41 research outputs found

    Simulations of the Static Friction Due to Adsorbed Molecules

    Full text link
    The static friction between crystalline surfaces separated by a molecularly thin layer of adsorbed molecules is calculated using molecular dynamics simulations. These molecules naturally lead to a finite static friction that is consistent with macroscopic friction laws. Crystalline alignment, sliding direction, and the number of adsorbed molecules are not controlled in most experiments and are shown to have little effect on the friction. Temperature, molecular geometry and interaction potentials can have larger effects on friction. The observed trends in friction can be understood in terms of a simple hard sphere model.Comment: 13 pages, 13 figure

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Decacarbonyl-1 3C,2 3C,3 4C-[ -1-diphenylarsino-2-(diphenylphosphino) ethane-1:2 2As:P]-triangulo-triruthenium(0)

    No full text
    International audienc

    Development of Human Cell-Based In Vitro Infection Models to Determine the Intracellular Survival of Mycobacterium avium

    No full text
    The Mycobacterium avium (Mav) complex accounts for more than 80% of all pulmonary diseases caused by non-tuberculous mycobacteria (NTM) infections, which have an alarming increase in prevalence and vary in different regions, currently reaching 0.3-9.8 per 100,000 individuals. Poor clinical outcomes, as a result of increasing microbial drug resistance and low treatment adherence due to drug-toxicities, emphasize the need for more effective treatments. Identification of more effective treatments, however, appears to be difficult, which may be due to the intracellular life of NTM and concomitant altered drug sensitivity that is not taken into account using traditional drug susceptibility testing screenings. We therefore developed human cell-based in vitro Mav infection models using the human MelJuSo cell line as well as primary human macrophages and a fluorescently labeled Mav strain. By testing a range of multiplicity of infection (MOI) and using flow cytometry and colony-forming unit (CFU) analysis, we found that an MOI of 10 was the most suitable for Mav infection in primary human macrophages, whereas an MOI of 50 was required to achieve similar results in MelJuSo cells. Moreover, by monitoring intracellular bacterial loads over time, the macrophages were shown to be capable of controlling the infection, while MelJuSo cells failed to do so. When comparing the MGIT system with the classical CFU counting assay to determine intracellular bacterial loads, MGIT appeared as a less labor-intensive, more precise, and more objective alternative. Next, using our macrophage Mav infection models, the drug efficacy of the first-line drug rifampicin and the more recently discovered bedaquiline on intracellular bacteria was compared to the activity on extracellular bacteria. The efficacy of the antibiotics inhibiting bacterial growth was significantly lower against intracellular bacteria compared to extracellular bacteria. This finding emphasizes the crucial role of the host cell during infection and drug susceptibility and highlights the usefulness of the models. Taken together, the human cell-based Mav infection models are reliable tools to determine the intracellular loads of Mav, which will enable researchers to investigate host-pathogen interactions and to evaluate the efficacy of (host-directed) therapeutic strategies against Mav.Immunogenetics and cellular immunology of bacterial infectious disease

    A three dimensional parametric mesher

    No full text
    corecore