23 research outputs found

    Nbr1 Is a Novel Inhibitor of Ligand-Mediated Receptor Tyrosine Kinase Degradation

    Get PDF
    endocytic trafficking and selective autophagy. However, the exact function of Nbr1 in these contexts has not been studied in detail. Here we investigated the role of Nbr1 in the trafficking of receptor tyrosine kinases (RTKs). We report that ectopic Nbr1 expression inhibits the ligand-mediated lysosomal degradation of RTKs, and this is probably done via the inhibition of receptor internalization. Conversely, the depletion of endogenous NBR1 enhances RTK degradation. Analyses of truncation mutations demonstrated that the C terminus of Nbr1 is essential but not sufficient for this activity. Moreover, the C terminus of Nbr1 is essential but not sufficient for the localization of the protein to late endosomes. We demonstrate that the C terminus of Nbr1 contains a novel membrane-interacting amphipathic -helix, which is essential for the late endocytic localization of the protein but not for its effect on RTK degradation. Finally, autophagic and late endocytic localizations of Nbr1 are independent of one another, suggesting that the roles of Nbr1 in each context might be distinct. Our results define Nbr1 as a negative regulator of ligand-mediated RTK degradation and reveal the interplay between its various regions for protein localization and function

    Octreotide Conjugates for Tumor Targeting and Imaging

    Get PDF
    Tumor targeting has emerged as an advantageous approach to improving the efficacy and safety of cytotoxic agents or radiolabeled ligands that do not preferentially accumulate in the tumor tissue. The somatostatin receptors (SSTRs) belong to the G-protein-coupled receptor superfamily and they are overexpressed in many neuroendocrine tumors (NETs). SSTRs can be efficiently targeted with octreotide, a cyclic octapeptide that is derived from native somatostatin. The conjugation of cargoes to octreotide represents an attractive approach for effective tumor targeting. In this study, we conjugated octreotide to cryptophycin, which is a highly cytotoxic depsipeptide, through the protease cleavable Val-Cit dipeptide linker using two different self-immolative moieties. The biological activity was investigated in vitro and the self-immolative part largely influenced the stability of the conjugates. Replacement of cryptophycin by the infrared cyanine dye Cy5.5 was exploited to elucidate the tumor targeting properties of the conjugates in vitro and in vivo. The compound efficiently and selectively internalized in cells overexpressing SSTR2 and accumulated in xenografts for a prolonged time. Our results on the in vivo properties indicate that octreotide may serve as an efficient delivery vehicle for tumor targeting.Peer reviewe

    Establishment of an in Vitro Human Blood-Brain Barrier Model Derived from Induced Pluripotent Stem Cells and Comparison to a Porcine Cell-Based System

    Get PDF
    The blood-brain barrier (BBB) is responsible for the homeostasis between the cerebral vasculature and the brain and it has a key role in regulating the influx and efflux of substances, in healthy and diseased states. Stem cell technology offers the opportunity to use human brain-specific cells to establish in vitro BBB models. Here, we describe the establishment of a human BBB model in a two-dimensional monolayer culture, derived from human induced pluripotent stem cells (hiPSCs). This model was characterized by a transendothelial electrical resistance (TEER) higher than 2000 ℩∙cm2 and associated with negligible paracellular transport. The hiPSC-derived BBB model maintained the functionality of major endothelial transporter proteins and receptors. Some proprietary molecules from our central nervous system (CNS) programs were evaluated revealing comparable permeability in the human model and in the model from primary porcine brain endothelial cells (PBECs)

    Synthesis and Biological Evaluation of RGD–Cryptophycin Conjugates for Targeted Drug Delivery

    Get PDF
    BorbĂ©ly AN, Figueras AgustĂ­ E, Martins A, et al. Synthesis and Biological Evaluation of RGD–Cryptophycin Conjugates for Targeted Drug Delivery. Pharmaceutics. 2019;11(4): 151.Cryptophycins are potent tubulin polymerization inhibitors with picomolar antiproliferative potency in vitro and activity against multidrug-resistant (MDR) cancer cells. Because of neurotoxic side effects and limited efficacy in vivo, cryptophycin-52 failed as a clinical candidate in cancer treatment. However, this class of compounds has emerged as attractive payloads for tumor-targeting applications. In this study, cryptophycin was conjugated to the cyclopeptide c(RGDfK), targeting integrin αvÎČ3, across the protease-cleavable Val-Cit linker and two different self-immolative spacers. Plasma metabolic stability studies in vitro showed that our selected payload displays an improved stability compared to the parent compound, while the stability of the conjugates is strongly influenced by the self-immolative moiety. Cathepsin B cleavage assays revealed that modifications in the linker lead to different drug release profiles. Antiproliferative effects of Arg-Gly-Asp (RGD)–cryptophycin conjugates were evaluated on M21 and M21-L human melanoma cell lines. The low nanomolar in vitro activity of the novel conjugates was associated with inferior selectivity for cell lines with different integrin αvÎČ3 expression levels. To elucidate the drug delivery process, cryptophycin was replaced by an infrared dye and the obtained conjugates were studied by confocal microscop

    Analysis of FGF receptor signalling and trafficking by live-cell imaging

    Get PDF
    Fibroblast growth factor receptors (FGFRs) regulate fundamental cellular processes, including proliferation, differentiation and angiogenesis and have emerged as growth factor receptors central to oncogenesis. This study developed a live-cell assay system for studying FGFR endocytosis and trafficking by employing both confocal and total internal reflection fluorescence (TIRF) microscopy in cells expressing a previously characterised GFP-tagged FGFR2 construct. Data from this work have demonstrated that endocytosis of activated FGFR occurs through clathrin-mediated endocytosis. Interestingly, FGF treatment also significantly increased the number of CCPs as well as the number of clathrin-mediated endocytic events. However, treatment of cells with the Src family inhibitor Dasatinib or depletion of Src kinase target Eps8, prevents the FGF induced increase in plasma membrane clathrin and reduces the internalization of FGFR. This study also shows that both Src and Eps8 are required for receptor to exit from EEA I positive peripheral compartment into the Rab 1 1 positive PNRC. Eps8 depletion also inhibits the early phases of ERK activation in response to FGFR activation, placing this signalling event early in the trafficking pathway of the receptor. Thus, these results have identified the endocytic pathway for endocytosis of FGFR2 and described Eps8 and Src as key mediators of the early phases of activated FGFR trafficking and signalling

    Functional analysis of Dictyostelium IBARa reveals a conserved role of the I-BAR domain in endocytosis

    No full text
    I-BAR (inverse-Bin/amphiphysin/Rvs)-domain-containing proteins such as IRSp53 (insulin receptor substrate of 53 kDa) associate with outwardly curved membranes and connect them to proteins involved in actin dynamics. Research on I-BAR proteins has focussed on possible roles in filopod and lamellipod formation, but their full physiological function remains unclear. The social amoeba Dictyostelium encodes a single I-BAR/SH3 (where SH3 is Src homology 3) protein, called IBARa, along with homologues of proteins that interact with IRSp53 family proteins in mammalian cells, providing an excellent model to study its cellular function. Disruption of the gene encoding IBARa leads to a mild defect in development, but filopod and pseudopod dynamics are unaffected. Furthermore, ectopically expressed IBARa does not induce filopod formation and does not localize to filopods. Instead. IBARa associates with clathrin puncta immediately before they are endocytosed. This role is conserved: human BAIAP2L2 (brain-specific angiogenesis inhibitor 1-associated protein 2-like 2) also tightly co-localizes with clathrin plaques, although its homologues IRSp53 and IRTKS (insulin receptor tyrosine kinase substrate) associate with other punctate structures. The results from the present study suggest that I-BAR-containing proteins help generate the membrane curvature required for endocytosis and implies an unexpected role for IRSp53 family proteins in vesicle traffickin

    Novel Cryptophycin-based Conjugates for Tumor Targeting

    No full text
    Borbély AN, Figueras Agustí E, Martins A, et al. Novel Cryptophycin-based Conjugates for Tumor Targeting. In: JOURNAL OF PEPTIDE SCIENCE. Vol 24. Hoboken: Wiley; 2018: S59

    Tumor Targeting of Cryptophycin based Conjugates Using Octreotide as Delivery Vehicle

    No full text
    Figueras Agustí E, Martins A, Borbély AN, et al. Tumor Targeting of Cryptophycin based Conjugates Using Octreotide as Delivery Vehicle. In: JOURNAL OF PEPTIDE SCIENCE. Vol 24. Hoboken: Wiley; 2018: S166

    Ring Finger Protein 11 acts on ligand-activated EGFR via the direct interaction with the UIM region of ANKRD13 protein family

    No full text
    RING finger protein 11 (RNF11) is an evolutionary conserved Really Interesting New Gene E3 ligase that is overexpressed in several human tumours. Although several reports have highlighted its involvement in crucial cellular processes, the mechanistic details underlying its function are still poorly understood. Utilizing stable isotope labelling by amino acids in culture (SILAC)-based proteomics analysis, we identified 51 proteins that co-immunoprecipitate with wild-type RNF11 and/or with its catalytically inactive mutant. We focused our attention on the interaction of RNF11 with Ankyrin repeat domain-containing protein 13 (ANKRD13)s family. Members of the ANKRD13 family contain ubiquitin-interacting motifs (UIM) that recognize the Lys-63-linked ubiquitin (Ub) chains appended to Epidermal growth factor receptor (EGFR) soon after ligand binding. We show that ANKRD13A, ANKRD13B and ANKRD13D form a complex with RNF11 in vivo and that the UIMs are required for complex formation. However, at odds with the conventional UIM binding mode, Ub modification of RNF11 is not required for the interaction with ANKRD13 proteins. We also show that the interaction between ANKRD13A and RNF11 is modulated by the EGF stimulus and that a complex formed by ANKRD13A, RNF11 and activated EGFR is transiently assembled in the early phases of receptor endocytosis. Moreover, loss of function of the E3 ligases Itchy E3 ubiquitin-protein ligase (ITCH) or RNF11, respectively, abrogates or increases the ubiquitination of endogenous ANKRD13A, affecting its ability to bind activated EGFR. We propose a model whereby the ANKRD13 proteins act as molecular scaffolds that promote the transient formation of a complex between the activated EGFR and the E3 ligases ITCH and RNF11. By regulating the ubiquitination status of ANKRD13A and consequently its endocytic adaptor function, RNF11 promotes sorting of the activated EGFR for lysosomal degradation
    corecore