232 research outputs found

    Three-dimensional laser cooling at the Doppler limit

    Full text link
    Many predictions of Doppler cooling theory of two-level atoms have never been verified in a three-dimensional geometry, including the celebrated minimum achievable temperature Γ/2kB\hbar \Gamma/2 k_B, where Γ\Gamma is the transition linewidth. Here, we show that, despite their degenerate level structure, we can use Helium-4 atoms to achieve a situation in which these predictions can be verified. We make measurements of atomic temperatures, magneto-optical trap sizes, and the sensitivity of optical molasses to a power imbalance in the laser beams, finding excellent agreement with the Doppler theory. We show that the special properties of Helium, particularly its small mass and narrow transition linewidth, prevent effective sub-Doppler cooling with red-detuned optical molasses.Comment: 8 pages, 5 figure

    Peripapillary Sparing With Near Infrared Autofluorescence Correlates With Electroretinographic Findings in Patients With Stargardt Disease

    Get PDF
    PURPOSE: To evaluate the correlation between the quantification of peripapillary sparing and electroretinogram (ERG) outcomes in autosomal recessive Stargardt disease (STGD1). METHODS: Near infrared fundus autofluorescence (NIR-FAF) images of 101 eyes of 101 patients were retrospectively reviewed. Peripapillary sparing was assessed both qualitatively and quantitatively. The area of spared tissue (AST) was calculated in a 1-mm-wide ring around the optic disc after binarization of the 55\ub0 NIR-FAF. These measurements were correlated with the presence of normal ERG (group I), abnormal photopic responses (group II), or abnormal photopic and scotopic responses (group III). RESULTS: AST showed significant correlations with ERG groups (R = -0.802, P < 0.001). While qualitative assessment of peripapillary sparing (i.e., present or not) also showed a significant correlation with ERG groups (R = -0.435, P < 0.001), it was weaker than by AST quantification. The ordinal regression analysis showed that the increase in AST was associated with a decrease in the odds of belonging to ERG groups II and III, with an odds ratio of 0.82 (95% confidence interval [CI] 0.78-0.87), P < 0.001. CONCLUSIONS: The AST around the optic disc in eyes with STGD1 correlates with the impairment of photoreceptors as shown in the ERG. If replicated in future longitudinal studies, the quantification of peripapillary sparing may prove to be a useful parameter for evaluating the visual prognosis of these eyes

    Prevalence of ABCA4 Deep-Intronic Variants and Related Phenotype in An Unsolved "One-Hit" Cohort with Stargardt Disease

    Get PDF
    We investigated the prevalence of reported deep-intronic variants in a French cohort of 70 patients with Stargardt disease harboring a monoallelic pathogenic variant on the exonic regions of ABCA4. Direct Sanger sequencing of selected intronic regions of ABCA4 was conducted. Complete phenotypic analysis and correlation with the genotype was performed in case a known intronic pathogenic variant was identified. All other variants found on the analyzed sequences were queried for minor allele frequency and possible pathogenicity by in silico predictions. The second mutated allele was found in 14 (20%) subjects. The three known deep-intronic variants found were c.5196+1137G>A in intron 36 (6 subjects), c.4539+2064C>T in intron 30 (4 subjects) and c.4253+43G>A in intron 28 (4 subjects). Even though the phenotype depends on the compound effect of the biallelic variants, a genotype-phenotype correlation suggests that the c.5196+1137G>A was mostly associated with a mild phenotype and the c.4539+2064C>T with a more severe one. A variable effect was instead associated with the variant c.4253+43G>A. In addition, two novel variants, c.768+508A>G and c.859-245_859-243delinsTGA never associated with Stargardt disease before, were identified and a possible splice defect was predicted in silico. Our study calls for a larger cohort analysis including targeted locus sequencing and 3D protein modeling to better understand phenotype-genotype correlations associated with deep-intronic changes and patients' selection for clinical trials

    Change in Cone Structure Over 24 Months in USH2A-Related Retinal Degeneration

    Get PDF
    Purpose: To describe cone structure changes using adaptive optics scanning laser ophthalmoscopy (AOSLO) in the Rate of Progression of USH2A-related Retinal Degeneration (RUSH2A) study. Design: Multicenter, longitudinal natural history study. Methods: AOSLO images were acquired at 4 centers, twice at baseline and annually for 24 months in this natural history study. For each eye, at least 10 regions of interest (ROIs) with ≥50 contiguous cones were analyzed by masked, independent graders. Cone spacing Z-scores, standard deviations from the normal mean at the measured location, were compared between graders and tests at baseline. The association of cone spacing with clinical characteristics was assessed using linear mixed effects regression models weighted by image quality score. Annual rates of change were calculated based on differences between visits. Results: Fourteen eyes of 14 participants were imaged, with 192 ROIs selected at baseline. There was variability among graders, which was greater in images with lower image quality score (P < .001). Cone spacing was significantly correlated with eccentricity, quality score, and disease duration (P < .02). On average, the cone spacing Z-score increased 0.14 annually (about 9%, P < .001). We observed no significant differences in rate of change between disease type (Usher syndrome or retinitis pigmentosa), imaging site, or grader. Conclusions: Using current methods, the analysis of quantitative measures of cone structure showed some challenges, yet showed promise that AOSLO images can be used to characterize progressive change over 24 months. Additional multicenter studies using AOSLO are needed to advance cone mosaic metrics as sensitive outcome measures for clinical trials

    Relative frequencies of inherited retinal dystrophies and optic neuropathies in Southern France: assessment of 21-year data management

    Get PDF
    PURPOSE: Inherited retinal dystrophies (IRDs) and inherited optic neuropathies (IONs) are rare diseases defined by specific clinical and molecular features. The relative prevalence of these conditions was determined in Southern France. METHODS: Patients recruited from a specialized outpatient clinic over a 21-year period underwent extensive clinical investigations and 107 genes were screened by polymerase chain reaction/sequencing. RESULTS: There were 1957 IRD cases (1481 families) distributed in 70% of pigmentary retinopathy cases (56% non-syndromic, 14% syndromic), 20% maculopathies and 7% stationary conditions. Patients with retinitis pigmentosa were the most frequent (47%) followed by Usher syndrome (10.8%). Among non-syndromic pigmentary retinopathy patients, 84% had rod-cone dystrophy, 8% cone-rod dystrophy and 5% Leber congenital amaurosis. Macular dystrophies were encountered in 398 cases (30% had Stargardt disease and 11% had Best disease). There were 184 ION cases (127 families) distributed in 51% with dominant optic neuropathies, 33% with recessive/sporadic forms and 16% with Leber hereditary optic neuropathy. Positive molecular results were obtained in 417/609 families with IRDs (68.5%) and in 27/58 with IONs (46.5%). The sequencing of 5 genes (ABCA4, USH2A, MYO7A, RPGR and PRPH2) provided a positive molecular result in 48% of 417 families with IRDs. Except for autosomal retinitis pigmentosa, in which less than half the families had positive molecular results, about 75% of families with other forms of retinal conditions had a positive molecular diagnosis. CONCLUSIONS: Although gene discovery considerably improved molecular diagnosis in many subgroups of IRDs and IONs, retinitis pigmentosa, accounting for almost half of IRDs, remains only partly molecularly defined

    The RUSH2A Study: Best-Corrected Visual Acuity, Full-Field Electroretinography Amplitudes, and Full-Field Stimulus Thresholds at Baseline

    Get PDF
    Purpose: The purpose of this study was to evaluate baseline best corrected visual acuity (BCVA), full-field electroretinography (ERG), full-field stimulus thresholds (FST), and their relationship with baseline demographic and clinical characteristics in the Rate of Progression in Usher syndrome type 2 (USH2A)-related Retinal Degeneration (RUSH2A) multicenter study. Methods: Participants had Usher syndrome type 2 (USH2, N = 80) or autosomal recessive nonsyndromic retinitis pigmentosa (ARRP, N = 47) associated with biallelic variants in the USH2A gene. Associations of demographic and clinical characteristics with BCVA, ERG, and FST were assessed with regression models. Results: In comparison to ARRP, USH2 had worse BCVA (median 79 vs. 82 letters; P < 0.001 adjusted for age), lower rod-mediated ERG b-wave amplitudes (median 0.0 vs. 6.6 µV; P < 0.001) and 30 Hz flicker cone-mediated ERG amplitudes (median 1.5 vs. 3.1 µV; P = 0.001), and higher (white, blue, and red) FST thresholds (means [-26, -31, -23 dB] vs. [-39, -45, -28 dB]; P < 0.001 for all stimuli). After adjusting for age, gender, and duration of vision loss, the difference in BCVA between diagnosis groups was attenuated (P = 0.09). Only diagnosis was associated with rod- and cone-mediated ERG parameters, whereas both genders (P = 0.04) and duration of visual loss (P < 0.001) also were associated with FST white stimulus. Conclusions: USH2 participants had worse BCVA, ERG, and FST than ARRP participants. FST was strongly associated with duration of disease; it remains to be determined whether it will be a sensitive measure of progression. Translational Relevance: Using standardized research protocols in RUSH2A, measures have been identified to monitor disease progression and treatment response and differentiate features of prognostic relevance between USH2 and ARRP participants with USH2A mutations

    Identification of a novel homozygous nonsense mutation in EYS in a Chinese family with autosomal recessive retinitis pigmentosa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retinitis pigmentosa is the most important hereditary retinal degenerative disease, which has a high degree of clinical and genetic heterogeneity. More than half of all cases of retinitis pigmentosa are autosomal recessive (arRP), but the gene(s) causing arRP in most families has yet to be identified. The purpose of this study is to identify the genetic basis of severe arRP in a consanguineous Chinese family.</p> <p>Methods</p> <p>Linkage and haplotype analyses were used to define the chromosomal location of the pathogenic gene in the Chinese arRP family. Direct DNA sequence analysis of the entire coding region and exon-intron boundaries of <it>EYS </it>was used to determine the disease-causing mutation, and to demonstrate that the mutation co-segregates with the disease in the family.</p> <p>Results</p> <p>A single nucleotide substitution of G to T at nucleotide 5506 of EYS was identified in the Chinese arRP family. This change caused a substitution of a glutamic acid residue at codon 1,836 by a stop codon TAA (p.E1836X), and resulted in a premature truncated EYS protein with 1,835 amino acids. Three affected siblings in the family were homozygous for the p.E1836X mutation, while the other unaffected family members carried one mutant allele and one normal EYS allele. The nonsense mutation p.E1836X was not detected in 200 unrelated normal controls.</p> <p>Conclusions</p> <p>The <it>EYS </it>gene is a recently identified disease-causing gene for retinitis pigmentosa, and encodes the orthologue of <it>Drosophila </it>spacemaker. To date, there are only eight mutations in <it>EYS </it>that have been identified to cause arRP. Here we report one novel homozygous nonsense mutation of <it>EYS </it>in a consanguineous Chinese arRP family. Our study represents the first independent confirmation that mutations in <it>EYS </it>cause arRP. Additionally, this is the first <it>EYS </it>mutation identified in the Chinese population.</p

    High prevalence of PRPH2 in autosomal dominant retinitis pigmentosa in france and characterization of biochemical and clinical features.

    Get PDF
    PURPOSE: To assess the prevalence of PRPH2 in autosomal dominant retinitis pigmentosa (adRP), to report 6 novel mutations, to characterize the biochemical features of a recurrent novel mutation, and to study the clinical features of adRP patients. DESIGN: Retrospective clinical and molecular genetic study. METHODS: Clinical investigations included visual field testing, fundus examination, high-resolution spectral-domain optical coherence tomography (OCT), fundus autofluorescence imaging, and electroretinogram (ERG) recording. PRPH2 was screened by Sanger sequencing in a cohort of 310 French families with adRP. Peripherin-2 protein was produced in yeast and analyzed by Western blot. RESULTS: We identified 15 mutations, including 6 novel and 9 previously reported changes in 32 families, accounting for a prevalence of 10.3% in this adRP population. We showed that a new recurrent p.Leu254Gln mutation leads to protein aggregation, suggesting abnormal folding. The clinical severity of the disease in examined patients was moderate with 78% of the eyes having 1-0.5 of visual acuity and 52% of the eyes retaining more than 50% of the visual field. Some patients characteristically showed vitelliform deposits or macular involvement. In some families, pericentral RP or macular dystrophy were found in family members while widespread RP was present in other members of the same families. CONCLUSIONS: The mutations in PRPH2 account for 10.3% of adRP in the French population, which is higher than previously reported (0%-8%) This makes PRPH2 the second most frequent adRP gene after RHO in our series. PRPH2 mutations cause highly variable phenotypes and moderate forms of adRP, including mild cases, which could be underdiagnosed

    WDR34, a candidate gene for non-syndromic rod-cone dystrophy

    Get PDF
    Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD
    corecore