18 research outputs found

    Prediction of pregnancy state from milk mid-infrared (MIR) spectroscopy in dairy cows

    Get PDF
    Submitted 2020-07-14 | Accepted 2020-08-18 | Available 2020-12-01https://doi.org/10.15414/afz.2020.23.mi-fpap.224-232Pregnancy assessment is a very important tool for the reproductive management in efficient and profitable dairy farms. Nowadays, mid-infrared (MIR) spectroscopy is the method of choice in the routine milk recording system for quality control and to determine standard milk components. Since it is well known that there are changes in milk yield and composition during pregnancy, the aim of this study was to develop a discriminant model to predict the pregnancy state from routinely recorded MIR spectral data. The data for this study was from the Austrian milk recording system. Test day records of Fleckvieh, Brown Swiss and Holstein Friesian cows between 3 and 305 days of lactation were included in the study. As predictor variables, the first derivative of 212 selected MIR spectral wavenumbers were used. The data set contained roughly 400,000 records from around 40,000 cows and was randomly split into calibration and validation set by farm. Prediction was done with Partial Least Square Discriminant Analysis. Indicators of model fit were sensitivity, specificity, balanced accuracy and Area Under Receiver Operating Characteristic Curve (AUC). In a first approach, one discriminant model for all cows across the whole lactation and gestation lengths was applied. The sensitivity and specificity of this model in validation were 0.856 and 0.836, respectively. Splitting up the results for different lactation stages showed that the model was not able to predict pregnant cases before the third month of lactation and vice versa not able to predict non-pregnancy after the third month of lactation. Consequently, in the second approach a prediction model for each different (expected) pregnancy stage and lactation stage was developed. Balanced accuracies ranged from 0.523 to 0.918. Whether prediction accuracies from this study are sufficient to provide farmers with an additional tool for fertility management, it needs to be explored in discussions with farmers and breeding organizations.Keywords: MIR spectroscopy, pregnancy prediction, dairy cow, PLSReferencesBalhara, A. K., Gupta, M., Singh, S., Mohanty, A. K., & Singh, I. (2013). Early pregnancy diagnosis in bovines: Current status and future directions. The Scientific World Journal, 2013. hhttps://doi.org/10.1155/2013/958540Bekele, N., Addis, M., Abdela, N., & Ahmed, W. M. (2016). Pregnancy Diagnosis in Cattle for Fertility Management: A Review. Global Veterinaria, 16(4), 355–364. https://doi.org/10.5829/idosi.gv.2016.16.04.103136Benedet, A., Franzoi, M., Penasa, M., Pellattiero, E., & De Marchi, M. (2019). Prediction of blood metabolites from milk mid-infrared spectra in early-lactation cows. Journal of Dairy Science, 102(12), 11298–11307. https://doi.org/10.3168/jds.2019-16937Delhez, P., Ho, P. N., Gengler, N., Soyeurt, H., & Pryce, J. E. (2020). Diagnosing the pregnancy status of dairy cows: How useful is milk mid-infrared spectroscopy? Journal of Dairy Science, 103(4), 3264–3274. https://doi.org/10.3168/jds.2019-17473Egger-Danner, C., Fürst, C., Mayerhofer, M., Rain, C., & Rehling, C. (2018). ZuchtData Jahresbericht 2018. Vienna. [Online]. Available at: https://zar.at/Downloads/Jahresberichte/ZuchtData-Jahresberichte.html. [Accessed: 2020, May 15].Gengler, N., Tijani, A., Wiggans, G. R., & Misztal, I. (1999). Estimation of (Co)variance function coefficients for test day yield with a expectation-maximization restricted maximum likelihood algorithm. Journal of Dairy Science, 82(8), 1849.e1-1849.e23. https://doi.org/10.3168/jds.S0022-0302(99)75417-2Grelet, C., Fernández Pierna, J. A., Dardenne, P., Baeten, V., & Dehareng, F. (2015). Standardization of milk mid-infrared spectra from a European dairy network. Journal of Dairy Science, 98(4), 2150–2160. https://doi.org/10.3168/jds.2014-8764Grelet, C., Bastin, C., Gelé, M., Davière, J. B., Johan, M., Werner, A., Reding, R., Fernandes Pierna, J. A., Colinet, F. G., Dardenne, P., Gendler, N., Soyeurt, H. & Dehareng, F. (2016). Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network. Journal of Dairy Science, 99(6), 4816–4825. https://doi.org/10.3168/jds.2015-10477Hirpa, A., Yehualaw, B., Wube, A., Asnake, A., Jemberu, A., Medicine, V., & Box, P. O. (2018). Review on Pregnancy Diagnosis in Dairy Cows, 9(2), 45–55. https://doi.org/10.5829/idosi.jri.2018.45.55Ho, P. N., Bonfatti, V., Luke, T. D. W., & Pryce, J. E. (2019). Classifying the fertility of dairy cows using milk mid-infrared spectroscopy. Journal of Dairy Science. https://doi.org/10.3168/jds.2019-16412Humblot, P. (2001). Monitor Pregnancy and Determine the Timing , Frequencies and Sources of Embryonic Mortality in Ruminants. Theriogenology, 56(01), 1417–1433.Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical Software, 28(5), 1–26.Lainé, A., Bel Mabrouk, H., Dale, L. M., Bastin, C., & Gengler, N. (2014). How to use mid-infrared spectral information from milk recording system to detect the pregnancy status of dairy cows. Communications in Agricultural and Applied Biological Sciences, 79(1), 33–38.Lainé, A., Bastin, C., Grelet, C., Hammami, H., Colinet, F. G., Dale, L. M., Gillon, A., Vandenplas, J., Deharend, F. & Gengler, N. (2017). Assessing the effect of pregnancy stage on milk composition of dairy cows using mid-infrared spectra. Journal of Dairy Science, 100(4), 2863–2876.https://doi.org/10.3168/jds.2016-11736Lantz, B. (2015). Machine Learning with R. Machine Learning (Second Edi). Packt Publishing Ltd. https://doi.org/10.1002/9781119642183.ch14Mineur, A., Köck, A., Grelet, C., Gengler, N., Egger-Danner, C., & Sölkner, J. (2017). First Results in the Use of Milk Mid-infrared Spectra in the Detection of Lameness in Austrian Dairy Cows Genomic evaluation View project MACSUR View project. Agriculturae Conspectus Scientifi Cus, Vol. 82(No. 2 (163-166)), (163-166). Retrieved from https://www.researchgate.net/publication/325450513Olori, V. E., Brotherstone, S., Hill, W. G., & McGuirk, B. J. (1997). Effect of gestation stage on milk yield and composition in Holstein Friesian dairy cattle. Livestock Production Science, 52(2), 167–176. https://doi.org/10.1016/S0301-6226(97)00126-7Pohler, K. G., Franco, G. A., Reese, S. T., Dantas, F. G., Ellis, M. D., & Payton, R. R. (2016). Past, present and future of pregnancy detection methods. Applied Reproductive Strategies in Beef Cattle 7-8 September 2016, 251–259.Rienesl, L., Khayatzadeh, N., Köck, A., Dale, L., Werner, A., Grelet, C., Gengler, N., Auer, F-J., Egger-Danner, C., Massart, X. & Sölkner, J. (2019). Mastitis detection from milk mid-infrared (MIR) spectroscopy in dairy cows. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(5), 1221–1226. https://doi.org/10.11118/actaun201967051221Santos, J. E. P., Thatcher, W. W., Chebel, R. C., Cerri, R. L. A., & Galvão, K. N. (2004). The effect of embryonic death rates in cattle on the efficacy of estrus synchronization programs. Animal Reproduction Science, 82–83, 513–535. https://doi.org/10.1016/j.anireprosci.2004.04.015SAS Institute Inc. (2017). SAS software 9.4. SAS Institute Inc., Cary, NC, USA.Soyeurt, H., Dehareng, F., Gengler, N., McParland, S., Wall, E., Berry, D. P., Coffey, P. & Dardenne, P. (2011). Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. Journal of Dairy Science, 94(4), 1657–1667. https://doi.org/10.3168/jds.2010-3408Soyeurt, H., Bastin, C., Colinet, F. G., Arnould, V. M.-R., Berry, D. P., Wall, E., Dehareng, F., Nguyen, H. N., Pardenne, P., Schefers, J., Vandenplas, J., Weigel, K., Coffey, M., Théron, L., Detilleux, J., Reding, E., Gengler, N. & McParland, S. (2012). Mid-infrared prediction of lactoferrin content in bovine milk: potential indicator of mastitis. Animal, 6(11), 1830–1838. https://doi.org/10.1017/s1751731112000791Toffanin, V., De Marchi, M., Lopez-Villalobos, N., & Cassandro, M. (2015). Effectiveness of mid-infrared spectroscopy for prediction of the contents of calcium and phosphorus, and titratable acidity of milk and their relationship with milk quality and coagulation properties. International Dairy Journal, 41, 68–73. https://doi.org/10.1016/j.idairyj.2014.10.002Vanlierde, A., Vanrobays, M.-L., Dehareng, F., Froidmont, E., Soyeurt, H., McParland, S., S., Lewis, E., Deighton, M. H., Grandl, F., Kreuzer, M., Gredler, B., Dardenne, P. & Gengler, N. (2015). Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra. Journal of Dairy Science, 98(8), 5740–5747. https://doi.org/10.3168/jds.2014-8436Vanlierde, A., Soyeurt, H., Gengler, N., Colinet, F. G., Froidmont, E., Kreuzer, M., Grandl, F., Bell, M., Lund, P., Olijhoek, D. W., Eugéne M., Martin, C., Kuhla, B. & Dehareng, F. (2018). Short communication: Development of an equation for estimating methane emissions of dairy cows from milk Fourier transform mid-infrared spectra by using reference data obtained exclusively from respiration chambers. Journal of Dairy Science, 101(8). https://doi.org/10.3168/jds.2018-14472

    Calibration in optical graph recognition

    Get PDF
    Graph drawing is the process of transforming the topological structure of a graph into a graphical representation. Primarily, it maps vertices to points and displays them by icons, and it maps edges to Jordan curves connecting the endpoints. Optical graph recognition (OGR) is the inverse and transforms the digital image of a drawn graph into its topological structure. It consists of four phases: preprocessing, segmentation, topology recognition, and postprocessing. OGR is based on established digital image processing techniques. Its novelty is the topology recognition where the edges are recognized with emphasis on the attachment to their vertices and on edge crossings. Our prototypical implementation OGR up shows the effectiveness of the approach and produces a GraphML file, which can be used for further algorithmic studies and graph drawing tools. It has been tested both on hand made graph drawings and on drawings generated by graph drawing algorithms. Here we report on experiments for the calibration of parameters, which are critical for topology recognition

    Optical Graph Recognition on a Mobile Device

    No full text
    In [1] we proposed Optical Graph Recognition (OGR) as the reversal of graph drawing. A drawing transforms the topological structure of a graph into a graphical representation. Primarily, it maps vertices to points and displays them by icons, and it maps edges to Jordan curves connecting the endpoints. In reverse, OGR transforms the digital image of a drawn graph into its topological structure. The recognition process is divided into the four phases preprocessing, segmentation, topology recognition, and postprocessing. In the preprocessing phase OGR detects which pixels of an image are part of the graph (graph pixels) and which pixels are not. The segmentation phase recognizes the vertices of the graph and classifies the graph pixels as vertex and edge pixels. The topology recognition phase first recognizes edge sections. Edge crossings divide edges into edge sections, i. e., the regions between crossings and vertices. The edge sections are merged into edges in the most probable way based on direction vectors. The postprocessing phase concludes OGR with tasks like converting the recognized graph into different file formats, like GraphML or adding coordinates to th

    Library Links, vol. 10, no. 02 (December 1996)

    No full text
    The Health Sciences Library newsletter, published twice yearly from 1989-2006

    Prediction of Acute and Chronic Mastitis in Dairy Cows Based on Somatic Cell Score and Mid-Infrared Spectroscopy of Milk.

    Full text link
    Monitoring for mastitis on dairy farms is of particular importance, as it is one of the most prevalent bovine diseases. A commonly used indicator for mastitis monitoring is somatic cell count. A supplementary tool to predict mastitis risk may be mid-infrared (MIR) spectroscopy of milk. Because bovine health status can affect milk composition, this technique is already routinely used to determine standard milk components. The aim of the present study was to compare the performance of models to predict clinical mastitis based on MIR spectral data and/or somatic cell count score (SCS), and to explore differences of prediction accuracies for acute and chronic clinical mastitis diagnoses. Test-day data of the routine Austrian milk recording system and diagnosis data of its health monitoring, from 59,002 cows of the breeds Fleckvieh (dual purpose Simmental), Holstein Friesian and Brown Swiss, were used. Test-day records within 21 days before and 21 days after a mastitis diagnosis were defined as mastitis cases. Three different models (MIR, SCS, MIR + SCS) were compared, applying Partial Least Squares Discriminant Analysis. Results of external validation in the overall time window (-/+21 days) showed area under receiver operating characteristic curves (AUC) of 0.70 when based only on MIR, 0.72 when based only on SCS, and 0.76 when based on both. Considering as mastitis cases only the test-day records within 7 days after mastitis diagnosis, the corresponding areas under the curve were 0.77, 0.83 and 0.85. Hence, the model combining MIR spectral data and SCS was performing best. Mastitis probabilities derived from the prediction models are potentially valuable for routine mastitis monitoring for farmers, as well as for the genetic evaluation of the trait udder health

    Prédiction des concentrations en minéraux du lait par une approche multi-races et multi-pays via la spectrométrie en moyen infrarouge du lait

    Full text link
    peer reviewedMeasuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples coming from five countries were analyzed to obtain spectra and in ICP-AES to measure the mineral reference contents. Models were built from records coming from four countries (n = 1181) and validated using records from the fifth country, Austria (n = 100). The importance of including local samples was tested by integrating 30 Austrian samples in the model while validating with the remaining 70 samples. The best performances were achieved using this second set of models, confirming the need to cover the spectral variability of a country before making a prediction. Validation root mean square errors were 54.56, 63.60, 7.30, 59.87, and 152.89 mg/kg for Na, Ca, Mg, P, and K, respectively. The built models were applied on the Walloon milk recording large-scale spectral database, including 3,510,077. The large-scale predictions on this dairy herd improvement database provide new insight regarding the minerals' variability in the population, as well as the effect of parity, stage of lactation, breeds, and seasons

    Mastitis detection from milk mid-infrared (MIR) spectroscopy in dairy cows

    Full text link
    Mid-infrared (MIR) spectroscopy is the method of choice for the standard milk recording system, to determine milk components including fat, protein, lactose and urea. Since milk composition is related to health and metabolic status of a cow, MIR spectra could be potentially used for disease detection. In dairy production, mastitis is one of the most prevalent diseases. The aim of this study was to develop a calibration equation to predict mastitis events from routinely recorded MIR spectra data. A further aim was to evaluate the use of test day somatic cell score (SCS) as covariate on the accuracy of the prediction model. The data for this study is from the Austrian milk recording system and its health monitoring system (GMON). Test day data including MIR spectra data was merged with diagnosis data of Fleckvieh, Brown Swiss and Holstein Friesian cows. As prediction variables, MIR absorbance data after first derivatives and selection of wavenumbers, corrected for days in milk, were used. The data set contained roughly 600,000 records and was split into calibration and validation sets by farm. Calibration sets were made to be balanced (as many healthy as mastitis cases), while the validation set was kept large and realistic. Prediction was done with Partial Least Squares Discriminant Analysis, key indicators of model fit were sensitivity and specificity. Results were extracted for association between spectra and diagnosis with different time windows (days between diagnosis and test days) in validation. The comparison of different sets of predictor variables (MIR, SCS, MIR + SCS) showed an advantage in prediction for MIR + SCS. For this prediction model, specificity was 0.79 and sensitivity was 0.68 in time window -7 to +7 days (calibration and validation). Corresponding values for MIR were 0.71 and 0.61, for SCS they were 0.81 and 0.62. In general, prediction of mastitis performed better with a shorter distance between test day and mastitis event, yet even for time windows of -21 to +21 days, prediction accuracies were still reasonable, with sensitivities ranging from 0.50 to 0.57 and specificities remaining unchanged (0.71 to 0.85). Additional research to further improve prediction equation, and studies on genetic correlations among clinical mastitis, SCS and MIR predicted mastitis are planned
    corecore