120 research outputs found

    Bioavailability and Effects of Polystyrene Nanoparticles in <em>Hydra circumcincta</em>

    Get PDF
    The release of nanoplastics (NPs) from the weathering and degradation of plastics in the environment is an important concern to aquatic ecosystems. The purpose of this study was to examine the bioavailability and toxicity of 50 and 100 nm fluorescently labeled polystyrene nanoplastics (NP) to the invertebrate Hydra attenuata. The hydrae were exposed to increasing concentrations of 50 and 100 nm NPs (1.25-80 mg/L) for 96 h at 20°C. A subgroup of hydra was depurated in media to determine the persistence of effects. The results revealed that the animals accumulated detectable amounts fluorescent NP and produced morphological changes at a threshold concentration between 5 and 10 mg/L. The hydrae were able to eliminate 76 and 78% of the 50 and 100 nm NPs, respectively. A characteristic tentacle detachment from the body was observed. Biochemical markers were also determined in exposed organisms and increased glutathione S-transferase (GST) activity, oxidative damage and neutral lipids levels that persisted after the 24 h. In conclusion, NPs are bioavailable to Hydra, produce morphological changes and increase oxidative stress and neutral lipids. The formation of neutral lipids could be the result of reduced food assimilation or a means for the elimination of NPs

    Bilateral connectivity in the brainstem respiratory networks of lampreys

    Full text link
    This study examines the connectivity in the neural networks controlling respiration in the lampreys, a basal vertebrate. Previous studies have shown that the lamprey paratrigeminal respiratory group (pTRG) plays a crucial role in the generation of respiration. By using a combination of anatomical and physiological techniques, we characterized the bilateral connections between the pTRGs and descending projections to the motoneurons. Tracers were injected in the respiratory motoneuron pools to identify pre‐motor respiratory interneurons. Retrogradely labeled cell bodies were found in the pTRG on both sides. Whole‐cell recordings of the retrogradely labeled pTRG neurons showed rhythmical excitatory currents in tune with respiratory motoneuron activity. This confirmed that they were related to respiration. Intracellular labeling of individual pTRG neurons revealed axonal branches to the contralateral pTRG and bilateral projections to the respiratory motoneuronal columns. Stimulation of the pTRG induced excitatory postsynaptic potentials in ipsi‐ and contralateral respiratory motoneurons as well as in contralateral pTRG neurons. A lidocaine HCl (Xylocaine) injection on the midline at the rostrocaudal level of the pTRG diminished the contralateral motoneuronal EPSPs as well as a local injection of 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX) and (2R)‐amino‐5‐phosphonovaleric acid (AP‐5) on the recorded respiratory motoneuron. Our data show that neurons in the pTRG send two sets of axonal projections: one to the contralateral pTRG and another to activate respiratory motoneurons on both sides through glutamatergic synapses

    A neuronal substrate for a state-dependent modulation of sensory inputs in the brainstem

    Get PDF
    International audienceCentral networks modulate sensory transmission during motor behavior. Sensory inputs may thus have distinct impacts according to the state of activity of the central networks. Using an in-vitro isolated lamprey brainstem preparation, we investigated whether a brainstem locomotor center, the mesencephalic locomotor region (MLR), modulates sensory transmission. The synaptic responses of brainstem reticulospinal (RS) cells to electrical stimulation of the sensory trigeminal nerve were recorded before and after electrical stimulation of the MLR. The RS cell synaptic responses were significantly reduced by MLR stimulation and the reduction of the response increased with the stimulation intensity of the MLR. Bath perfusion of atropine prevented the depression of sensory transmission, indicating that muscarinic receptor activation is involved. Previous studies have shown that, upon stimulation of the MLR, behavioral activity switches from a resting state to an active-locomotor state. Therefore, our results suggest that a state-dependent modulation of sensory transmission to RS cells occurs in the behavioral context of locomotion and that muscarinic inputs from the MLR are involved

    A brainstem neural substrate for stopping locomotion

    Full text link
    Locomotion occurs sporadically and needs to be started, maintained, and stopped. The neural substrate underlying the activation of locomotion is partly known, but little is known about mechanisms involved in termination of locomotion. Recently, reticulospinal neurons (stop cells) were found to play a crucial role in stopping locomotion in the lamprey: their activation halts ongoing locomotion and their inactivation slows down the termination process. Intracellular recordings of these cells revealed a distinct activity pattern, with a burst of action potentials at the beginning of a locomotor bout and one at the end (termination burst). The termination burst was shown to be time linked to the end of locomotion, but the mechanisms by which it is triggered have remained unknown. We studied this in larval sea lampreys (Petromyzon marinus; the sex of the animals was not taken into account). We found that the mesencephalic locomotor region (MLR), which is known to initiate and control locomotion, stops ongoing locomotion by providing synaptic inputs that trigger the termination burst in stop cells. When locomotion is elicited by MLR stimulation, a second MLR stimulation stops the locomotor bout if it is of lower intensity than the initial stimulation. This occurs for MLR-induced, sensory-evoked, and spontaneous locomotion. Furthermore, we show that glutamatergic and, most likely, monosynaptic projections from the MLR activate stop cells during locomotion. Therefore, activation of the MLR not only initiates locomotion, but can also control the end of a locomotor bout. These results provide new insights onto the neural mechanisms responsible for stopping locomotion.SIGNIFICANCE STATEMENT The mesencephalic locomotor region (MLR) is a brainstem region well known to initiate and control locomotion. Since its discovery in cats in the 1960s, the MLR has been identified in all vertebrate species tested from lampreys to humans. We now demonstrate that stimulation of the MLR not only activates locomotion, but can also stop it. This is achieved through a descending glutamatergic signal, most likely monosynaptic, from the MLR to the reticular formation that activates reticulospinal stop cells. Together, our findings have uncovered a neural mechanism for stopping locomotion and bring new insights into the function of the MLR

    Branched oligonucleotide-intercalator conjugate forming a parallel stranded structure inhibits HIV-1 integrase

    Get PDF
    AbstractIntegration of a DNA copy of the HIV-1 genome into chromosomal DNA of infected cells is a key step of viral replication. Integration is carried out by integrase, a viral protein which binds to both ends of viral DNA and catalyses reactions of the 3′-end processing and strand transfer. A 3′-3′ branched oligonucleotide functionalised by the intercalator oxazolopyridocarbazole at each 5′-end was found to inhibit integration in vitro. We show that both a specific (G,A) sequence and the OPC intercalating agent contribute to the capability of the branched oligonucleotide to form a parallel stranded structure responsible for the inhibition

    Odorant organization in the olfactory bulb of the sea lamprey

    Get PDF
    Skip to Next Section Olfactory sensory neurons innervate the olfactory bulb, where responses to different odorants generate a chemotopic map of increased neural activity within different bulbar regions. In this study, insight into the basal pattern of neural organization of the vertebrate olfactory bulb was gained by investigating the lamprey. Retrograde labelling established that lateral and dorsal bulbar territories receive the axons of sensory neurons broadly distributed in the main olfactory epithelium and that the medial region receives sensory neuron input only from neurons projecting from the accessory olfactory organ. The response duration for local field potential recordings was similar in the lateral and dorsal regions, and both were longer than medial responses. All three regions responded to amino acid odorants. The dorsal and medial regions, but not the lateral region, responded to steroids. These findings show evidence for olfactory streams in the sea lamprey olfactory bulb: the lateral region responds to amino acids from sensory input in the main olfactory epithelium, the dorsal region responds to steroids (taurocholic acid and pheromones) and to amino acids from sensory input in the main olfactory epithelium, and the medial bulbar region responds to amino acids and steroids stimulating the accessory olfactory organ. These findings indicate that olfactory subsystems are present at the base of vertebrate evolution and that regionality in the lamprey olfactory bulb has some aspects previously seen in other vertebrate species

    Odorant organization in the olfactory bulb of the sea lamprey

    Get PDF
    Skip to Next Section Olfactory sensory neurons innervate the olfactory bulb, where responses to different odorants generate a chemotopic map of increased neural activity within different bulbar regions. In this study, insight into the basal pattern of neural organization of the vertebrate olfactory bulb was gained by investigating the lamprey. Retrograde labelling established that lateral and dorsal bulbar territories receive the axons of sensory neurons broadly distributed in the main olfactory epithelium and that the medial region receives sensory neuron input only from neurons projecting from the accessory olfactory organ. The response duration for local field potential recordings was similar in the lateral and dorsal regions, and both were longer than medial responses. All three regions responded to amino acid odorants. The dorsal and medial regions, but not the lateral region, responded to steroids. These findings show evidence for olfactory streams in the sea lamprey olfactory bulb: the lateral region responds to amino acids from sensory input in the main olfactory epithelium, the dorsal region responds to steroids (taurocholic acid and pheromones) and to amino acids from sensory input in the main olfactory epithelium, and the medial bulbar region responds to amino acids and steroids stimulating the accessory olfactory organ. These findings indicate that olfactory subsystems are present at the base of vertebrate evolution and that regionality in the lamprey olfactory bulb has some aspects previously seen in other vertebrate species

    Separation of dust emission from the Cosmic Infrared Background in Herschel observations with Wavelet Phase Harmonics

    Full text link
    The low brightness dust emission at high Galactic latitude is of interest to study the interplay between physical processes in shaping the structure of the interstellar medium (ISM), as well as to statistically characterize dust emission as a foreground to the Cosmic Microwave Background (CMB). Progress in this avenue of research have been hampered by the difficulty of separating the dust emission from the Cosmic Infrared Background (CIB). We demonstrate that dust and CIB may be effectively separated based on their different structure on the sky and use the separation to characterize the structure of diffuse dust emission on angular scales where CIB is a significant component in terms of power. We use scattering transform statistics, the Wavelet Phase Harmonics (WPH), to perform a statistical component separation using Herschel SPIRE observations. This component separation is done only from observational data using non-Gaussian properties as a lever arm, and is done at a single 250 microns frequency. This method, that we validate on mock data, gives us access to non-Gaussian statistics of the interstellar dust and an output dust map essentially free from CIB contamination. Our statistical modelling characterizes the non-Gaussian structure of the diffuse ISM down to the smallest scales observed by Herschel. We recover the power-law shape of the dust power spectrum up to a wavenumber of 2 arcmin1^{-1} where the dust signal represents 2 percent of the total power. The output dust map reveals coherent structures at the smallest scales which were hidden by the CIB anisotropies. It opens new observational perspectives on the formation of structure in the diffuse ISM which we discuss with reference to past work. We have succeeded to perform a statistical separation from observational data only at a single frequency by using non-Gaussian statistics.Comment: Accepted in A&A on October 23, 202
    corecore