24 research outputs found

    Captures d'écran : la photographie de presse et l'image télévisée

    Get PDF
    Influenza-associated disease burden among children in tropical sub-Saharan Africa is not well established, particularly outside of the 2009 pandemic period. We estimated the burden of influenza in children aged 0-4 years through population-based surveillance for influenza-like illness (ILI) and acute lower respiratory tract illness (ALRI). Household members meeting ILI or ALRI case definitions were referred to health facilities for evaluation and collection of nasopharyngeal and oropharyngeal swabs for influenza testing by real-time reverse transcription polymerase chain reaction. Estimates were adjusted for health-seeking behavior and those with ILI and ALRI who were not tested. During 2008-2012, there were 9,652 person-years of surveillance among children aged 0-4 years. The average adjusted rate of influenza-associated hospitalization was 4.3 (95% CI 3.0-6.0) per 1,000 person-years in children aged 0-4 years. Hospitalization rates were highest in the 0-5 month and 6-23 month age groups, at 7.6 (95% CI 3.2-18.2) and 8.4 (95% CI 5.4-13.0) per 1,000 person-years, respectively. The average adjusted rate of influenza-associated medically attended (inpatient or outpatient) ALRI in children aged 0-4 years was 17.4 (95% CI 14.2-19.7) per 1,000 person-years. Few children who had severe laboratory-confirmed influenza were clinically diagnosed with influenza by the treating clinician in the inpatient (0/33, 0%) or outpatient (1/109, 0.9%) settings. Influenza-associated hospitalization rates from 2008-2012 were 5-10 times higher than contemporaneous U.S. estimates. Many children with danger signs were not hospitalized; thus, influenza-associated severe disease rates in Kenyan children are likely higher than hospital-based estimates suggest

    Risk of Injection-Site Abscess among Infants Receiving a Preservative-Free, Two-Dose Vial Formulation of Pneumococcal Conjugate Vaccine in Kenya.

    Get PDF
    There is a theoretical risk of adverse events following immunization with a preservative-free, 2-dose vial formulation of 10-valent-pneumococcal conjugate vaccine (PCV10). We set out to measure this risk. Four population-based surveillance sites in Kenya (total annual birth cohort of 11,500 infants) were used to conduct a 2-year post-introduction vaccine safety study of PCV10. Injection-site abscesses occurring within 7 days following vaccine administration were clinically diagnosed in all study sites (passive facility-based surveillance) and, also, detected by caregiver-reported symptoms of swelling plus discharge in two sites (active household-based surveillance). Abscess risk was expressed as the number of abscesses per 100,000 injections and was compared for the second vs first vial dose of PCV10 and for PCV10 vs pentavalent vaccine (comparator). A total of 58,288 PCV10 injections were recorded, including 24,054 and 19,702 identified as first and second vial doses, respectively (14,532 unknown vial dose). The risk ratio for abscess following injection with the second (41 per 100,000) vs first (33 per 100,000) vial dose of PCV10 was 1.22 (95% confidence interval [CI] 0.37-4.06). The comparator vaccine was changed from a 2-dose to 10-dose presentation midway through the study. The matched odds ratios for abscess following PCV10 were 1.00 (95% CI 0.12-8.56) and 0.27 (95% CI 0.14-0.54) when compared to the 2-dose and 10-dose pentavalent vaccine presentations, respectively. In Kenya immunization with PCV10 was not associated with an increased risk of injection site abscess, providing confidence that the vaccine may be safely used in Africa. The relatively higher risk of abscess following the 10-dose presentation of pentavalent vaccine merits further study

    Population-Based Incidence of Typhoid Fever in an Urban Informal Settlement and a Rural Area in Kenya: Implications for Typhoid Vaccine Use in Africa

    Get PDF
    Background: High rates of typhoid fever in children in urban settings in Asia have led to focus on childhood immunization in Asian cities, but not in Africa, where data, mostly from rural areas, have shown low disease incidence. We set out to compare incidence of typhoid fever in a densely populated urban slum and a rural community in Kenya, hypothesizing higher rates in the urban area, given crowding and suboptimal access to safe water, sanitation and hygiene. Methods: During 2007-9, we conducted population-based surveillance in Kibera, an urban informal settlement in Nairobi, and in Lwak, a rural area in western Kenya. Participants had free access to study clinics; field workers visited their homes biweekly to collect information about acute illnesses. In clinic, blood cultures were processed from patients with fever or pneumonia. Crude and adjusted incidence rates were calculated. Results: In the urban site, the overall crude incidence of Salmonella enterica serovar Typhi (S. Typhi) bacteremia was 247 cases per 100,000 person-years of observation (pyo) with highest rates in children 5–9 years old (596 per 100,000 pyo) and 2–4 years old (521 per 100,000 pyo). Crude overall incidence in Lwak was 29 cases per 100,000 pyo with low rates in children 2–4 and 5–9 years old (28 and 18 cases per 100,000 pyo, respectively). Adjusted incidence rates were highest in 2–4 year old urban children (2,243 per 100,000 pyo) which were.15-fold higher than rates in the rural site for the same age group

    Malaria hospitalisation in East Africa: age, phenotype and transmission intensity.

    Get PDF
    BACKGROUND: Understanding the age patterns of disease is necessary to target interventions to maximise cost-effective impact. New malaria chemoprevention and vaccine initiatives target young children attending routine immunisation services. Here we explore the relationships between age and severity of malaria hospitalisation versus malaria transmission intensity. METHODS: Clinical data from 21 surveillance hospitals in East Africa were reviewed. Malaria admissions aged 1 month to 14 years from discrete administrative areas since 2006 were identified. Each site-time period was matched to a model estimated community-based age-corrected parasite prevalence to provide predictions of prevalence in childhood (PfPR2-10). Admission with all-cause malaria, severe malaria anaemia (SMA), respiratory distress (RD) and cerebral malaria (CM) were analysed as means and predicted probabilities from Bayesian generalised mixed models. RESULTS: 52,684 malaria admissions aged 1 month to 14 years were described at 21 hospitals from 49 site-time locations where PfPR2-10 varied from < 1 to 48.7%. Twelve site-time periods were described as low transmission (PfPR2-10 < 5%), five low-moderate transmission (PfPR2-10 5-9%), 20 moderate transmission (PfPR2-10 10-29%) and 12 high transmission (PfPR2-10 ≥ 30%). The majority of malaria admissions were below 5 years of age (69-85%) and rare among children aged 10-14 years (0.7-5.4%) across all transmission settings. The mean age of all-cause malaria hospitalisation was 49.5 months (95% CI 45.1, 55.4) under low transmission compared with 34.1 months (95% CI 30.4, 38.3) at high transmission, with similar trends for each severe malaria phenotype. CM presented among older children at a mean of 48.7 months compared with 39.0 months and 33.7 months for SMA and RD, respectively. In moderate and high transmission settings, 34% and 42% of the children were aged between 2 and 23 months and so within the age range targeted by chemoprevention or vaccines. CONCLUSIONS: Targeting chemoprevention or vaccination programmes to areas where community-based parasite prevalence is ≥10% is likely to match the age ranges covered by interventions (e.g. intermittent presumptive treatment in infancy to children aged 2-23 months and current vaccine age eligibility and duration of efficacy) and the age ranges of highest disease burden

    Indirect Effects of 10-Valent Pneumococcal Conjugate Vaccine Against Adult Pneumococcal Pneumonia in Rural Western Kenya

    No full text
    BACKGROUND: Data on pneumococcal conjugate vaccine (PCV) indirect effects in low-income countries with high human immunodeficiency virus (HIV) burden are limited. We examined adult pneumococcal pneumonia incidence before and after PCV introduction in Kenya in 2011. METHODS: From 1 January 2008 to 31 December 2016, we conducted surveillance for acute respiratory infection (ARI) among ~12 000 adults (≥18 years) in western Kenya, where HIV prevalence is ~17%. ARI cases (cough or difficulty breathing or chest pain, plus temperature ≥38.0°C or oxygen saturation <90%) presenting to a clinic underwent blood culture and pneumococcal urine antigen testing (UAT). We calculated ARI incidence and adjusted for healthcare seeking. The proportion of ARI cases with pneumococcus detected among those with complete testing (blood culture and UAT) was multiplied by adjusted ARI incidence to estimate pneumococcal pneumonia incidence. RESULTS: Pre-PCV (2008-2010) crude and adjusted ARI incidences were 3.14 and 5.30/100 person-years-observation (pyo), respectively. Among ARI cases, 39.0% (340/872) had both blood culture and UAT; 21.2% (72/340) had pneumococcus detected, yielding a baseline pneumococcal pneumonia incidence of 1.12/100 pyo (95% confidence interval [CI]: 1.0-1.3). In each post-PCV year (2012-2016), the incidence was significantly lower than baseline; with incidence rate ratios (IRRs) of 0.53 (95% CI: 0.31-0.61) in 2012 and 0.13 (95% CI: 0.09-0.17) in 2016. Similar declines were observed in HIV-infected (IRR: 0.13; 95% CI: 0.08-0.22) and HIV-uninfected (IRR: 0.10; 95% CI: 0.05-0.20) adults. CONCLUSIONS: Adult pneumococcal pneumonia declined in western Kenya following PCV introduction, likely reflecting vaccine indirect effects. Evidence of herd protection is critical for guiding PCV policy decisions in resource-constrained areas

    Rate of Medically attended Acute Lower Respiratory Tract Illness (ALRI)<sup>a</sup> Attributable to Influenza<sup>b</sup> per 1000 Person-Years, by Site, Age Group and Year, Jan 2008—Dec 2012.

    No full text
    <p><sup>a</sup> Includes hospitalized and out-patient children who met the ALRI case definition: Cough or difficulty breathing AND a danger sign (child unable to drink or breastfeed, child vomits everything, child had convulsions, child is lethargic or unconscious) or oxygen saturation <90%;</p><p><sup>b</sup> Rates adjusted by applying the proportion influenza positive among hospitalized and outpatient children meeting the ALRI case definition to all hospitalized and out-patient children who met the ALRI case definition but did not have a laboratory result/sample collected</p><p>Rate of Medically attended Acute Lower Respiratory Tract Illness (ALRI)<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0138272#t004fn001" target="_blank"><sup>a</sup></a> Attributable to Influenza<sup><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0138272#t004fn002" target="_blank">b</a></sup> per 1000 Person-Years, by Site, Age Group and Year, Jan 2008—Dec 2012.</p

    Figure 2.

    No full text
    <p>a) Flow Chart showing Numbers of Enrollees from Lwak, Blood Cultures Processed and Pathogens Isolated, Including <i>S</i> Typhi, Isolated. b) Flow Chart showing Numbers of Enrollees from Kibera, Blood Cultures Processed and Pathogens Isolated, Including <i>S</i> Typhi, Isolated.</p
    corecore