45 research outputs found

    Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells

    Get PDF
    International audienceFrataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotrop-ic effects of oxidative stress in frataxin-deficient yeast cells (Dyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Dyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Dyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1-and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Dyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Dyfh1 cells. Compared with Dyfh1, the double Dyfh1Dapn1 mutant shows growth impairment, increased mu-tagenesis and extreme sensitivity to H 2 O 2. On the contrary, overexpression of the APN1 gene in Dyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression

    Kinetics studies of the superoxide-mediated electron transfer reactions between rubredoxin-type proteins and superoxide reductases

    Get PDF
    J Biol Inorg Chem (2006) 11: 433–444 DOI 10.1007/s00775-006-0090-0In this work we present a kinetic study of the superoxide-mediated electron transfer reactions between rubredoxin-type proteins and members of the three different classes of superoxide reductases (SORs). SORs from the sulfate-reducing bacteria Desulfovibrio vulgaris (Dv) and D. gigas (Dg) were chosen as prototypes of classes I and II, respectively, while SOR from the syphilis spirochete Treponema pallidum (Tp) was representative of class III. Our results show evidence for different behaviors of SORs toward electron acceptance, with a trend to specificity for the electron donor and acceptor from the same organism. Comparison of the different kapp values, 176.9+/-25.0 min(-1) in the case of the Tp/Tp electron transfer, 31.8+/-3.6 min(-1) for the Dg/Dg electron transfer, and 6.9+/-1.3 min(-1) for Dv/Dv, could suggest an adaptation of the superoxide-mediated electron transfer efficiency to various environmental conditions. We also demonstrate that, in Dg, another iron-sulfur protein, a desulforedoxin, is able to transfer electrons to SOR more efficiently than rubredoxin, with a kapp value of 108.8+/-12.0 min(-1), and was then assigned as the potential physiological electron donor in this organism

    Overexpression and purification of Treponema pallidum rubredoxin; kinetic evidence for a superoxide-mediated electron transfer with the superoxide reductase neelaredoxin

    Get PDF
    J Biol Inorg Chem (2004) 9: 839–849 DOI 10.1007/s00775-004-0584-6Superoxide reductases are a class of non-haem iron enzymes which catalyse the monovalent reduction of the superoxide anion O2- into hydrogen peroxide and water. Treponema pallidum (Tp), the syphilis spirochete, expresses the gene for a superoxide reductase called neelaredoxin, having the iron protein rubredoxin as the putative electron donor necessary to complete the catalytic cycle. In this work, we present the first cloning, overexpression in Escherichia coli and purification of the Tp rubredoxin. Spectroscopic characterization of this 6 kDa protein allowed us to calculate the molar absorption coefficient of the 490 nm feature of ferric iron, epsilon=6.9+/-0.4 mM(-1) cm(-1). Moreover, the midpoint potential of Tp rubredoxin, determined using a glassy carbon electrode, was -76+/-5 mV. Reduced rubredoxin can be efficiently reoxidized upon addition of Na(2)IrCl(6)-oxidized neelaredoxin, in agreement with a direct electron transfer between the two proteins, with a stoichiometry of the electron transfer reaction of one molecule of oxidized rubredoxin per one molecule of neelaredoxin. In addition, in presence of a steady-state concentration of superoxide anion, the physiological substrate of neelaredoxin, reoxidation of rubredoxin was also observed in presence of catalytic amounts of superoxide reductase, and the rate of rubredoxin reoxidation was shown to be proportional to the concentration of neelaredoxin, in agreement with a bimolecular reaction, with a calculated k(app)=180 min(-1). Interestingly, similar experiments performed with a rubredoxin from the sulfate-reducing bacteria Desulfovibrio vulgaris resulted in a much lower value of k(app)=4.5 min(-1). Altogether, these results demonstrated the existence for a superoxide-mediated electron transfer between rubredoxin and neelaredoxin and confirmed the physiological character of this electron transfer reaction

    Formation of a stable cyano-bridged dinuclear iron cluster following oxidation of the superoxide reductases from Treponema pallidum and Desulfovibrio vulgaris with K(3)Fe(CN)(6)

    Get PDF
    Inorg. Chem., 2003, 42 (4), pp 938–940 DOI: 10.1021/ic0262886Superoxide reductases catalyze the monovalent reduction of superoxide anion to hydrogen peroxide. Spectroscopic evidence for the formation of a dinuclear cyano-bridged adduct after K(3)Fe(CN)(6) oxidation of the superoxide reductases neelaredoxin from Treponema pallidum and desulfoferrodoxin from Desulfovibrio vulgaris was reported. Oxidation with K(3)Fe(CN)(6) reveals a band in the near-IR with lambda(max) at 1020 nm, coupled with an increase of the iron content by almost 2-fold. Fourier transform infrared spectroscopy provided additional evidence with CN-stretching vibrations at 2095, 2025-2030, and 2047 cm(-)(1), assigned to a ferrocyanide adduct of the enzyme. Interestingly, the low-temperature electronic paramagnetic resonance (EPR) spectra of oxidized TpNlr reveal at least three different species indicating structural heterogeneity in the coordination environment of the active site Fe ion. Given the likely 6-coordinate geometry of the active site Fe(3+) ion in the ferrocyanide adduct, we propose that the rhombic EPR species can serve as a model of a hexacoordinate form of the active site

    crystallization and structure determination using soft X-rays

    Get PDF
    Superoxide reductase is a 14 kDa metalloprotein containing a catalytic nonhaem iron centre [Fe(His)4Cys]. It is involved in defence mechanisms against oxygen toxicity, scavenging superoxide radicals from the cell. The oxidized form of Treponema pallidum superoxide reductase was crystallized in the presence of polyethylene glycol and magnesium chloride. Two crystal forms were obtained depending on the oxidizing agents used after purification: crystals grown in the presence of K3Fe(CN)6 belonged to space group P21 (unit-cell parameters a = 60.3, b = 59.9, c = 64.8 A ° , = 106.9 ) and diffracted beyond 1.60 A ° resolution, while crystals grown in the presence of Na2IrCl6 belonged to space group C2 (a = 119.4, b = 60.1, c = 65.6 A ° , = 104.9 ) and diffracted beyond 1.55 A ° . A highly redundant X-ray diffraction data set from the C2 crystal form collected on a copper rotating-anode generator ( = 1.542 A ° ) clearly defined the positions of the four Fe atoms present in the asymmetric unit by SAD methods. A MAD experiment at the iron absorption edge confirmed the positions of the previously determined iron sites and provided better phases for model building and refinement. Molecular replacement using the P21 data set was successful using a preliminary trace as a search model. A similar arrangement of the four protein molecules could be observed

    Impaired Nuclear Nrf2 Translocation Undermines the Oxidative Stress Response in Friedreich Ataxia

    Get PDF
    BACKGROUND: Friedreich ataxia originates from a decrease in mitochondrial frataxin, which causes the death of a subset of neurons. The biochemical hallmarks of the disease include low activity of the iron sulfur cluster-containing proteins (ISP) and impairment of antioxidant defense mechanisms that may play a major role in disease progression. METHODOLOGY/PRINCIPAL FINDINGS: We thus investigated signaling pathways involved in antioxidant defense mechanisms. We showed that cultured fibroblasts from patients with Friedreich ataxia exhibited hypersensitivity to oxidative insults because of an impairment in the Nrf2 signaling pathway, which led to faulty induction of antioxidant enzymes. This impairment originated from previously reported actin remodeling by hydrogen peroxide. CONCLUSIONS/SIGNIFICANCE: Thus, the defective machinery for ISP synthesis by causing mitochondrial iron dysmetabolism increases hydrogen peroxide production that accounts for the increased susceptibility to oxidative stress

    Two channel multilayer mirrors for astrophysics

    No full text
    International audienceA two-channel mirror reflecting both Fe-IX/X (λ = 17.1 nm) and He-II (30.4 nm) resonance lines at near normal incidence has been designed, fabricated and characterized. These two passbands are often chosen in space instruments designed for the observation of the solar corona. The mirror structure used for optimization is a superposition of two periodic multilayers with three components per period. It has been designed by using optimization software with an appropriate merit function. The theoretical reflectivity for both resonance lines can reach 0.25. It is shown that, by using a set of filters, one can select either the Fe-IX/X or the He-II channel. The spectral response of the two-channel mirror has been measured on synchrotron radiation source on a large wavelength range, from 12 nm to 35 nm. Experimental reflectivity reaches 0.32 for the Fe-IX/X line and 0.19 for the He-II line
    corecore