Charlton)

Will Coombs (Durham)

- Designing foundations for offshore wind turbines is challenging because of the complex dynamic mechanical loading environment;
- monopiles are currently the most commonly used foundation in the offshore wind market due to their ease of installation;
- this research is part of a larger UK research council funded grant investigating alternative foundation solutions for offshore wind.

- Designing foundations for offshore wind turbines is challenging because of the complex dynamic mechanical loading environment;
- monopiles are currently the most commonly used foundation in the offshore wind market due to their ease of installation;
- this research is part of a larger UK research council funded grant investigating alternative foundation solutions for offshore wind.

- The research aims to make screw piles a more attractive foundation (or anchoring) option for offshore wind farms;
- installation torque in different seabed conditions is a key question;
- computational modelling of screw pile installation is Durham's focus;
- challenging problem: truly 3D, large deformation, non-linear material behaviour -MPM appears to be ideal?

- The research aims to make screw piles a more attractive foundation (or anchoring) option for offshore wind farms;
- installation torque in different seabed conditions is a key question;
- computational modelling of screw pile installation is Durham's focus;
- challenging problem: truly 3D, large deformation, non-linear material behaviour -MPM appears to be ideal?

Implicit material point formulation governing equations

governing equation of elasticity

$$\nabla \sigma_{ij} + f_i{}^b = 0 \quad \text{in} \quad \Omega$$

subject to the following

 $u_i = g_i$ on $\partial \Omega_D$ and $\sigma_{ij} n_j = t_i$ on $\partial \Omega_N$

where g_i and t_i are the Dirichlet and Neumann boundary conditions

discretised into the conventional updated Lagrangian form

$$\int_{\varphi_t(E)} [\nabla S_{vp}]^T \{\sigma\} \mathrm{d}v - \int_{\varphi_t(E)} [S_{vp}]^T \{b\} \mathrm{d}v - \int_{\varphi_t(\partial \Omega_N)} [S_{vp}]^T \{t\} \mathrm{d}s = \{0\}$$

Will Coombs (Durham)

Implicit material point formulation governing equations

governing equation of elasticity

$$\nabla \sigma_{ij} + f_i{}^b = 0 \quad \text{in} \quad \Omega$$

subject to the following

$$u_i = g_i$$
 on $\partial \Omega_D$ and $\sigma_{ij} n_j = t_i$ on $\partial \Omega_N$

where g_i and t_i are the Dirichlet and Neumann boundary conditions

discretised into the conventional updated Lagrangian form

$$\int_{\varphi_t(E)} [\nabla S_{vp}]^T \{\sigma\} \mathrm{d}v - \int_{\varphi_t(E)} [S_{vp}]^T \{b\} \mathrm{d}v - \int_{\varphi_t(\partial \Omega_N)} [S_{vp}]^T \{t\} \mathrm{d}s = \{0\}$$

Will Coombs (Durham)

finite deformation mechanics

linear isotropic relationship is assumed between elastic logarithmic strains and Kirchhoff stresses

$$au_{ij} = D_{ijkl}^{\mathsf{e}} \varepsilon_{kl}^{\mathsf{e}} \qquad \text{where} \qquad \varepsilon_{ij}^{\mathsf{e}} = \frac{1}{2} \ln \left(F_{ik}^{\mathsf{e}} F_{jk}^{\mathsf{e}} \right)$$

and the deformation gradient is obtained as

$$F_{ij} = \frac{\partial x_i}{\partial X_j}$$
 and $F_{ij} = F_{ik}^{\mathsf{e}} F_{kj}^{\mathsf{p}}$

the Cauchy stress is recovered using

$$\sigma_{ij} = \frac{1}{J} \tau_{ij}$$
 where $J = \det(F_{ij})$

the adopted stress and strain measures provide the most straightforward way of implementing large strain elasto-plasticity

Will Coombs (Durham)

finite deformation mechanics

linear isotropic relationship is assumed between elastic logarithmic strains and Kirchhoff stresses

$$au_{ij} = D_{ijkl}^{\mathsf{e}} \varepsilon_{kl}^{\mathsf{e}} \qquad \text{where} \qquad \varepsilon_{ij}^{\mathsf{e}} = \frac{1}{2} \ln \left(F_{ik}^{\mathsf{e}} F_{jk}^{\mathsf{e}} \right)$$

and the deformation gradient is obtained as

$$F_{ij} = \frac{\partial x_i}{\partial X_j}$$
 and $F_{ij} = F_{ik}^{\mathbf{e}} F_{kj}^{\mathbf{p}}$

the Cauchy stress is recovered using

$$\sigma_{ij} = \frac{1}{J} \tau_{ij}$$
 where $J = \det(F_{ij})$

the adopted stress and strain measures provide the most straightforward way of implementing large strain elasto-plasticity

Will Coombs (Durham)

finite deformation mechanics

linear isotropic relationship is assumed between elastic logarithmic strains and Kirchhoff stresses

$$au_{ij} = D_{ijkl}^{\mathsf{e}} \varepsilon_{kl}^{\mathsf{e}} \qquad \text{where} \qquad \varepsilon_{ij}^{\mathsf{e}} = \frac{1}{2} \ln \left(F_{ik}^{\mathsf{e}} F_{jk}^{\mathsf{e}} \right)$$

and the deformation gradient is obtained as

$$F_{ij} = \frac{\partial x_i}{\partial X_j}$$
 and $F_{ij} = F_{ik}^{\mathbf{e}} F_{kj}^{\mathbf{p}}$

the Cauchy stress is recovered using

$$\sigma_{ij} = \frac{1}{J} \tau_{ij}$$
 where $J = \det(F_{ij})$

the adopted stress and strain measures provide the most straightforward way of implementing large strain elasto-plasticity

Will Coombs (Durham)

finite deformation mechanics

linear isotropic relationship is assumed between elastic logarithmic strains and Kirchhoff stresses

$$au_{ij} = D_{ijkl}^{\mathsf{e}} \varepsilon_{kl}^{\mathsf{e}} \qquad \text{where} \qquad \varepsilon_{ij}^{\mathsf{e}} = \frac{1}{2} \ln \left(F_{ik}^{\mathsf{e}} F_{jk}^{\mathsf{e}} \right)$$

and the deformation gradient is obtained as

$$F_{ij} = \frac{\partial x_i}{\partial X_j}$$
 and $F_{ij} = F_{ik}^{\mathbf{e}} F_{kj}^{\mathbf{p}}$

the Cauchy stress is recovered using

$$\sigma_{ij} = \frac{1}{J} \tau_{ij}$$
 where $J = \det(F_{ij})$

the adopted stress and strain measures provide the most straightforward way of implementing large strain elasto-plasticity

Will Coombs (Durham)

finite deformation mechanics: deformation gradient update

A point of departure of implicit MP methods from conventional finite elements is the calculation of the deformation gradient

$$F_{ij} = \Delta F_{ik} F_{kj}^n$$
 where $\Delta F_{ij} = \delta_{ij} + \frac{\partial \Delta u_i}{\partial \tilde{X}_j}$

and $\tilde{X}_i = x_i - \Delta u_i$ are the coordinates at the start of the loadstep.

However, equilibrium is satisfied in the updated frame, requiring mapping of the shape function derivatives

$$\frac{\partial S_{vp}}{\partial x_i} = \frac{\partial S_{vp}}{\partial \tilde{X}_j} \frac{\partial \tilde{X}_j}{\partial x_i} = \frac{\partial S_{vp}}{\partial \tilde{X}_j} (\Delta F_{ji})^{-1}$$

Note that the spatial derivatives are needed to integrate the stiffness and internal force contribution of a material point in an updated Lagrangian formulation.

Will Coombs (Durham)

finite deformation mechanics: deformation gradient update

A point of departure of implicit MP methods from conventional finite elements is the calculation of the deformation gradient

$$F_{ij} = \Delta F_{ik} F_{kj}^n$$
 where $\Delta F_{ij} = \delta_{ij} + \frac{\partial \Delta u_i}{\partial \tilde{X}_j}$

and $\tilde{X}_i = x_i - \Delta u_i$ are the coordinates at the start of the loadstep.

However, equilibrium is satisfied in the updated frame, requiring mapping of the shape function derivatives

$$rac{\partial S_{vp}}{\partial x_i} = rac{\partial S_{vp}}{\partial ilde{X}_j} rac{\partial ilde{X}_j}{\partial x_i} = rac{\partial S_{vp}}{\partial ilde{X}_j} (\Delta F_{ji})^{-1}$$

Note that the spatial derivatives are needed to integrate the stiffness and internal force contribution of a material point in an updated Lagrangian formulation.

Will Coombs (Durham)

finite deformation mechanics: deformation gradient update

A point of departure of implicit MP methods from conventional finite elements is the calculation of the deformation gradient

$$F_{ij} = \Delta F_{ik} F_{kj}^n$$
 where $\Delta F_{ij} = \delta_{ij} + \frac{\partial \Delta u_i}{\partial \tilde{X}_j}$

and $\tilde{X}_i = x_i - \Delta u_i$ are the coordinates at the start of the loadstep.

However, equilibrium is satisfied in the updated frame, requiring mapping of the shape function derivatives

$$\frac{\partial S_{vp}}{\partial x_i} = \frac{\partial S_{vp}}{\partial \tilde{X}_j} \frac{\partial \tilde{X}_j}{\partial x_i} = \frac{\partial S_{vp}}{\partial \tilde{X}_j} (\Delta F_{ji})^{-1}$$

Note that the spatial derivatives are needed to integrate the stiffness and internal force contribution of a material point in an updated Lagrangian formulation.

Will Coombs (Durham)

basis functions

$$\begin{split} S_{vp} &= 1 + (\tilde{X}_p - \tilde{X}_v)/h & -h < \tilde{X}_p - \tilde{X}_v \le 0 \\ S_{vp} &= 1 - (\tilde{X}_p - \tilde{X}_v)/h & 0 < \tilde{X}_p - \tilde{X}_v \le h, \end{split}$$

Will Coombs (Durham)

MPM simulations for large rotation

basis functions

$$\begin{split} S_{vp} &= 1 + (\tilde{X}_p - \tilde{X}_v)/h & -h < \tilde{X}_p - \tilde{X}_v \le 0 \\ S_{vp} &= 1 - (\tilde{X}_p - \tilde{X}_v)/h & 0 < \tilde{X}_p - \tilde{X}_v \le h, \end{split}$$

Will Coombs (Durham)

MPM simulations for large rotation

basis functions

$$\begin{split} S_{vp} &= 1 + (\tilde{X}_p - \tilde{X}_v)/h & -h < \tilde{X}_p - \tilde{X}_v \le 0 \\ S_{vp} &= 1 - (\tilde{X}_p - \tilde{X}_v)/h & 0 < \tilde{X}_p - \tilde{X}_v \le h, \end{split}$$

Will Coombs (Durham)

MPM simulations for large rotation

basis functions

$$\begin{split} S_{vp} &= 1 + (\tilde{X}_p - \tilde{X}_v)/h & -h < \tilde{X}_p - \tilde{X}_v \le 0 \\ S_{vp} &= 1 - (\tilde{X}_p - \tilde{X}_v)/h & 0 < \tilde{X}_p - \tilde{X}_v \le h, \end{split}$$

Will Coombs (Durham)

MPM simulations for large rotation

Numerics & implicit implementation non-linear solution

fully implicit Newton process used to solve the non-linear equation

$$\{f^{oobf}\} = \{f^{int}\} + \{f^{ext}\} = \{0\}$$

where

$$\{f^{int}\} = \bigwedge_{\forall p} \left(\left[\nabla S_{vp} \right]^T \{\sigma_p\} V_p \right) \text{ and}$$
$$\{f^{ext}\} = \int_{\varphi_t(\partial \Omega_N)} [S_{vp}]^T \{t\} ds + \bigwedge_{\forall p} \left([S_{vp}]^T \{f^b\} V_p \right)$$

global consistent tangent determined analytically for optimal convergence (linearisation of the internal force with respect to the unknown displacements)

Will Coombs (Durham)

Numerics & implicit implementation non-linear solution

fully implicit Newton process used to solve the non-linear equation

$$\{f^{oobf}\} = \{f^{int}\} + \{f^{ext}\} = \{0\}$$

where

$$\{f^{int}\} = \bigwedge_{\forall p} \left(\left[\nabla S_{vp} \right]^T \{\sigma_p\} V_p \right) \text{ and}$$
$$\{f^{ext}\} = \int_{\varphi_t(\partial \Omega_N)} [S_{vp}]^T \{t\} ds + \bigwedge_{\forall p} \left([S_{vp}]^T \{f^b\} V_p \right)$$

global consistent tangent determined analytically for optimal convergence (linearisation of the internal force with respect to the unknown displacements)

Will Coombs (Durham)

Numerics & implicit implementation computational procedure

For each loadstep:

- 1. assemble the internal force stiffness contribution of all material points;
- increment the external tractions and/or body forces in and solve for the nodal displacements within a loadstep using the Newton process;
- update material point positions, stresses, volumes, domains, etc.;

4. reset or replace the background grid.

Durham

Will Coombs (Durham)

Numerics & implicit implementation computational procedure

For each loadstep:

- 1. assemble the internal force stiffness contribution of all material points;
- increment the external tractions and/or body forces in and solve for the nodal displacements within a loadstep using the Newton process;
- update material point positions, stresses, volumes, domains, etc.;

4. reset or replace the background grid.

Durham

Will Coombs (Durham)

Numerics & implicit implementation computational procedure

For each loadstep:

- 1. assemble the internal force stiffness contribution of all material points;
- increment the external tractions and/or body forces in and solve for the nodal displacements within a loadstep using the Newton process;
- 3. update material point positions, stresses, volumes, domains, etc.;
- 4. reset or replace the background grid.

simple stretch (validation)

- $l_0 = 2, h = 1$
- $E = 10^3$, $\nu = 0$
- von Mises, $\rho_y = 400$
- ▶ 2² MPs/element
- plane strain
- moving mesh, edge displacement u/l₀ = 2

simple stretch (validation)

- ▶ $l_0 = 2, h = 1$
- $\blacktriangleright \ E=10^3 \text{, } \nu=0$
- von Mises, $\rho_y = 400$
- ▶ 2² MPs/element
- plane strain
- moving mesh, edge displacement u/l₀ = 2

Will Coombs (Durham)

MPM simulations for large rotation

Numerical examples simple stretch (validation)

Will Coombs (Durham)

MPM simulations for large rotation

Numerical examples simple stretch (validation)

- $l_0 = 2, h = 1$
- $E = 10^3$, $\nu = 0.4$
- elastic behaviour
- ▶ 2² & 8² MPs/e
- plane strain
- ► moving mesh, corner displacement ∆x, ∆y = 4

- $l_0 = 2, h = 1$
- $E = 10^3$, $\nu = 0.4$
- elastic behaviour
- ▶ 2² & 8² MPs/e
- plane strain
- ► moving mesh, corner displacement ∆x, ∆y = 4

- $l_0 = 2, h = 1$
- $E = 10^3$, $\nu = 0.4$
- elastic behaviour
- ▶ 2² & 8² MPs/e
- plane strain
- ► moving mesh, corner displacement ∆x, ∆y = 4

corner stretch

- ▶ $l_0 = 2, h = 1$
- $E = 10^3$, $\nu = 0.4$
- elastic behaviour
- ▶ 2² & 8² MPs/e
- plane strain
- ► moving mesh, corner displacement ∆x, ∆y = 4

Will Coombs (Durham)

- ▶ $l_0 = 2, h = 1$
- $E = 10^3$, $\nu = 0.4$
- elastic behaviour
- ▶ 2² & 8² MPs/e
- plane strain
- ► moving mesh, corner displacement Δx, Δy = 4

Will Coombs (Durham)

corner stretch

- ▶ $l_0 = 2, h = 1$
- $E = 10^3$, $\nu = 0.4$
- elastic behaviour
- ▶ 2² & 8² MPs/e
- plane strain
- moving mesh, corner displacement \Delta x, \Delta y = 4

500

corner stretch

Numerical examples

 2^2 material points A--<u>A</u>--<u>A</u> 400 Nodal reaction force 300 200 100 --A-- CPDI2t 0¢ 0 2 3 4 Displacement

$$l_0 = 2, h = 1$$

•
$$E = 10^3$$
, $\nu = 0.4$

- elastic behaviour
- $2^2 \& 8^2 \text{ MPs/e}$
- plane strain
- moving mesh, corner displacement $\Delta x, \Delta y = 4$

corner stretch

corner stretch

$$\nabla S_{vp} = \frac{1}{2V_p} \left(S_v(\{x_1\}) \left\{ \begin{array}{c} y_2 - y_3 \\ x_3 - x_2 \end{array} \right\} \right. \\ \left. + S_v(\{x_2\}) \left\{ \begin{array}{c} y_3 - y_1 \\ x_1 - x_3 \end{array} \right\} \\ \left. + S_v(\{x_3\}) \left\{ \begin{array}{c} y_1 - y_2 \\ x_2 - x_1 \end{array} \right\} \right) \right] \\ \left. \\ \text{node of interest} \\ \left\{ x_3 \right\} \\ \left\{ \begin{array}{c} x_3 \\ x_1 \\ x_1 \\ x_1 \\ x_1 \\ x_1 \\ x_2 \\ x_1 \\ x_2 \\ x_2$$

Will Coombs (Durham)

corner stretch

$$\nabla S_{vp} = \frac{1}{2V_p} \left(S_v(\{x_1\})^0 \left\{ \begin{array}{c} y_2 - y_3 \\ x_3 - x_2 \end{array} \right\} \\ + S_v(\{x_2\})^0 \left\{ \begin{array}{c} y_3 - y_1 \\ x_1 - x_3 \end{array} \right\} \\ + S_v(\{x_2\}) \left\{ \begin{array}{c} y_1 - y_2 \\ x_2 - x_1 \end{array} \right\} \right) \\ \text{node of interest} \\ \{x_3\} \\ \{x_1\} \\ \{x_2\} \end{cases}$$

Will Coombs (Durham)

corner stretch

Will Coombs (Durham)

corner stretch

Will Coombs (Durham)

MPM simulations for large rotation

CPDI2t

doughnut twist

rotational moving mesh

doughnut twist

Durham University

14th June 2018 13 / 15

rotational moving mesh

doughnut twist

- $R_o = 10, R_i = 5$
- $E = 10^6$, $\nu = 0$
- von Mises, $\rho_y = 10^6$
- ▶ 2² MPs/element
- plane strain

fixed outer boundary and incremental rotation $\Delta \alpha$ on inner boundary with rotational moving mesh

doughnut twist

- $R_o = 10, R_i = 5$
- $E = 10^6$, $\nu = 0$
- von Mises, $\rho_y = 10^6$
- ▶ 2² MPs/element
- plane strain

fixed outer boundary and incremental rotation $\Delta \alpha$ on inner boundary with rotational moving mesh

doughnut twist

- $R_o = 10, R_i = 5$
- $E = 10^6$, $\nu = 0$
- von Mises, $\rho_y = 10^6$
- ▶ 2² MPs/element
- plane strain

fixed outer boundary and incremental rotation $\Delta \alpha$ on inner boundary with rotational moving mesh

doughnut twist

- $R_o = 10, R_i = 5$
- $E = 10^6$, $\nu = 0$
- von Mises, $\rho_y = 10^6$
- ▶ 2² MPs/element
- plane strain

fixed outer boundary and incremental rotation $\Delta \alpha$ on inner boundary with rotational moving mesh

doughnut twist

Will Coombs (Durham)

rotational moving mesh

doughnut twist

- $R_o = 10, R_i = 5$
- $E = 10^6$, $\nu = 0$
- von Mises, $\rho_y = 10^6$
- ▶ 2² MPs/element
- plane strain

fixed outer boundary and incremental rotation $\Delta \alpha$ on inner boundary with rotational moving mesh

doughnut twist

14th June 2018

MPM simulations for large rotation

13 / 15

inner boundary with rotational moving mesh

Durham University

doughnut twist

- $R_o = 10, R_i = 5$
- $E = 10^6$, $\nu = 0$
- von Mises, $\rho_y = 10^6$
- ▶ 2² MPs/element
- plane strain

fixed outer boundary and incremental rotation $\Delta \alpha$ on inner boundary with rotational moving mesh

doughnut twist

MPM simulations for large rotation

- $R_o = 10, R_i = 5$
- $E = 10^6$, $\nu = 0$
- ▶ von Mises, $\rho_y = 10^6$
- ▶ 2² MPs/element
- plane strain

fixed outer boundary and incremental rotation $\Delta \alpha$ on inner boundary with rotational moving mesh

Observations

- A unified implicit computational framework for sMPM and CPDIs has been developed;
- moving mesh concept extended to include rotational deformation;
- CPDI approaches reduce the instabilities inherent in material point methods; but
- only the sMPM and CPDI1 approaches obtain physically meaningful solutions for large rotational problems;
- CPDI2q faces issues due to distortion of particle domains; and
- CPDI2t has degenerative cases with spurious spatial derivatives of the basis functions.

Will Coombs (Durham)

Observations

- A unified implicit computational framework for sMPM and CPDIs has been developed;
- moving mesh concept extended to include rotational deformation;
- CPDI approaches reduce the instabilities inherent in material point methods; but
- only the sMPM and CPDI1 approaches obtain physically meaningful solutions for large rotational problems;
- CPDI2q faces issues due to distortion of particle domains; and
- CPDI2t has degenerative cases with spurious spatial derivatives of the basis functions.

Will Coombs (Durham)

Acknowledgements

The research presented is the work of Dr Lei Wang supported by the Engineering and Physical Sciences Research Council (EPSRC) grant EP/N006054/1: Screw piles for wind energy foundation systems.

Will Coombs (Durham)

On the use of the Material Point Method for large rotation problems

Lei Wang, Will Coombs, Charles Augarde & Michael Cortis

Associate Professor in Computational Mechanics Department of Engineering, Durham University, UK w.m.coombs@durham.ac.uk

www.screwpilesforoffshorewind.co.uk

14th June 2018