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We characterize several phases of gapped spin systems by local order parameters defined by quantized Berry
phases �Y. Hatsugai, J. Phys. Soc. Jpn. 75, 123601 �2006��. This characterization is topologically stable against
any small perturbation as long as the energy gap remains finite. The models we pick up are S=1,2 dimerized
Heisenberg chains and S=2 Heisenberg chains with uniaxial single-ion-type anisotropy. Analytically, we also
evaluate the topological local order parameters for the generalized Affleck-Kennedy-Lieb-Tasaki model. The
relation between the present Berry phases and the fractionalization in the integer spin chains are discussed as
well.
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I. INTRODUCTION

Characterizing quantum many-body systems is one of the
important topics in condensed matter physics. The Ginzburg-
Landau �GL� theory has been quite successful to describe
many phases based on a concept of the symmetry breaking
and the local order parameter. Despite its remarkable suc-
cess, novel types of phases which are not well described by
the �classical� local order parameters have been found in
many systems. Concepts of topological order and quantum
order are trial to overcome the difficulties of the classical GL
theory with the symmetry breaking.2–4 One of the character-
istic features of the topological insulators is that localized
states, such as the edge states, appear near the system bound-
aries, even though the system without boundaries has a finite
energy gap. Examples of such systems are quantum Hall
liquids,5–7 Haldane spin systems,8,9 polyacetylene,10 and
spin-Peierls system.11 Recently, it has become clear that the
bulk-edge correspondence6,7 has an intimate relation to the
entanglement entropy,12–14 which has been discussed to de-
tect nontrivial structures of topologically ordered states.13–16

Recently, one of the authors proposed to use another
quantum quantity, quantized Berry phases,17 to define a to-
pological local order parameter.1,3,4 One can define a topo-
logical local order parameter by the Berry phases even
though there is no classical order parameter. The Berry
phases are a typical quantum quantity based on the Berry
connection which is defined by the overlap between the two
states with infinitesimal difference. It implies that the topo-
logical local order parameter defined in Ref. 1 is a quantum
order parameter that does not have any corresponding clas-
sical analogs. Further, it has a conceptual advantage for the
topologically ordered phases, since it is quantized to 0 or �
�mod 2�� when the ground state is invariant under some an-
tiunitary transformation. It implies a topological stability that
the quantized Berry phase does not change against any small
perturbation. The Berry phase is given by an integration of
the Berry connection defined by the local U�1� twist on a
link of a lattice. Then, the quantum phases can be catego-
rized by the texture pattern of the Berry phases �0 or ��. It
has been successfully applied to several gapped quantum

systems. For example, the ground states of the S=1 /2 dimer-
ized Heisenberg models �in one and two dimensions even
with frustrations�1 can be characterized by the pattern of �
Berry phases on the bonds which indicate the locations of
dimer singlets. In a case of the t-J model,18 it is characterized
by the texture pattern of the non-Abelian Berry phase, which
describes itinerant singlets. Also, for the S=1 Heisenberg
model, its ground state as the Haldane phase was character-
ized by the uniform � Berry phases. This topological order
parameter also clearly describes a quantum phase transition
between the Haldane phase and the large-D phases.19

In this paper, we calculate the topological local order pa-
rameter by the quantized Berry phase for several gapped
quantum spin chains. There are substantial numbers of stud-
ies for the Haldane phase.20–23 Then, it has been clarified that
the Haldane phase can be characterized by the hidden Z2
�Z2 symmetry breaking24,25 which describes a nonlocality
of the Haldane phase �by the string order parameters�.26–28

On the other hand, the topological order parameter by the
Berry phases is local and quite useful for the S=1 case to
describe the phase and the quantum phase transition.19 Here,
we further investigate generic situations, such as the several
Haldane phases in the dimerized S=1,2 Heisenberg
chains29,30 and the S=2 Heisenberg chain with uniaxial
single-ion-type anisotropy.31–34 We also study the Berry
phase of the generalized valence-bond-solid �VBS� state ana-
lytically and interpret the numerical results in terms of the
reconstruction of the valence bonds.

II. DEFINITION OF THE BERRY PHASE

Let us start with defining the Berry phase in a quantum
spin system. The Berry phase is defined when the Hamil-
tonian has parameters with periodicity assuming a finite en-
ergy gap between the ground state and the excited states.17

For the parameter dependent Hamiltonian H���, the Berry
phase � of the ground state is defined as

i� = �
0

2�

A���d� , �1�

where A��� is the Abelian Berry connection obtained by the
single-valued normalized ground state �GS���� of H��� as
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A���= �GS�������GS����. This Berry phase is real and quan-
tized to 0 or � �mod 2�� if the Hamiltonian H��� is invariant
under the antiunitary operation �, i.e., �H��� ,��=03. Note
that the Berry phase is “undefined” if the gap between the
ground state and the excited states vanishes while varying
the parameter �. We use a local spin twist on a link as a
generic parameter in the definition of the Berry phase.1 Un-
der this local spin twist, the following term Si

+Sj
−+Si

−Sj
+ in the

Hamiltonian is replaced with ei�Si
+Sj

−+e−i�Si
−Sj

+, where
Si

�=Si
x� iSi

y. The Berry phase defined by the response to the
local spin twists extracts a local structure of the quantum
system. By this quantized Berry phase, one can define a link
variable. Then, each link has one of the three labels: ‘‘0
bond,” “� bond,” or undefined. It has a remarkable property
that the Berry phase has topological robustness against the
small perturbations unless the energy gap between the
ground state and the excited states closes. On the other hand,
the undefined indicates an existence of the quantum phase
transition. In order to calculate the Berry phase numerically,
we introduce a gauge-invariant Berry phase1,35 on a lattice. It
is defined by discretizing the parameter space of � into N
points as

�N = − 	
n=1

N

arg AN��n�, �n =
2�

N
n , �2�

where AN��n� is defined by AN��n�= �GS��n� �GS��n+1��,
�N+1=�1. We expect �=limN→��N. To calculate �N, we use
the Lanczos method to diagonalize the Hamiltonian in the
subspace of 	iSi

z=0.

III. S=1,2 DIMERIZED HEISENBERG MODELS AND S=2
HEISENBERG MODEL WITH UNIAXIAL ISOTROPY

A. S=1,2 dimerized Heisenberg models

First, we consider S=1,2 dimerized Heisenberg models,

H = 	
i=1

N/2

�J1S2i · S2i+1 + J2S2i+1 · S2i+2� , �3�

where Si is the spin-1 or 2 operators on the ith site and N is
the total number of sites. The periodic boundary condition is
imposed as SN+i=Si for all of the models in this paper. J1 and
J2 are parametrized as J1=sin � and J2=cos �, respectively.
We consider the case of 0	�	� /2 in this paper. The
ground state is composed of an ensemble of N /2 singlet pairs
in limits of �→0 and �→� /2. The system is equivalent to
the isotropic antiferromagnetic Heisenberg chain at �=� /4.
Based on the VBS picture, we expect a reconstruction of the
valence bonds by changing �.

Figures 1�a� and 1�b� show the � dependence of the Berry
phase on the link with J1 coupling and J2 coupling with
S=1, N=14 and S=2, N=10, respectively. The region with
the Berry phase � is shown by the bold line. There are sev-
eral quantum phase transitions characterized by the Berry
phase as the topological order parameters. The boundary of
the two regions with different Berry phases 0 and � does not
have a well-defined Berry phase, since the energy gap closes
during the change of the local twist parameter �. Since the

Berry phase is undefined at the boundaries, there exists the
level crossing which implies the existence of the gapless ex-
citation in the thermodynamic limit. This result is consistent
with the results previously discussed,30 which the general
integer-S extended string order parameters change as the
dimerization changes. The phase diagram defined by our to-
pological order parameter is consistent with the one by the
nonlocal string order parameter. In an N=10 system with
S=2, the phase boundaries are �c2=0.287 453 and
�c3=0.609 305, and it is consistent with the results obtained
by using the level spectroscopy which is based on conformal
field theory techniques.36 Especially, in the one-dimensional
case, the energy diagram of the system with twisted link is
proportional to that of the system with twisted boundary con-
ditions. However, our analysis focuses on the quantum prop-
erty of the wave functions rather than the energy diagram.

B. S=2 Heisenberg model with uniaxial anisotropy

As for the S=2 Heisenberg model with D term, we use
the Hamiltonian

H = 	
i

N

�JSi · Si+1 + D�Si
z�2� . �4�

Figure 2 shows the Berry phase of the local link in the
S=2 Heisenberg model+D term with N=10. The parameter
J=1 in our calculations. The region of the bold line has the
Berry phase �, and the other region has the vanishing Berry

(b)

(a)

FIG. 1. �Color online� The Berry phases on the local link of �a�
the S=1 periodic N=14 and �b� the S=2 periodic N=10 dimerized
Heisenberg chains. The Berry phase is � on the bold line, while that
is 0 on the other line. The phase boundaries in the finite size system
are �c1=0.531 237, �c2=0.287 453, and �c3=0.609 305, respec-
tively. The Berry phase in �a� and �b� has an inversion symmetry
with respect to �=� /4. A schematic VBS picture of the ground
state is assigned to each phase. Dots, bold lines, and open circles
denote the S=1 /2, singlet dimers, and the operations of symmetri-
zation, respectively.

0 0.5 1 1.5 2

FIG. 2. �Color online� The Berry phases on the local link of the
S=2 periodic N=10 Heisenberg chain with single-ion anisotropy.
The notations are the same as in Fig. 1. An up �down� triangle
denotes an up �down� spin-1 /2.
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phase. This result also makes us possible to consider the
Berry phase as a local order parameter of the Haldane spin
chains. Our numerical results for finite size systems support
the presence of the intermediate D phase.33

IV. INTERPRETATION OF THE NUMERICAL
RESULTS BY VBS STATE

Let us now interpret our numerical results in terms of the
VBS state picture. The VBS state is the exact ground state of
the Affleck-Kennedy-Lieb-Tasaki �AKLT� model.37 We shall
calculate the Berry phase of the generalized VBS state with
the aid of the chiral AKLT model38 and its exact ground state
wave function. The chiral AKLT model is obtained by apply-
ing O�2� rotation of spin operators in the original AKLT
model. In our calculation, it is convenient to introduce the
Schwinger boson representation of the spin operators as
Si

+=ai
†bi, Si

−=aibi
†, and Si

z= �ai
†ai−bi

†bi� /2. Here, ai and
bi satisfy the commutation relation �ai ,aj

†�= �bi ,bj
†�=
ij

with all other commutators vanishing.39 The constraint
ai

†ai+bi
†bi=2Si is imposed to reproduce the dimension of the

spin Si Hilbert space at each site. In general, the ground state
of the chiral AKLT model having Bij valence bonds on the
link �ij� is written as38

�
�i,j�� = �
�ij�

�ei�ij/2ai
†bj

† − e−i�ij/2bi
†aj

†�Bij�vac� . �5�

This state has nonzero average of vector spin chirality
�Si�S j · ẑ� unless the twist parameter �ij =0 or �. This state
is a zero-energy ground state of the following Hamiltonian:

H�
�i,i+1�� = 	
i=1

N

	
J=Jmin

Jmax

AJPi,i+1
J ��i,i+1� , �6�

where Jmax= �Bi−1,i+2Bi,i+1+Bi+1,i+2� /2, Jmin= �Bi−1,i
+Bi+1,i+2� /2+1, and AJ is the arbitrary positive coefficient.
Pi,i+1

J �0� is the polynomial in Si ·Si+1 and acts as a projection
operator projecting the bond spin Ji,i+1=Si+Si+1 onto the
subspace of spin magnitude J. The replacement,

Si
+Si+1

− + Si
−Si+1

+ → ei�i,i+1Si
+Si+1

− + e−i�i,i+1Si
−Si+1

+ , �7�

in Si ·Si+1 produces Pi,i+1
J ��i,i+1� in Eq. �6�.

Now, we shall explicitly show that the Berry phase of the
VBS state extracts the local number of the valence bonds Bij
as Bij� �mod 2��. Let us now consider the local twist of the
parameters �ij =�
ij,12 and rewrite the ground state �
�i,j�� as
���. To calculate the Berry phase of the VBS state, the fol-
lowing relation is useful:

i�12 = iB12� + i�
0

2�

Im����������/N���d� , �8�

where �12 is the Berry phase of the bond �12� and N���
= �� ���. Note that the first term of the right hand side comes
from the gauge fixing of the multivalued wave function to
the single-valued function. Then, the only thing to do is to
evaluate the imaginary part of the connection.

Let us first consider the S=1 VBS state as the simplest
example. In this case, Bi,i+1=1 for any bond and the VBS
state with a local twist is given by

��� = �ei�/2a1
†b2

† − e−i�/2b1
†a2

†��
i=2

N

�ai
†bi+1

† − bi
†ai+1

† ��vac� .

�9�

We impose the periodic boundary condition, i.e., aN+1=a1
and bN+1=b1. It is convenient to introduce the singlet cre-
ation operator s†= �a1

†b2
†−b1

†a2
†� and the triplet �Jz=0� cre-

ation operator t†= �a1
†b2

†+b1
†a2

†�. We can rewrite the bond �12�
part of the VBS state �ei�/2a1

†b2
†−e−i�/2b1

†a2
†� as �cos �

2 s†

+ i sin �
2 t†�. Then, ��� and ����� can be written as

��� = cos
�

2
�0� + i sin

�

2
�1� ,

����� = −
1

2
sin

�

2
�0� +

i

2
cos

�

2
�1� , �10�

where

�0� = s†�
i=2

N

�ai
†bi+1

† − bi
†ai+1

† ��vac� ,

�1� = t†�
i=2

N

�ai
†bi+1

† − bi
†ai+1

† ��vac� .

It is now obvious that the imaginary part of �������� van-
ishes since the state �1� having a total spin Stot=1 is orthogo-
nal to the state �0� with Stot=0. Therefore, the Berry phase of
this state is given by �12=�. Next, we shall consider a more
general situation with arbitrary Bij. We can also express the
VBS state with a local twist on the bond �12� in terms of s†

and t† as

��� = 
cos
�

2
s† + i sin

�

2
t†�B12

�
i=2

N

�ai
†bi+1

† − bi
†ai+1

† �Bi,i+1�vac� .

�11�

By using the binomial expansion, ��� can be rewritten as

��� = 	
k=0

B12 
B12

k
�
cos

�

2
�B12−k
i sin

�

2
�k

�k� , �12�

where �k�= �s†�B12−k�t†�k�¯��vac� is the state with k triplet
bonds on the link �12�. �¯� denotes the rest of the VBS state.
In a parallel way,

����� =
1

2	
k=0

B12 
B12

k
�
cos

�

2
�B12−k
i sin

�

2
�k

�
k cot
�

2
− �B12 − k�tan

�

2
��k� .

To see that the imaginary part of �������� is zero, we have to
show that Im�k � l�=0 when k and l have the same parity
�even or odd� and Re�k � l�=0 when k and l have different
parities. This can be easily shown by using the coherent state
representation of the Schwinger bosons �see the Appendix�.
Then, using the relation �Eq. �8��, we can obtain the Berry
phase as
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�ij = Bij� �mod 2�� .

This result means that the Berry phase of the generalized
VBS state counts the number of the valence bonds on the
bond �ij�. One valence bond has the � Berry phase. Finally,
it should be stressed that our calculation of the Berry phase is
not restricted to one-dimensional VBS states but can be gen-
eralized to the VBS state on an arbitrary graph40 as long as
there is a gap while varying the twist parameter.

Now, let us consider the previous two models in terms of
the VBS picture. For the S=2 dimerized Heisenberg model,
the number of the valence bonds changes as the � changes
�see Fig. 1�. Since the number of the valence bonds on a
local link can be computed by the Berry phase, we can
clearly see that the reconstruction of the valence bonds oc-

curs during the change of the dimerization. Thus, the result
of the Berry phase is consistent with the VBS picture. For the
S=2 Heisenberg chain with single-ion anisotropy, the va-
lence bonds are broken one by one as D increases, as we can
see in Fig. 2. We see that the Berry phase reflects the number
of the valence bonds as well as the previous dimerized
Heisenberg chain. This can be understood as a fractionaliza-
tion since the basic objects of the present integer spin chains
are spin-1 /2 singlets.

V. RELATION BETWEEN THE BERRY PHASE AND
THE ENTANGLEMENT ENTROPY

Moreover, the Berry phase of generalized VBS state re-
lates to the number of the edge states which emerge when the
spin chain has edges.8 Thus, it detects the property of the
topological phase. Since the entanglement entropy also de-
tects such phases,13,14,41 we clarify the relation between the
Berry phase and the entanglement entropy. The entanglement
entropy of our generalized VBS state in thermodynamic limit
is SA=	�ij���A log�Bij +1�, where �A denotes the set of the
bonds on the boundary of subsystem A. It counts the number
of the edge states gedge as SA=log gedge. Thus, the Berry
phase is related to the entanglement entropy in generalized
VBS states via the edge states in the thermodynamic limit.12

VI. CONCLUSION

In conclusion, we have shown that the topological local
order parameter defined by quantized Berry phases is useful
to classify the phases of various spin chains such as the
Haldane phase. In our calculations, the Berry phase is locally
defined and does not need nonlocal calculations. It is also
useful to estimate the order parameter from the finite size
systems since it is quantized even in the finite size systems.
The property of the phase is revealed in terms of the texture
pattern of the Berry phase. We have also analytically studied
the Berry phase of the generalized VBS state and found that
the Berry phase picks up the number of singlets on the local
link.
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APPENDIX

In this appendix, we show that Re�k � l�=0 when k and l
have different parities and Im�k � l�=0 when k and l have the
same parity by simple symmetry arguments. To show them,
it is convenient to introduce a spin coherent state.39 For a

point �̂= �sin � cos � , sin � sin � , cos �� on the unit sphere,
the spin coherent state at each site is defined as

��̂� =
�ua† + vb†�2S

��2S�!
�vac� , �A1�

where �u ,v�= �cos�� /2�ei�/2 , sin�� /2�e−i�/2� are spinor coor-

dinates. Using ��̂�, the resolution of the identity is given by

I =
2S + 1

4�
� d�̂��̂���̂� , �A2�

where I denotes a �2S+1�-dimensional identity matrix. Let
us now consider the inner product �k � l�. We can set k� l
without loss of generality. Inserting the resolution of the
identity �Eq. �A2�� between �k� and �l�, the integral represen-
tation of the inner product can be obtained as

�k�l� = �
j=1

N

�2Sj + 1�!� �
j=1

N
d�̂ j

4�

1 − �̂1 · �̂2

2
�B12−k

�
1 + �̂1 · �̂2

2
− cos �1 cos �2�l

K��̂1,�̂2�k−l

��
i=2

N 
1 − �̂i · �̂i+1

2
�Bi,i+1

, �A3�

where

K��̂1,�̂2� =
1

2
�cos �1 − cos �2 − i sin �1 sin �2 sin��1 − �2�� .

Here, we have already used the following relation:
�vac�aS−lbS+l���=��2S�!uS−lvS+l. First, we consider the case
where k and l have different parities. In this case, k− l is odd

and hence K��̂1 ,�̂2�k−l changes its sign under the change of
variables �� j ,� j� to ��−� j ,−� j� �j=1,2 , . . . ,N�. Since the
other part of the integrand is invariant under this change of
variables, we obtain �k � l�=0. Therefore, it is now obvious
that Re�k � l�=0 when k and l have different parities. Next, we
consider the case where k and l have the same parity. In this
case, k− l is even. Thus, we set k− l=2m �m�N� and expand

K��̂1 ,�̂2�2m as
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K��̂1,�̂2�2m = 
1

2
�2m

	
n=0

2m 
2m

n
��cos �1 − cos �2�2m−n�− i�n

��sin �1 sin �2 sin��1 − �2��n. �A4�

The imaginary part of K��̂1 ,�̂2�2m comes from the contri-
bution of the odd n in the above summation. Now, we con-
sider the following change of variables: �� j ,� j� to �� j ,−� j�

�j=1,2 , . . . ,N�. Under this transformation, Im�K��̂1 ,�̂2�2m�
changes its sign. On the other hand, the other part of the
integrand in Eq. �A3� is real and invariant under this change
of variables. Therefore, Im�k � l�=0 when k and l have the
same parity. Finally, we remark that the generalization of the
above result to the VBS state on an arbitrary graph is almost
trivial since we have not used a specific property of the one-
dimensional VBS state in our proof.
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