30 research outputs found

    Le modèle du

    No full text

    Autoimmune Lymphoproliferative Syndrome-FAS Patients Have an Abnormal Regulatory T Cell (Treg) Phenotype but Display Normal Natural Treg-Suppressive Function on T Cell Proliferation

    No full text
    ObjectiveAutoimmune lymphoproliferative syndrome (ALPS) with FAS mutation (ALPS-FAS) is a nonmalignant, noninfectious, lymphoproliferative disease with autoimmunity. Given the central role of natural regulatory T cells (nTregs) in the control of lymphoproliferation and autoimmunity, we assessed nTreg-suppressive function in 16 patients with ALPS-FAS.ResultsThe proportion of CD25highCD127low Tregs was lower in ALPS-FAS patients than in healthy controls. This subset was correlated with a reduced CD25 expression in CD3+CD4+ T cells from ALPS patients and thus an abnormally low proportion of CD25highFOXP3+ Helios+ T cells. The ALPS patients also displayed a high proportion of naïve Treg (FOXP3lowCD45RA+) and an unusual subpopulation (CD4+CD127lowCD15s+CD45RA+). Despite this abnormal phenotype, the CD25highCD127low Tregs’ suppressive function was unaffected. Furthermore, conventional T cells from FAS-mutated patients showed normal levels of sensitivity to Treg suppression.ConclusionAn abnormal Treg phenotype is observed in circulating lymphocytes of ALPS patients. However, these Tregs displayed a normal suppressive function on T effector proliferation in vitro. This is suggesting that lymphoproliferation observed in ALPS patients does not result from Tregs functional defect or T effector cells insensitivity to Tregs suppression

    Human TCR {alpha}/{beta}+ CD4-CD8- Double-Negative T Cells in Patients with Autoimmune Lymphoproliferative Syndrome Express Restricted V{beta} TCR Diversity and Are Clonally Related to CD8+ T Cells.

    Get PDF
    International audienceThe peripheral expansion of alpha/beta(+)-CD4(-)CD8(-) double negative (DN) T cells in patients with autoimmune lymphoproliferative syndrome (ALPS) is a consistent feature of this disease, and part of the diagnostic criteria of ALPS. The origin of these cells remains undetermined. They could derive from mature T cells that have lost coreceptor expression, or represent a special minor cell lineage. To investigate relationship of DN and single positive (SP) T cells in ALPS, we used Immunoscope technology to analyze the TCRVbeta repertoire diversity of sorted DN and SP T cells, and we performed CDR3 sequence analyses of matching clonotypes. We show that DN T cells express all the Vbeta gene families that are used by their SP counterparts, though they dominantly use some Vbeta genes. Analysis of CDR3 length distribution revealed a diverse polyclonal TCR repertoire for sorted CD4(+) T cells, whereas both DN and CD8(+) T cells showed a skewed TCR repertoire with oligoclonal expansions throughout most of the Vbeta families. CDR3 sequencing of matching clonotypes revealed a significant sharing of CDR3 sequences from selected Vbeta-Jbeta transcripts between DN and CD8(+) T cells. Altogether, these data strongly argue for a CD8 origin of DN T cells in ALPS

    Stromal cell-derived factor-1alpha associates with heparan sulfates through the first beta-strand of the chemokine.

    No full text
    International audienceBiological properties of chemokines are believed to be influenced by their association with glycosaminoglycans. Surface plasmon resonance kinetic analysis shows that the CXC chemokine stromal cell-derived factor-1alpha (SDF-1alpha), which binds the CXCR4 receptor, associates with heparin with an affinity constant of 38.4 nM (k(on) = 2.16 x 10(6) M(-1) s(-1) and k(off) = 0.083 x s(-1)). A modified SDF-1alpha (SDF-1 3/6) was generated by combined substitution of the basic cluster of residues Lys(24), His(25), and Lys(27) by Ser. SDF-1 3/6 conserves the global native structure and functional properties of SDF-1alpha, but it is unable to interact with sensor chip-immobilized heparin. The biological relevance of these in vitro findings was investigated. SDF-1alpha was unable to bind in a CXCR4-independent manner on epithelial cells that were treated with heparan sulfate (HS)-degrading enzymes or constitutively lack HS expression. The inability of SDF-1 3/6 to bind to cells underlines the importance of the identified basic cluster for the physiological interactions of SDF-1alpha with HS. Importantly, the amino-terminal domain of SDF-1alpha which is required for binding to, and activation of, CXCR4 remains exposed after binding to HS and is recognized by a neutralizing monoclonal antibody directed against the first residues of the chemokine. Overall, these findings indicate that the Lys(24), His(25), and Lys(27) cluster of residues forms, or is an essential part of, the HS-binding site which is distinct from that required for binding to, and signaling through, CXCR4
    corecore