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Pregnancy assessment is a very important tool for the reproductive management in efficient and profitable dairy 
farms. Nowadays, mid-infrared (MIR) spectroscopy is the method of choice in the routine milk recording system 
for quality control and to determine standard milk components. Since it is well known that there are changes in 
milk yield and composition during pregnancy, the aim of this study was to develop a discriminant model to predict 
the pregnancy state from routinely recorded MIR spectral data. The data for this study was from the Austrian milk 
recording system. Test day records of Fleckvieh, Brown Swiss and Holstein Friesian cows between 3 and 305 
days of lactation were included in the study. As predictor variables, the first derivative of 212 selected MIR 
spectral wavenumbers were used. The data set contained roughly 400,000 records from around 40,000 cows and 
was randomly split into calibration and validation set by farm. Prediction was done with Partial Least Square 
Discriminant Analysis. Indicators of model fit were sensitivity, specificity, balanced accuracy and Area Under 
Receiver Operating Characteristic Curve (AUC). In a first approach, one discriminant model for all cows across 
the whole lactation and gestation lengths was applied. The sensitivity and specificity of this model in validation 
were 0.856 and 0.836, respectively. Splitting up the results for different lactation stages showed that the model 
was not able to predict pregnant cases before the third month of lactation and vice versa not able to predict non-
pregnancy after the third month of lactation. Consequently, in the second approach a prediction model for each 
different (expected) pregnancy stage and lactation stage was developed. Balanced accuracies ranged from 0.523 
to 0.918. Whether prediction accuracies from this study are sufficient to provide farmers with an additional tool for 
fertility management, it needs to be explored in discussions with farmers and breeding organizations. 
Keywords: MIR spectroscopy, pregnancy prediction, dairy cow, PLS 
 

1 Introduction 
Pregnancy assessment is an essential tool for the reproductive management in cattle farms (e.g. 
Balhara et al., 2013, Pohler et al., 2016, Hirpa et al., 2018). Ideally, a cow should calve every year and 
therefore the identification of pregnant and non-pregnant animals at an early stage is crucial (Hirpa et 
al., 2018). Early detection of pregnancy status also enables early detection and treatment of problems 
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(Bekele et al., 2016). Fertility is the most frequent reason for the culling of cows in dairy farms, 
accounting 24.2% in Austrian dairy farms in 2018 (Egger-Danner et al., 2018). Tools for pregnancy 
detection should be inexpensive and simple to apply under field conditions (Pohler et al., 2016). 
Basically, there are two types of diagnosing pregnancy state: direct methods such as estrus detection, 
transrectal palpation and transrectal ultrasonography, and indirect methods like analysis of 
progesterone and pregnancy-associated glycoproteins in milk or blood (Balhara et al., 2013, Pohler et 
al., 2016). Another important fact to be considered, are pregnancy losses. According to a review paper 
of Santos et al. (2004), the average embryonic mortality rate in dairy cows was 12.8% based on 14 
studies. Another study by Humblot (2001) averaged the early and the late embryonic pregnancy 
losses in Holstein cows in 44 French herds after first insemination to 31.6% and 14.7%, respectively. 
For late embryonic and fetal losses, Santos et al. (2004) reported a value of 10.7% on average, based 
on 17 dairy farms. Pregnancy losses reduce the benefit of the early pregnancy diagnosis. Hence, 
repeated information about the pregnancy status of a dairy cow (e.g. at every test day) would be a 
truly useful tool for dairy farmers.  

Mid-infrared (MIR) spectroscopy is the method of choice in the standard milk recording systems for 
quality control and to determine milk contents including fat, protein, lactose and urea (Grelet et al., 
2015, 2016). MIR spectra data could also be used to predict fine components of milk such as minerals 
(Toffanin et al., 2015) or fatty acids (Soyeurt et al., 2011). Moreover, there are studies to predict 
various other traits and variables such as blood metabolites (Benedet et al., 2019) and methane 
emissions (Vanlierde et al., 2018). As it is well known that there are changes in milk yield and also milk 
composition during the pregnancy in dairy cows (Olori et al., 1997, Lainé et al., 2017), MIR spectra 
data could be potentially useful to predict pregnancy state of dairy cows. There are few relevant 
studies on this subject, which were exploring quite different approaches. Lainé et al. (2014) used 
residual spectra to detect pregnancy status and observed only the first 50 days after insemination. The 
reported prediction accuracies were very promising (sensitivity >0.99; specificity >0.84) but could not 
be reproduced on an independent data set (N. Gengler, 2020, University of Liege, Gembloux, 
Belgium, personal communication). Another study of Delhez et al. (2020) explored different modelling 
approaches for diagnosing pregnancy status from MIR spectra. In one strategy they only used single 
spectral records after insemination, from where records after a successful insemination were 
considered as ‘pregnant’ and records after an unsuccessful insemination were considered as ‘open’. 
For the described strategy sensitivity was 0.65 and specificity 0.56. In another strategy, seven different 
models based on stages after insemination were developed; sensitivities ranging from 0.57 to 0.75 
and specificities from 0.52 to 0.74 were obtained. 

The aim of this study was to develop a discriminant model to predict the pregnancy status from 
routinely recorded MIR spectral data, and to further provide probabilities of pregnancy for each test 
day. Pregnancy probabilities obtained in this way could provide extra information for farmers in the 
framework of routine milk recording. Two different approaches were evaluated. The novelty of the 
second approach was the exploration of separate prediction models for different lactation stages. 

2 Material and methods 

2.1 Data and data preparation 

The data for this study was from the Austrian milk recording system for the period July 2014 to 
February 2019 and was kindly provided by Zuchtdata GmbH. Test day milk data contained information 
on breed, herd, parity, days in milk, milk components (fat, protein, urea, lactose), somatic cell count 
(SCC) and standardized MIR spectral data for the respective test days. Additionally, information on the 
exact insemination and calving dates was available. Test day records of Fleckvieh, Brown Swiss and 
Holstein Friesian cows between 3 and 305 days of lactation were included. On average cows in the 
data set were pregnant at lactation day 93. Merging of the data sets and primary data preparation 
were done with the software SAS (SAS Institute Inc., 2017). Table 1 shows the number of records of 
the complete data set. 

To define test day records as ‘pregnant’ and ‘open’, the pregnancy state of each cow was connected 
to the associated test day by the following procedure: gestation length was calculated as the date of 
re-calving minus the date of latest insemination, also defined as successful insemination. Only records 
of cows with ranges of gestation length as implemented in the joint genetic evaluation of Austria, 
Germany and Czech Republic were included: Fleckvieh 275 to 305 days, Holstein 268 to 298 days, 
Brown Swiss 276 to 306 days (C. Fuerst, 2019, Zuchtdata GmbH, Vienna, personal communication). 
Test days without a confirmed date of next calving were excluded. Test day records before 
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a successful insemination date were coded as ‘open’ and all test day records between the date of 
successful insemination and date of re-calving were coded as ‘pregnant’. This procedure is visualized 
in Figure 1. The distribution of all test day records by class of pregnancy status (open or pregnant) 
along the stage of lactation is displayed in Figure 2. 

Table 1 Characteristics of the final data set 

Item n 
Farms 6,899 
Cows 40,106 
 Fleckvieh 30,589 
 Brown Swiss 3,854 
 Holstein Friesian 
 

5,663 
Test day records 403,863 
 open 124,163 
 pregnant 279,700 

 
 

 

Figure 1 Defining test day records as 'open' or 'pregnant’ 
 

 
Figure 2 Distribution of test day records by pregnancy status (pregnant and open) along days in milk 
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MIR spectra were collected in several Austrian milk labs with Foss instruments spectrometers. Those 
MIR spectra consist of 1,060 data points, which are the absorbance values of infrared light at different 
wavenumbers, with frequencies from 926 to 5,010 cm-1. Spectral data from different machines and 
different periods were previously standardized into a common basis (Grelet et al., 2015). For 
prediction models only selected areas of the spectra were used: 968.1 to 1,577.5 cm-1, 1,731.8 to 
1,762.6 cm-1, 1,781.9 to 1,808.9 cm-1 and 2,831 to 2,966 cm-1 (Grelet et al., 2016). The 212 selected 
data points contain most of the usable information after removal of areas known to be non-
reproducible between instruments or non-informative due to strong water absorption. According to 
other relevant studies (Soyeurt et al., 2011, 2012, Grelet et al., 2016, Lainé et al., 2017, Mineur et al., 
2017, Ho et al., 2019, Rienesl et al., 2019), first derivatives of selected spectra values (Savitzky-
Golay-Filter) were taken. All further data preparation was done in Rstudio (R Development Core 
Team, 2008). The first derivative of 212 selected spectra variables were additionally corrected for days 
in milk (DIM), according to Vanlierde et al. (2015): each first derivative value of the selected spectra 
was multiplied by a constant (i.e., 1), a linear (√3 * x) and a quadratic [√5/4 * (3x² - 1)] modified 
Legendre polynomial (Gengler et al., 1999), where x = −1 + 2[(DIM − 3)/(305 − 3)]. This modification 
resulted in 636 (212 constant, 212 linear, 212 quadratic) spectra variables, which were finally used as 
predictor variables. The complete data set (403,863 test day records) was randomly split by farm and 
pregnancy state into half a calibration (training) set and a validation (test) set. Further, calibration set 
got balanced (1:1) in terms of pregnancy state by using random down sampling. The validation data 
set was kept unbalanced to get realistic conditions. For every test day record two additional variables 
were introduced: ‘days pregnant’ (test day date minus date of successful insemination) and ‘days after 
insemination’ (test day date minus date of latest insemination). The variable ‘days after insemination’ 
was needed to define expected pregnancy stage of a cow at a certain test day, as in validation we 
assumed that true pregnancy stage is unknown.  

2.2 Methodology 
Two different approaches of predicting pregnancy status were explored, considering the potential 
effects of stage of lactation and stage of pregnancy on milk composition and resulting MIR spectra 
patterns. 
Approach 1: Single prediction model across the whole lactation and gestation 
The first approach was to develop a single prediction model for all test day records, regardless 
lactation and gestation stage of the cow at the respective test day, similar to the study of Lainé et al. 
(2014). 
Approach 2: Separate prediction models for each different (expected) pregnancy and lactation 
stage 
The second approach was to produce separate models for different pregnancy and lactation stages 
(DIM). Test day records were clustered into 24 classes according to true or expected pregnancy stage 
and DIM (Table 2). In calibration clustering for ‘pregnant’ cases was done by true pregnancy stage 
(‘days pregnant’) and for ‘open’ cases by expected pregnancy stage (‘days after insemination’). In 
validation, both ‘open’ and ‘pregnant’ cases were grouped by the variable ‘days after insemination’. 
For each class a separate discriminant model was developed and evaluated in the respective class in 
validation. 
Model predictions were done with Partial Least Square Discriminant Analysis (PLS-DA) by applying 
the function ‘trainControl’ of R package ‘caret’ (Kuhn, 2008). A 10-fold cross validation was used to 
fine tune the model, the number of components was set automatically (within a maximum number of 
60 to avoid overfitting) for every run and discrimination was done by class probabilities. Spectra values 
were centered and scaled. Indicators of model fit were sensitivity (proportion of pregnant cases 
correctly assigned as pregnant), specificity (proportion of open cases correctly assigned as open), 
balanced accuracy (mean of sensitivity and specificity) and Area Under Receiver Operating 
Characteristic Curve (AUC). Model performance was evaluated with an external validation. The 
validation data set consisted only of data from farms which were not included in model building. The 
results presented below are means of 5 independent replicates per setting. The standard deviations of 
indicators of model fit were typically very low in approach 1 (0.001 to 0.003) and from 0.001 to 0.050 in 
approach 2, depending on sample size in the respective class. 
Data sets, data processing and methodology were very similar to a study on mastitis detection from 
MIR spectroscopy of Rienesl et al. (2019), carried out within the framework of the same project. 
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Table 2  Classes used to cluster test day records according to different (true or expected) pregnancy 
and lactation stages (days in milk) for approach 2 

 Lactation stage (days in milk) 
3 - 60 61 - 120 121 - 180 181 - 240 241 - 305 
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1 - 30 1 - 30 1- 30 1- 30 1- 30 
31 - 60 31 - 60 31 - 60 31 - 60 31 - 60 

- 61 - 90 61 - 90 61 - 90 61 - 90 
- 91 - 120 91 - 120 91 - 120 91 - 120 
- - 151 - 180 181 - 210 181 - 210 
- - - 211 - 240 211 - 240 
- - - - 241 - 305 

3 Results and discussion 

In this study, we examined 2 approaches to predict the pregnancy status of dairy cows from routinely 
recorded MIR spectra. The results of the first approach, a single prediction model for all cows and test 
day records, regardless lactation and gestation stage, are displayed in Table 3. Both sensitivity (0.86) 
and specificity (0.84) were almost identical in calibration and validation. The value of AUC was 0.928 
which indicates an outstanding performance of the prediction model according to Lantz (2015). In the 
study of Lainé et al. (2014) sensitivity was higher (>0.99) and specificity (>0.84) almost the same as in 
the present study. However, the results are difficult to compare because of differences in 
methodology. In the reported approach of Delhez et al. (2020), who used single spectra after 
insemination, prediction accuracies were lower than our results. Even if differences are expected given 
the studied populations and countries (Australia vs. Austria), the definition of ‘open’ was also different, 
which may have a considerable effect. 

Table 3 Indicators of model fit in calibration and validation using a single prediction equation across 
the whole lactation and gestation length (approach 1) 

 Sensitivity Specificity Balanced 
accuracy AUC 

Calibration 0.857 0.837 0.847 - 
Validation 0.856 0.836 0.846 0.928 

AUC – Area Under Receiver Operating Characteristic Curve 
 

To get closer insight on how prediction worked, the results of approach 1 were split up for different 
lactation stages (Table 4).  

Table 4 Indicators of model fit (sensitivity, specificity and balanced accuracy) in validation split up for 
lactation stage for the model with only one prediction model (approach 1) 

Lactation stage 
(days in milk) 

Records, n 
Sensitivity Specificity Balanced 

accuracy open pregnant 
1 (3 - 60) 35,140 2,515 0.000 1.000 0.500 
2 (61 - 120) 17,756 23,111 0.285 0.895 0.590 
3 (121 -180) 6,003 35,325 0.974 0.086 0.530 
4 (181 - 240) 1,998 39,549 0.999 0.002 0.501 
5 (241 - 305) 684 38,915 0.999 0.000 0.500 

 

This procedure showed an immense imbalance in sensitivity and specificity for the 5 different lactation 
stages. In lactation stage 1 most of the cows (2,515 out of 37,655) were open. This was expected as 
in our data cows got pregnant on average after 93 DIM. Sensitivity in the first lactation stage was 
0.000 and specificity was 1.000. Hence, the model classified all open cases correctly as open, but was 
not able to classify a pregnant cow correctly as pregnant. Precisely, the model predicted only a single 
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cow out of 2,515 actually pregnant cows in lactation stage one to be pregnant. In lactation stage 2 the 
number of test day records was much more balanced in terms of open (17,756) and pregnant cases 
(23,111). Though, the majority of cow’s test day records (32,428) were predicted to be open and only 
8,439 were predicted to be pregnant, which resulted in a sensitivity of 0.285 and specificity of 0.895. In 
lactation stage 3 the proportion of open cases decreased strongly (<15%) and also sensitivity (0.975) 
and specificity (0.086) changed dramatically compared to previous lactation stages. Similar results 
were found in lactation stage 4. In lactation stage 5, where the number of open cases was only 1.7%, 
sensitivity was 0.999 and specificity 0.000. According to those results it can be concluded that the 
model was not able to predict pregnant cases before the third month of lactation and vice versa not 
able to predict non-pregnancy after the third month of lactation. Moreover, we assume that the model 
was predicting the lactation stage to a quite high degree, which is strongly linked to pregnancy state. 
The sensitivity of approach 1 was additionally split up for different months of pregnancy (Table 5). We 
observed a very low sensitivity (0.380) in the first months of pregnancy and a moderate sensitivity 
(0.695) in the second month. In the third month of pregnancy sensitivity increased strongly to 0.95 and 
was above 0.99 from month 4 onward.  

Table 5  Sensitivity in validation split up for pregnancy months for the model with only one prediction 
model (approach 1) 

Pregnancy 
month 

Records, n 
pregnant Sensitivity Pregnancy 

month 
Records, n 
pregnant Sensitivity 

1 20,271 0.380 6 17,059 0.999 
2 20,406 0.695 7 14,350 1.000 
3 20,036 0.945 8 8,371 0.999 
4 19,646 0.997 9 525 1.000 
5 18,750 0.999 10 1 1.000 

 

Consequently, a single prediction model for the full lactation and gestation lengths was not sufficient. 
This led us to approach 2, where separate prediction models for different lactation stages and 
(expected) pregnancy stages were developed. The results are displayed in Table 6. The sensitivities 
were in the range from 0.494 (lactation stage 3, pregnancy day 1 to 30) and 0.995 (lactation stage 4, 
pregnancy day 211 to 240). Thus, differences were very big. The range of specificities was also very 
wide, from 0.512 (lactation stage 2, pregnancy day 1 to 30) to 0.884 (lactation stage 3, pregnancy day 
121 to 180). Within lactation stage, the indicators of model fit increased in later (expected) gestation 
stages. For example, in the first lactation stage, sensitivity increased from 0.890 for the first (expected) 
pregnancy month to 0.946 for the second (expected) pregnancy month and specificity from 0.690 to 
0.750. In lactation stage 4, sensitivity increased from 0.553 to 0.995 and specificity from 0.527 to 
0.820. This finding partially coincides with the results of Delhez et al. (2020), who reported sensitivity 
and specificity greater than 0.74 from the 180th day of pregnancy and lower (sensitivities 0.57 to 0.71; 
specificities 0.52 to 0.66) in earlier pregnancy stages. 

Within the classes of (expected) pregnancy days, indicators of model fit mostly decreased with a later 
lactation stage. Sensitivities for the first ‘expected’ pregnancy months were 0.890 in the first lactation 
stage, 0.620 in the second lactation stage, and 0.504 in the last lactation stage. These results indicate 
that prediction accuracy decreases for cows which become pregnant (much) later than the average 
cow in the data set. 

In general, results of approach 2 are very hard to compare with other mentioned studies. In the study 
of Delhez et al. (2020), the authors explored a strategy with 7 different modelling groups based on 
stages (days) after insemination, but regardless lactation stage, which was novel in our study. 
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Table 6  Records (open/pregnant) and indicators of model fit in validation for the different (expected) 
pregnancy and lactation classes (approach 2) 

Lactation 
stage (days 

in milk) 

(expected) 
pregnancy 

days 

Records, n 
Sensitivity Specificity Balanced 

accuracy AUC 
open pregnant 

1 
(3 - 60) 

1 - 30 35,158 2,497 0.890 0.690 0.790 0.853 
31 - 60 32,479 37 0.946 0.750 0.848 0.919 

2 
(61 - 120) 

1 - 30 15,023 11,421 0.620 0.512 0.566 0.592 
31 - 60 10,992 9,575 0.827 0.623 0.725 0.792 
61 - 90 8,780 2,438 0.922 0.840 0.881 0.937 

91 - 120 8,388 43 0.969 0.857 0.913 0.974 

3 
(121 - 180) 

1 - 30 3,647 4,303 0.494 0.553 0.523 0.534 
31 - 60 2,819 7,791 0.565 0.590 0.577 0.606 
61 - 90 2,037 11,555 0.597 0.625 0.611 0.658 

91 - 120 1,318 9,074 0.772 0.676 0.724 0.798 
121 - 150 1,324 2,367 0.897 0.834 0.866 0.929 
151 - 180 1,157 45 0.951 0.884 0.918 0.964 

4 
(181 - 240) 

1 - 30 990 1,582 0.553 0.527 0.540 0.559 
31 - 60 771 2,729 0.592 0.597 0.594 0.636 
61 - 90 573 4,606 0.607 0.622 0.614 0.660 

91 - 120 459 7,918 0.587 0.652 0.620 0.666 
121 - 150 380 11,407 0.623 0.623 0.623 0.674 
151 - 180 288 9,506 0.766 0.718 0.742 0.821 
181 - 210 289 2,477 0.896 0.846 0.871 0.939 
211 - 240 279 48 0.995 0.820 0.908 0.958 

5 
(241 - 305) 

1 - 30 307 559 0.504 0.584 0.545 0.568 
31 - 60 256 938 0.598 0.537 0.568 0.612 
61 - 90 155 1,643 0.623 0.633 0.628 0.675 

91 - 120 155 2,759 0.610 0.706 0.658 0.713 
121 - 150 107 4,557 0.612 0.676 0.644 0.691 
151 - 180 93 8,153 0.638 0.725 0.681 0.742 
181 - 210 88 11,741 0.684 0.768 0.726 0.792 
211 - 240 83 8,563 0.776 0.849 0.813 0.885 
241 - 305 79 506 0.852 0.855 0.854 0.933 

AUC – Area Under Receiver Operating Characteristic Curve 

4 Conclusions 

This work explored the use of routinely recorded MIR spectral data to predict pregnancy status from 
dairy cows by developing and evaluating a discriminant model. Results indicate that prediction of 
pregnancy state is difficult because of the strong effect of lactation stage on the MIR spectrum and the 
fact that cows are typically open in early lactation and pregnant in late lactation. If a cow did not match 
this “common pattern”, prediction was not satisfactory. Hence, a single prediction model for the full 
lactation and all periods of gestation was not sufficient. Developing separate prediction equations for 
stages of lactation and periods of expected pregnancy improved predictability of pregnancy status to 
some degree. Whether the prediction accuracies found in this study will be sufficient to provide 
farmers with an additional tool for fertility management needs to be explored in discussion with farmers 
and breeding organizations.  
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