68 research outputs found
The geometry of antiferromagnetic spin chains
We construct spin chains that describe relativistic sigma-models in the
continuum limit, using symplectic geometry as a main tool. The target space can
be an arbitrary complex flag manifold, and we find universal expressions for
the metric and theta-term.Comment: 31 pages, 3 figure
New Examples of Systems of the Kowalevski Type
A new examples of integrable dynamical systems are constructed. An
integration procedure leading to genus two theta-functions is presented. It is
based on a recent notion of discriminantly separable polynomials. They have
appeared in a recent reconsideration of the celebrated Kowalevski top, and
their role here is analogue to the situation with the classical Kowalevski
integration procedure.Comment: 17 page
Period Integrals of CY and General Type Complete Intersections
We develop a global Poincar\'e residue formula to study period integrals of
families of complex manifolds. For any compact complex manifold equipped
with a linear system of generically smooth CY hypersurfaces, the formula
expresses period integrals in terms of a canonical global meromorphic top form
on . Two important ingredients of our construction are the notion of a CY
principal bundle, and a classification of such rank one bundles. We also
generalize our construction to CY and general type complete intersections. When
is an algebraic manifold having a sufficiently large automorphism group
and is a linear representation of , we construct a holonomic D-module
that governs the period integrals. The construction is based in part on the
theory of tautological systems we have developed in the paper \cite{LSY1},
joint with R. Song. The approach allows us to explicitly describe a
Picard-Fuchs type system for complete intersection varieties of general types,
as well as CY, in any Fano variety, and in a homogeneous space in particular.
In addition, the approach provides a new perspective of old examples such as CY
complete intersections in a toric variety or partial flag variety.Comment: An erratum is included to correct Theorem 3.12 (Uniqueness of CY
structure
Slow Schroedinger dynamics of gauged vortices
Multivortex dynamics in Manton's Schroedinger--Chern--Simons variant of the
Landau-Ginzburg model of thin superconductors is studied within a moduli space
approximation. It is shown that the reduced flow on M_N, the N vortex moduli
space, is hamiltonian with respect to \omega_{L^2}, the L^2 Kaehler form on
\M_N. A purely hamiltonian discussion of the conserved momenta associated with
the euclidean symmetry of the model is given, and it is shown that the
euclidean action on (M_N,\omega_{L^2}) is not hamiltonian. It is argued that
the N=3 flow is integrable in the sense of Liouville. Asymptotic formulae for
\omega_{L^2} and the reduced Hamiltonian for large intervortex separation are
conjectured. Using these, a qualitative analysis of internal 3-vortex dynamics
is given and a spectral stability analysis of certain rotating vortex polygons
is performed. Comparison is made with the dynamics of classical fluid point
vortices and geostrophic vortices.Comment: 22 pages, 2 figure
The Hamiltonian Structure of the Second Painleve Hierarchy
In this paper we study the Hamiltonian structure of the second Painleve
hierarchy, an infinite sequence of nonlinear ordinary differential equations
containing PII as its simplest equation. The n-th element of the hierarchy is a
non linear ODE of order 2n in the independent variable depending on n
parameters denoted by and . We introduce new
canonical coordinates and obtain Hamiltonians for the and
evolutions. We give explicit formulae for these Hamiltonians showing that they
are polynomials in our canonical coordinates
M-theory on `toric' G_2 cones and its type II reduction
We analyze a class of conical G_2 metrics admitting two commuting isometries,
together with a certain one-parameter family of G_2 deformations which
preserves these symmetries. Upon using recent results of Calderbank and
Pedersen, we write down the explicit G_2 metric for the most general member of
this family and extract the IIA reduction of M-theory on such backgrounds, as
well as its type IIB dual. By studying the asymptotics of type II fields around
the relevant loci, we confirm the interpretation of such backgrounds in terms
of localized IIA 6-branes and delocalized IIB 5-branes. In particular, we find
explicit, general expressions for the string coupling and R-R/NS-NS forms in
the vicinity of these objects. Our solutions contain and generalize the field
configurations relevant for certain models considered in recent work of Acharya
and Witten.Comment: 45 pages, references adde
Integrable Euler top and nonholonomic Chaplygin ball
We discuss the Poisson structures, Lax matrices, -matrices, bi-hamiltonian
structures, the variables of separation and other attributes of the modern
theory of dynamical systems in application to the integrable Euler top and to
the nonholonomic Chaplygin ball.Comment: 25 pages, LaTeX with AMS fonts, final versio
Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry
The box-ball system is an integrable cellular automaton on one dimensional
lattice. It arises from either quantum or classical integrable systems by the
procedures called crystallization and ultradiscretization, respectively. The
double origin of the integrability has endowed the box-ball system with a
variety of aspects related to Yang-Baxter integrable models in statistical
mechanics, crystal base theory in quantum groups, combinatorial Bethe ansatz,
geometric crystals, classical theory of solitons, tau functions, inverse
scattering method, action-angle variables and invariant tori in completely
integrable systems, spectral curves, tropical geometry and so forth. In this
review article, we demonstrate these integrable structures of the box-ball
system and its generalizations based on the developments in the last two
decades.Comment: 73 page
Singularities, Lax degeneracies and Maslov indices of the periodic Toda chain
The n-particle periodic Toda chain is a well known example of an integrable
but nonseparable Hamiltonian system in R^{2n}. We show that Sigma_k, the k-fold
singularities of the Toda chain, ie points where there exist k independent
linear relations amongst the gradients of the integrals of motion, coincide
with points where there are k (doubly) degenerate eigenvalues of
representatives L and Lbar of the two inequivalent classes of Lax matrices
(corresponding to degenerate periodic or antiperiodic solutions of the
associated second-order difference equation). The singularities are shown to be
nondegenerate, so that Sigma_k is a codimension-2k symplectic submanifold.
Sigma_k is shown to be of elliptic type, and the frequencies of transverse
oscillations under Hamiltonians which fix Sigma_k are computed in terms of
spectral data of the Lax matrices. If mu(C) is the (even) Maslov index of a
closed curve C in the regular component of R^{2n}, then (-1)^{\mu(C)/2} is
given by the product of the holonomies (equal to +/- 1) of the even- (or odd-)
indexed eigenvector bundles of L and Lmat.Comment: 25 pages; published versio
Totally classical Calogero model
We show that the standard Calogero Lax matrix can be interpreted as a
function on the fuzzy sphere and the Avan-Talon r-matrix as a function on the
direct product of two fuzzy spheres. We calculate the limiting Lax function and
r-function when the fuzzy sphere tends to the ordinary sphere and we show that
they define an integrable model interpreted as a large N Calogero model by
Bordemann, Hoppe and Theisen.Comment: 13 pages, revised version taking into account relevant results by
Bordemann, Hoppe and Theise
- …
