23 research outputs found

    Outcomes of patients hospitalized for acute decompensated heart failure: does nesiritide make a difference?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nesiritide is indicated in the treatment of acute decompensated heart failure. However, a recent meta-analysis reported that nesiritide may be associated with an increased risk of death. Our goal was to evaluate the impact of nesiritide treatment on four outcomes among adults hospitalized for congestive heart failure (CHF) during a three-year period.</p> <p>Methods</p> <p>CHF patients discharged between 1/1/2002 and 12/31/2004 from the Adventist Health System, a national, not-for-profit hospital system, were identified. 25,330 records were included in this retrospective study. Nesiritide odds ratios (OR) were adjusted for various factors including nine medications and/or an APR-DRG severity score.</p> <p>Results</p> <p>Initially, treatment with nesiritide was found to be associated with a 59% higher odds of hospital mortality (Unadjusted OR = 1.59, 95% confidence interval [CI]: 1.31–1.93). Adjusting for race, low economic status, APR-DRG severity of illness score, and the receipt of nine medications yielded a nonsignificant nesiritide OR of 1.07 for hospital death (95% CI: 0.85–1.35). Nesiritide was positively associated with the odds of prolonged length of stay (all adjusted ORs = 1.66) and elevated pharmacy cost (all adjusted ORs > 5).</p> <p>Conclusion</p> <p>In this observational study, nesiritide therapy was associated with increased length of stay and pharmacy cost, but not hospital mortality. Randomized trials are urgently needed to better define the efficacy, if any, of nesiritide in the treatment of decompensated heart failure.</p

    Teacher Internship Report - Farmersville High School

    Get PDF
    This internship/project report includes validation documents required in meeting the quality criteria for secondary-level programs of instruction in agriculture. The documents are concurrently used for the Agriculture Incentive Grant review process at Farmersville High School conducted by representatives of the California Department of Education. The internship included the development of an A-G UC approved Floral Program for Farmersville High School

    Effects of maturation on knee biomechanics during cutting and landing in young female soccer players.

    No full text
    Young female soccer players are at high risk of anterior cruciate ligament injury due to the fast-paced nature of the sport and surplus of unplanned movements during play. Neuromuscular training programs that aim to reduce this injury by targeting the associated biomechanical movements are a potential solution. While previous studies have examined the lack of dynamic knee control during landing, there are few that outline the role that maturation can play during unanticipated cutting. Therefore, the purpose of this study was to determine if young female soccer players across multiple phases of maturation exhibited the before seen differences in knee control during a drop landing as well as an unanticipated cutting task. 139 female soccer players volunteered to participate in this study and were classified in three maturational groups based on percent adult stature: prepubertal (PRE), pubertal (PUB), and post-pubertal (POST). Each group performed a drop vertical jump (DVJ) and an unanticipated cutting task (CUT). Standard 3D motion capture techniques were used to determine peak knee flexion/abduction angles and moments during each task. Within tasks, POST exhibited significantly greater peak abduction angles and moments compared to PUB/PRE. While each maturational group exhibited greater peak knee abduction angles during the DVJ compared to the CUT, peak knee abduction moments during the CUT were greater compared to the DVJ. Participants within each maturational group exhibited greater knee flexion during the DVJ compared to the CUT, however there were no differences identified between groups. During both tasks, POST/PUB exhibited greater peak knee flexion moments compared to PRE, as well as POST compared to PUB. Overall, each group exhibited significantly greater peak knee flexion moments during the CUT compared to the DVJ. These observed differences indicate the need for neuromuscular training programs that target both jumping and cutting techniques to reduce ACL injuries

    How wide is the seismogenic zone of the Lesser Antilles forearc?

    No full text
    The Lesser Antilles subduction zone has produced no recent strong thrust earthquakes, making it difficult to quantify the seismic hazard from such events. The Lesser Antilles arc has a low subduction rate and an accretionary wedge that is very wide at its southern end. To investigate the effect of the wedge on seismogenesis, numerical models of forearc thermal structure were constructed along six transects perpendicular to the arc in order to determine the thermally predicted width of the seismogenic zone. The geometry of each section is constrained by published seismic profiles and crustal models derived from gravity and seismic data and by earthquake hypocenters at depth. A major constraint on the deep part of the model is that mantle temperature beneath the volcanic arc should achieve a temperature of 1,100 degrees C to generate partial melts. Predicted surface heat flow is compared to the available heat flow observations. Thermal modeling results indicate a systematic southward increase in the width of the seismogenic zone, more than doubling in width from north to south and corresponding to a dramatic southward increase in forearc width (distance from the arc to the deformation front of the accretionary wedge). The minimum width of the seismogenic zone (distance between the intersections of the subduction interface with the 150 degrees C and 350 degrees C isotherms) increases from about 80 km, north of 16 degrees N, to 230 km, at 13 degrees N. The maximum width (between the 100 degrees C and 450 degrees C isotherms) ranges from about 150 km in the north to up to 320 km in the south. This large variation in the width of the seismogenic zone is a consequence of the increasing width of the accretionary wedge to the south, caused by the increased thickness of sediment on the subducting plate. There is good agreement between the thermally predicted seismogenic limits and the sparse distribution of recorded thrust earthquakes, which are observed only in the northern portion of the arc. Possible scenarios for mega-thrust earthquakes are discussed. Depending on the segment length (along-strike) of the rupture plane, the occurrence of an event of magnitude 8-9 cannot be excluded.L’absence de grands séismes récents à mécanismes chevauchants dans la zone de subduction des Petites Antilles rend difficile l’évaluation de l’aléa sismique lié à de tels événements. L’arc des Petites Antilles est caractérisé par une faible vitesse de subduction et par la présence d’un prisme d’accrétion très développé à son extrémité méridionale. Afin d’évaluer les effets de la largeur de ce prisme sur la genèse des séismes, nous avons étudié six sections perpendiculaires à l’arc, du nord au sud de celui-ci, pour déterminer la largeur de la zone sismogène prédite par les modèles thermiques appliqués à chacune de ces coupes. La géométrie de ces dernières est contrainte par les profils sismiques publiés, par les modèles de structure crustale déduits des données gravitaires et sismiques, et enfin par la distribution des hypocentres des séismes. Un contrôle important permettant de tester la validité des modèles thermiques en profondeur est qu’une température minimale de 1 100oC, compatible avec la fusion partielle du manteau hydraté, doit être atteinte sous l’arc volcanique actif. Par ailleurs, le flux thermique en surface prédit par ces modèles doit être compatible avec les mesures de flux de chaleur. Les modèles thermiques retenus d’après ces critères montrent une augmentation du simple au double vers le sud de la largeur de la zone sismogène, qui correspond à un élargissement considérable de la taille du domaine avant-arc. En effet, la largeur minimale de la zone sismogène (définie comme la distance entre les intersections de l’interface des plaques avec les isothermes 150o et 350oC) augmente d’environ 80 km au nord de 16oN jusqu’à 230 km à 13oN. La largeur maximale de cette zone (définie par les intersections de l’interface avec les isothermes 100o et 450oC) augmente, quant à elle, d’environ 150 km au nord jusqu’à 320 km au sud de l’arc. Cette variation considérable est la conséquence de l’augmentation de la largeur du prisme d’accrétion, elle-même causée par l’accumulation croissante des sédiments déposés sur la plaque plongeante. Les largeurs de la zone sismogène prédites à l’aide des modèles thermiques sont en bon accord avec les rares données disponibles sur les séismes à mécanismes chevauchants dans la partie nord de l’arc. Les scénarios possibles relatifs à des méga-séismes de ce type n’excluent pas de futurs événements atteignant des magnitudes de 8 à 9

    HIGH-RESOLUTION 3D SEISMIC INVESTIGATIONS OF HYDRATE-BEARING FLUID-ESCAPE CHIMNEYS IN THE NYEGGA REGION OF THE VØRING PLATEAU, NORWAY

    No full text
    Hundreds of pockmarks and mounds, which seismic reflection sections show to be underlain by chimney-like structures, exist in southeast part of the Vøring plateau, Norwegian continental margin. These chimneys may be representative of a class of feature of global importance for the escape of methane from beneath continental margins and for the provision of a habitat for the communities of chemosynthetic biota. Thinning of the time intervals between reflectors in the flanks of chimneys, observed on several high-resolution seismic sections, could be caused by the presence of higher velocity material such as hydrate or authigenic carbonate, which is abundant at the seabed in pockmarks in this area. Evidence for the presence of hydrate was obtained from cores at five locations visited by the Professor Logachev during TTR Cruise 16, Leg 3 in 2006. Two of these pockmarks, each about 300-m wide with active seeps within them, were the sites of high-resolution seismic experiments employing arrays of 4-component OBS (Ocean-Bottom Seismic recorders) with approximately 100-m separation to investigate the 3D variation in their structure and properties. Shot lines at 50-m spacing, run with mini-GI guns fired at 8-m intervals, provided dense seismic coverage of the sub-seabed structure. These were supplemented by MAK deep-tow 5-kHz profiles to provide very high-resolution detail of features within the top 1-40 m sub-seabed. Travel-time tomography has been used to detail the variation in Vp and Vs within and around the chimneys. Locally high-amplitude reflectors of negative polarity in the flanks of chimneys and scattering and attenuation within the interiors of the chimneys may be caused by the presence of free gas within the hydrate stability field. A large zone of free gas beneath the hydrate stability field, apparently feeding several pockmarks, is indicated by attenuation and velocity pull-down of reflectors.Non UBCUnreviewe

    A GEOPHYSICAL STUDY OF A POCKMARK IN THE NYEGGA REGION, NORWEGIAN SEA

    Get PDF
    Over the last decade pockmarks have proven to be important seabed features that provide information about fluid flow on continental margins. Their formation and dynamics are still poorly constrained due to the lack of proper three dimensional imaging of their internal structure. Numerous fluid escape features provide evidence for an active fluid-flow system on the Norwegian margin, specifically in the Nyegga region. In June-July 2006 a high-resolution seismic experiment using Ocean Bottom Seismometers (OBS) was carried out to investigate the detailed 3D structure of a pockmark named G11 in the region. An array of 14 OBS was deployed across the pockmark with 1 m location accuracy. Shots fired from surface towed mini GI guns were also recorded on a near surface hydrophone streamer. Several reflectors of high amplitude and reverse polarity are observed on the profiles indicating the presence of gas. Gas hydrates were recovered with gravity cores from less than a meter below the seafloor during the cruise. Indications of gas at shallow depths in the hydrate stability field show that methane is able to escape through the water-saturated sediments in the chimney without being entirely converted into gas hydrate. An initial 2D raytraced forward model of some of the P wave data along a line running NE-SW across the G11 pockmark shows, a gradual increase in velocity between the seafloor and a gas charged zone lying at ~300 m depth below the seabed. The traveltime fit is improved if the pockmark is underlain by velocities higher than in the surrounding layer corresponding to a pipe which ascends from the gas zone, to where it terminates in the pockmark as seen in the reflection profiles. This could be due to the presence of hydrates or carbonates within the sediments.Non UBCUnreviewe
    corecore