5,214 research outputs found

    Approximation and geometric modeling with simplex B-splines associated with irregular triangles

    Get PDF
    Bivariate quadratic simplical B-splines defined by their corresponding set of knots derived from a (suboptimal) constrained Delaunay triangulation of the domain are employed to obtain a C1-smooth surface. The generation of triangle vertices is adjusted to the areal distribution of the data in the domain. We emphasize here that the vertices of the triangles initially define the knots of the B-splines and do generally not coincide with the abscissae of the data. Thus, this approach is well suited to process scattered data.\ud \ud With each vertex of a given triangle we associate two additional points which give rise to six configurations of five knots defining six linearly independent bivariate quadratic B-splines supported on the convex hull of the corresponding five knots.\ud \ud If we consider the vertices of the triangulation as threefold knots, the bivariate quadratic B-splines turn into the well known bivariate quadratic Bernstein-Bézier-form polynomials on triangles. Thus we might be led to think of B-splines as of smoothed versions of Bernstein-Bézier polynomials with respect to the entire domain. From the degenerate Bernstein-Bézier situation we deduce rules how to locate the additional points associated with each vertex to establish knot configurations that allow the modeling of discontinuities of the function itself or any of its directional derivatives. We find that four collinear knots out of the set of five defining an individual quadratic B-spline generate a discontinuity in the surface along the line they constitute, and that analogously three collinear knots generate a discontinuity in a first derivative.\ud Finally, the coefficients of the linear combinations of normalized simplicial B-splines are visualized as geometric control points satisfying the convex hull property.\ud Thus, bivariate quadratic B-splines associated with irregular triangles provide a great flexibility to approximate and model fast changing or even functions with any given discontinuities from scattered data.\ud An example for least squares approximation with simplex splines is presented

    Chern number spins of Mn acceptor magnets in GaAs

    Full text link
    We determine the effective total spin JJ of local moments formed from acceptor states bound to Mn ions in GaAs by evaluating their magnetic Chern numbers. We find that when individual Mn atoms are close to the sample surface, the total spin changes from J=1J = 1 to J=2J = 2, due to quenching of the acceptor orbital moment. For Mn pairs in bulk, the total JJ depends on the pair orientation in the GaAs lattice and on the separation between the Mn atoms. We point out that Berry curvature variation as a function of local moment orientation can profoundly influence the quantum spin dynamics of these magnetic entities.Comment: 4 pages, 3 figure

    Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices

    Full text link
    We describe a general technique that allows to induce and control strong interaction between spin states of neighboring atoms in an optical lattice. We show that the properties of spin exchange interactions, such as magnitude, sign, and anisotropy can be designed by adjusting the optical potentials. We illustrate how this technique can be used to efficiently ``engineer'' quantum spin systems with desired properties, for specific examples ranging from scalable quantum computation to probing a model with non-trivial topological orders that supports exotic non-abelian anyonic excitations.Comment: 5 pages, 2 figures, revte

    Floquet Spectrum and Transport Through an Irradiated Graphene Ribbon

    Full text link
    Graphene subject to a spatially uniform, circularly-polarized electric field supports a Floquet spectrum with properties akin to those of a topological insulator, including non-vanishing Chern numbers associated with bulk bands and current-carrying edge states. Transport properties of this system however are complicated by the non-equilibrium occupations of the Floquet states. We address this by considering transport in a two-terminal ribbon geometry for which the leads have well-defined chemical potentials, with an irradiated central scattering region. We demonstrate the presence of edge states, which for infinite mass boundary conditions may be associated with only one of the two valleys. At low frequencies, the bulk DC conductivity near zero energy is shown to be dominated by a series of states with very narrow anticrossings, leading to super-diffusive behavior. For very long ribbons, a ballistic regime emerges in which edge state transport dominates.Comment: 4.2 pages, 3 figure

    Widths of Isobaric Analog Resonances: a microscopic approach

    Get PDF
    A self-consistent particle-phonon coupling model is used to investigate the properties of the isobaric analog resonance in 208^{208}Bi. It is shown that quantitative agreement with experimental data for the energy and the width can be obtained if the effects of isospin-breaking nuclear forces are included, in addition to the Coulomb force effects. A connection between microscopic model predictions and doorway state approaches which make use of the isovector monopole resonance, is established via a phenomenological ansatz for the optical potential.Comment: 18 pages, 1 figure. To appear on Phys. Rev. C (tentatively scheduled for June 1998

    Addendum to: Capillary floating and the billiard ball problem

    Get PDF
    We compare the results of our earlier paper on the floating in neutral equilibrium at arbitrary orientation in the sense of Finn-Young with the literature on its counterpart in the sense of Archimedes. We add a few remarks of personal and social-historical character.Comment: This is an addendum to my article Capillary floating and the billiard ball problem, Journal of Mathematical Fluid Mechanics 14 (2012), 363 -- 38

    Atomic Bose-Fermi mixtures in an optical lattice

    Full text link
    A mixture of ultracold bosons and fermions placed in an optical lattice constitutes a novel kind of quantum gas, and leads to phenomena, which so far have been discussed neither in atomic physics, nor in condensed matter physics. We discuss the phase diagram at low temperatures, and in the limit of strong atom-atom interactions, and predict the existence of quantum phases that involve pairing of fermions with one or more bosons, or, respectively, bosonic holes. The resulting composite fermions may form, depending on the system parameters, a normal Fermi liquid, a density wave, a superfluid liquid, or an insulator with fermionic domains. We discuss the feasibility for observing such phases in current experiments.Comment: 4 pages, 1 eps figure, misprints correcte

    Neutrino-nucleus reactions on ^{12}C and ^{16}O

    Get PDF
    Exclusive and inclusive (νμ,μ),(νe,e)(\nu_\mu, \mu^-), (\nu_e, e^-) cross-sections and μ\mu^--capture rates are calculated for ^{12}C and ^{16}O using the consistent random phase approximation (RPA) and pairing model. After a pairing correction is introduced to the RPA results the flux-averaged theoretical (νμ,μ),(νe,e)(\nu_\mu, \mu^-), (\nu_e, e^-) cross-sections and μ\mu^--capture rates in 12^{12}C are in good agreement with experiment. In particular when one takes into account the experimental error bars, the recently measured range of values for the (νμ,μ)(\nu_\mu, \mu^-) cross-section is in agreement with the present theoretical results. Predictions of (νμ,μ)(\nu_\mu, \mu^-) and (νe,e)(\nu_e, e^-) cross-sections in ^{16}O are also presented.Comment: 13 pages, Revte

    Theory of parity violation in compound nuclear states; one particle aspects

    Full text link
    In this work we formulate the reaction theory of parity violation in compound nuclear states using Feshbach's projection operator formalism. We derive in this framework a complete set of terms that contribute to the longitudinal asymmetry measured in experiments with polarized epithermal neutrons. We also discuss the parity violating spreading width resulting from this formalism. We then use the above formalism to derive expressions which hold in the case when the doorway state approximation is introduced. In applying the theory we limit ourselves in this work to the case when the parity violating potential and the strong interaction are one-body. In this approximation, using as the doorway the giant spin-dipole resonance and employing well known optical potentials and a time-reversal even, parity odd one-body interaction we calculate or estimate the terms we derived. In our calculations we explicitly orthogonalize the continuum and bound wave functions. We find the effects of orthogonalization to be very important. Our conclusion is that the present one-body theory cannot explain the average longitudinal asymmetry found in the recent polarized neutron experiments. We also confirm the discrepancy, first pointed out by Auerbach and Bowman, that emerges, between the calculated average asymmetry and the parity violating spreading width, when distant doorways are used in the theory.Comment: 37 pages, REVTEX, 5 figures not included (Postscript, available from the authors

    Topological Classification of Gapped Spin Chains :Quantized Berry Phase as a Local Order Parameter

    Get PDF
    We characterize several phases of gapped spin systems by local order parameters defined by quantized Berry phases. This characterization is topologically stable against any small perturbation as long as the energy gap remains finite. The models we pick up are S=1,2S=1,2 dimerized Heisenberg chains and S=2 Heisenberg chains with uniaxial single-ion-type anisotropy. Analytically we also evaluate the topological local order parameters for the generalized Affleck-Kennedy-Lieb-Tasaki (AKLT) model. The relation between the present Berry phases and the fractionalization in the integer spin chains are discussed as well.Comment: 6 pages, 4 figures, accepted for publication in Phys. Rev.
    corecore