21 research outputs found

    Environmental Effects of Stratospheric Ozone Depletion, UV Radiation, and interactions with Climate Change: 2022 Assessment Report

    Get PDF
    The Montreal Protocol on Substances that Deplete the Ozone Layer was established 35 years ago following the 1985 Vienna Convention for protection of the environment and human health against excessive amounts of harmful ultraviolet-B (UV-B, 280-315 nm) radiation reaching the Earth’s surface due to a reduced UV-B-absorbing ozone layer. The Montreal Protocol, ratified globally by all 198 Parties (countries), controls ca 100 ozone-depleting substances (ODS). These substances have been used in many applications, such as in refrigerants, air conditioners, aerosol propellants, fumigants against pests, fire extinguishers, and foam materials. The Montreal Protocol has phased out nearly 99% of ODS, including ODS with high global warming potentials such as chlorofluorocarbons (CFC), thus serving a dual purpose. However, some of the replacements for ODS also have high global warming potentials, for example, the hydrofluorocarbons (HFCs). Several of these replacements have been added to the substances controlled by the Montreal Protocol. The HFCs are now being phased down under the Kigali Amendment. As of December 2022, 145 countries have signed the Kigali Amendment, exemplifying key additional outcomes of the Montreal Protocol, namely, that of also curbing climate warming and stimulating innovations to increase energy efficiency of cooling equipment used industrially as well as domestically. As the concentrations of ODS decline in the upper atmosphere, the stratospheric ozone layer is projected to recover to pre-1980 levels by the middle of the 21st century, assuming full compliance with the control measures of the Montreal Protocol. However, in the coming decades, the ozone layer will be increasingly influenced by emissions of greenhouse gases and ensuing global warming. These trends are highly likely to modify the amount of UV radiation reaching the Earth\u27s surface with implications for the effects on ecosystems and human health. Against this background, four Panels of experts were established in 1988 to support and advise the Parties to the Montreal Protocol with up-to-date information to facilitate decisions for protecting the stratospheric ozone layer. In 1990 the four Panels were consolidated into three, the Scientific Assessment Panel, the Environmental Effects Assessment Panel, and the Technology and Economic Assessment Panel. Every four years, each of the Panels provides their Quadrennial Assessments as well as a Synthesis Report that summarises the key findings of all the Panels. In the in-between years leading up to the quadrennial, the Panels continue to inform the Parties to the Montreal Protocol of new scientific information

    Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future

    Get PDF
    Changes in stratospheric ozone and climate over the past 40-plus years have altered the solar ultraviolet (UV) radiation conditions at the Earth's surface. Ozone depletion has also contributed to climate change across the Southern Hemisphere. These changes are interacting in complex ways to affect human health, food and water security, and ecosystem services. Many adverse effects of high UV exposure have been avoided thanks to the Montreal Protocol with its Amendments and Adjustments, which have effectively controlled the production and use of ozone-depleting substances. This international treaty has also played an important role in mitigating climate change. Climate change is modifying UV exposure and affecting how people and ecosystems respond to UV; these effects will become more pronounced in the future. The interactions between stratospheric ozone, climate and UV radiation will therefore shift over time; however, the Montreal Protocol will continue to have far-reaching benefits for human well-being and environmental sustainability.Peer reviewe

    Environmental plastics in the context of UV radiation, climate change, and the Montreal Protocol

    Get PDF
    There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors. UV radiation, climate change, and plastic pollution are closely interlinked. Existing studies on the persistence of plastics do not fully consider these linkages, challenging global assessments of plastic dispersal, persistence, and weathering. Recently, an Intergovernmental Negotiating Committee was tasked with developing an international binding agreement to end plastic pollution. In response, the UNEP Environmental Effects Assessment Panel assessed effects of UV radiation and interacting climate change factors on plastics, focusing on the durability of products as well as the production and dispersal of micro- and nano-plastic pollutants in the environment

    Questions and answers about the environmental effects of ozone depletion and its interactions with climate change: 2010 assessment

    No full text
    In the mid-1970s it was discovered that some man-made products destroy ozone molecules in the stratosphere. This destruction leads to higher ultraviolet (UV) radiation levels at the surface of the Earth and can cause damage to ecosystems and to materials such as plastics. Itmay cause an increase in human diseases such as skin cancers and cataracts. The discovery of the role of the synthetic ozone-depleting chemicals, such as the chlorofluorocarbons (CFCs), stimulated increased research and monitoring in this field. Computer models predicted a disaster if nothing was done to protect the ozone layer. Based on this scientific information, the nations of the world took action in 1985 with the Vienna Convention for the Protection of theOzone Layer, followed by the Montreal Protocol on Substances that Deplete the Ozone Layer in 1987. The Convention and Protocol have been amended and adjusted several times since 1987 as new knowledge has become available. The Meetings of the Parties to the Montreal Protocol appointed three Assessment Panels to regularly review research findings and progress. These panels are the Scientific Assessment Panel, the Technological and Economic Assessment Panel and the Environmental Effects Assessment Panel. Each panel covers a designated area with a natural degree of overlap. Themain reports of the Panels are published every four years, as required by the Meeting of the Parties. All three reports have an executive summary that is distributed more widely than the entire reports. It has become customary to add a set of questions and answers – mainly for non-expert readers – to these executive summaries. This document contains the questions and answers prepared by the experts of the Environmental Effects Assessment Panel. They refer mainly to the environmental effects of ozone depletion and its interactions with climate change, based on the 2010 report of this Panel, but also on information from previous assessments and from the report of the Scientific Assessment Panel. Readers who need further details on any question should consult the full reports for a more complete scientific discussion. All these reports can be found on the UNEP website: http://ozone.unep.org

    Ozone depletion and climate change: Impacts on UV radiation.

    No full text
    The Montreal Protocol is working, but it will take several decades for ozone to return to 1980 levels. The atmospheric concentrations of ozone depleting substances are decreasing, and ozone column amounts are no longer decreasing. Mid-latitude ozone is expected to return to 1980 levels before mid-century, slightly earlier than predicted previously. However, the recovery rate will be slower at high latitudes. Springtime ozone depletion is expected to continue to occur at polar latitudes, especially in Antarctica, in the next few decades. Because of the success of the Protocol, increases in UV-B radiation have been small outside regions affected by the Antarctic ozone hole, and have been difficult to detect. There is a large variability in UV-B radiation due to factors other than ozone, such as clouds and aerosols. There are few long-term measurements available to confirm the increases that would have occurred as a result of ozone depletion. At mid-latitudes UV-B irradiances are currently only slightly greater than in 1980 (increases less than ~5%), but increases have been substantial at high and polar latitudes where ozone depletion has been larger. Without the Montreal Protocol, peak values of sunburning UV radiation could have been tripled by 2065 at mid-northern latitudes. This would have had serious consequences for the environment and for human health. There are strong interactions between ozone depletion and changes in climate induced by increasing greenhouse gases (GHGs). Ozone depletion affects climate, and climate change affects ozone. The successful implementation of the Montreal Protocol has had a marked effect on climate change. The calculated reduction in radiative forcing due to the phase-out of chlorofluorocarbons (CFCs) far exceeds that from the measures taken under the Kyoto protocol for the reduction of GHGs. Thus the phase-out of CFCs is currently tending to counteract the increases in surface temperature due to increased GHGs. The amount of stratospheric ozone can also be affected by the increases in the concentration of GHGs, which lead to decreased temperatures in the stratosphere and accelerated circulation patterns. These changes tend to decrease total ozone in the tropics and increase total ozone at mid and high latitudes. Changes in circulation induced by changes in ozone can also affect patterns of surface wind and rainfall. The projected changes in ozone and clouds may lead to large decreases in UV at high latitudes, where UV is already low; and to small increases at low latitudes, where it is already high. This could have important implications for health and ecosystems. Compared to 1980, UV-B irradiance towards the end of the 21st century is projected to be lower at mid to high latitudes by between 5 and 20% respectively, and higher by 2–3% in the low latitudes. However, these projections must be treated with caution because they also depend strongly on changes in cloud cover, air pollutants, and aerosols, all of which are influenced by climate change, and their future is uncertain. Strong interactions between ozone depletion and climate change and uncertainties in the measurements and models limit our confidence in predicting the future UV radiation. It is therefore important to improve our understanding of the processes involved, and to continue monitoring ozone and surface UV spectral irradiances both from the surface and from satellites so we can respond to unexpected changes in the future

    Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: Relevance to substances regulated under the Montreal and Kyoto Protocols

    No full text
    Trifluoroacetic acid (TFA) is a breakdown product of several hydrochlorofluorocarbons (HCFC), regulated under the Montreal Protocol (MP), and hydrofluorocarbons (HFC) used mainly as refrigerants. Trifluoroacetic acid is (1) produced naturally and synthetically, (2) used in the chemical industry, and (3) a potential environmental breakdown product of a large number (>1 million) chemicals, including pharmaceuticals, pesticides, and polymers. The contribution of these chemicals to global amounts of TFA is uncertain, in contrast to that from HCFC and HFC regulated under the MP. TFA salts are stable in the environment and accumulate in terminal sinks such as playas, salt lakes, and oceans, where the only process for loss of water is evaporation. Total contribution to existing amounts of TFA in the oceans as a result of the continued use of HCFCs, HFCs, and hydrofluoroolefines (HFOs) up to 2050 is estimated to be a small fraction (<7.5%) of the approximately 0.2 µg acid equivalents/L estimated to be present at the start of the millennium. As an acid or as a salt TFA is low to moderately toxic to a range of organisms. Based on current projections of future use of HCFCs and HFCs, the amount of TFA formed in the troposphere from substances regulated under the MP is too small to be a risk to the health of humans and environment. However, the formation of TFA derived from degradation of HCFC and HFC warrants continued attention, in part because of a long environmental lifetime and due many other potential but highly uncertain sources

    Environmental effects of stratospheric ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2019

    No full text
    This assessment, by the United Nations Environment Programme (UNEP) Environmental Effects Assessment Panel (EEAP), one of three Panels informing the Parties to the Montreal Protocol, provides an update, since our previous extensive assessment (Photochem. Photobiol. Sci., 2019, 18, 595-828), of recent findings of current and projected interactive environmental effects of ultraviolet (UV) radiation, stratospheric ozone, and climate change. These effects include those on human health, air quality, terrestrial and aquatic ecosystems, biogeochemical cycles, and materials used in construction and other services. The present update evaluates further evidence of the consequences of human activity on climate change that are altering the exposure of organisms and ecosystems to UV radiation. This in turn reveals the interactive effects of many climate change factors with UV radiation that have implications for the atmosphere, feedbacks, contaminant fate and transport, organismal responses, and many outdoor materials including plastics, wood, and fabrics. The universal ratification of the Montreal Protocol, signed by 197 countries, has led to the regulation and phase-out of chemicals that deplete the stratospheric ozone layer. Although this treaty has had unprecedented success in protecting the ozone layer, and hence all life on Earth from damaging UV radiation, it is also making a substantial contribution to reducing climate warming because many of the chemicals under this treaty are greenhouse gases.The following funding and support is also gratefully acknowledged by: Marcel Jansen (Science Foundation Ireland (16-IA-4418)), Donat-P. Häder (Bundesministerium für Umwelt Naturschutz und Reaktorsicherheit), Samuel Hylander (the Swedish Environmental Protection Agency and Linnaeus University), Patrick Neale (Smithsonian Institution), Rachel Neale (NHMRC Research Fellowship), Lesley Rhodes (NIHR Manchester Biomedical Research Centre), Robyn Lucas (NHMRC Senior Research Fellowship), Sharon Robinson (Australian Research Council and the University of Wollongong’s Global Challenges Program), Matthew Robson (partially supported by the University of Helsinki, Faculty of Biological & Environmental Sciences, and by the Academy of Finland (#324555)), Stephen Wilson (University of Wollongong), Seyhan Yazar (Australian National Health and Medical Research Council CJ Martin Fellowship), and Richard Zepp (US Environmental Protection Agency)

    Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017

    No full text
    The Environmental Effects Assessment Panel (EEAP) is one of three Panels of experts that inform the Parties to the Montreal Protocol. The EEAP focuses on the effects of UV radiation on human health, terrestrial and aquatic ecosystems, air quality, and materials, as well as on the interactive effects of UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously held. Because of the Montreal Protocol, there are now indications of the beginnings of a recovery of stratospheric ozone, although the time required to reach levels like those before the 1960s is still uncertain, particularly as the effects of stratospheric ozone on climate change and vice versa, are not yet fully understood. Some regions will likely receive enhanced levels of UV radiation, while other areas will likely experience a reduction in UV radiation as ozone- and climate-driven changes affect the amounts of UV radiation reaching the Earth's surface. Like the other Panels, the EEAP produces detailed Quadrennial Reports every four years; the most recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1–184). In the years in between, the EEAP produces less detailed and shorter Update Reports of recent and relevant scientific findings. The most recent of these was for 2016 (Photochem. Photobiol. Sci., 2017, 16, 107–145). The present 2017 Update Report assesses some of the highlights and new insights about the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change. A full 2018 Quadrennial Assessment, will be made available in 2018/2019.Generous contributions by UNEP/Ozone Secretariat and the World Meteorological Organization (WMO) for the convened author meeting. Generous support by UNEP for the following authors is also acknowledged: Pieter Aucamp, Amy Austin, Carlos Ballaré, Krishna Pandey, and Seyhan Yazar (also supported by the Australia National Health and Medical Research Council Early Career CJ Martin Fellowship). Support by the U.S. Global Change Research Program is gratefully acknowledged for the following: Anthony Andrady, Paul Barnes (also supported by the Loyola University J. H. Mullahy Endowment in Environmental Biology), Germar Bernhard (also supported by Biospherical Instruments Inc.), Janice Longstreth, Sasha Madronich, Craig Williamson (also supported by Miami University and Ohio Eminent Scholar funding), and Kevin Rose was supported by the National Science Foundation Macrosystems Biology and Early NEON Science grant EF 1638704. Matthew Robson was funded by the Department of Biosciences, University of Helsinki, Finland and by the Academy of Finland decision #304519; Donat Häder, by the Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit; Samuel Hylander, by the Swedish Environmental Protection Agency; Patrick Neale, in part by the Smithsonian Institution and US National Science Foundation Grant DEB-1655622; Sten-Åke Wängberg, by the Swedish Agency for Marine and Water Management; Rose Cory, by NSF CAREER 1351745; and Anu Heikkilä, by the World Meteorological Organization, Global Atmosphere Watch; Richard Zepp, by the National Exposure Research Laboratory, Exposure Methods & Measurement Division, U.S. Environmental Protection Agency; Nigel Paul by the UK Department for Environment Food & Rural Affairs; Stephen Wilson, by the Centre for Atmospheric Chemistry, University of Wollongong (Australia); and Sharon Robinson, by a University of Wollongong Global Challenges Program. Alkiviadis Bais was supported by the Greek General Secretariat for Research and Technology; Richard McKenzie was funded by the New Zealand Government’s Ministry for the Environment through the Ministry of Business, Innovation and Employment; Rachel Neale and Robyn Lucas receive salary funding from the National Health and Medical Research Council (Australia)
    corecore