74 research outputs found

    Prevalence, intensity and extent of Oral Impacts on Daily Performances associated with self-perceived malocclusion in 11-12-year-old children

    Get PDF
    BACKGROUND: To determine the prevalence, intensity and extent of the Oral Impacts on Daily Performances associated with self-perceived malocclusion among Peruvian schoolchildren. METHODS: Eight hundred and five children aged 11 to 12 years attending 4 of 7 randomly selected schools linked to a Health Centre in Lima, Peru, participated in the study. The Spanish (Peru)Child-OIDP was used to assess the prevalence, intensity and extent of oral impacts on 8 daily performances (eating, speaking, teeth cleaning, sleeping, smiling, studying, emotion and social contact). Self-perceived malocclusion included complaints about position of teeth, spacing of teeth and deformity of mouth or face. The prevalence of oral impacts was compared by covariables using the Chi-square test, whereas the intensity and extent of oral impacts were compared by covariables through the Mann-Whitney test. RESULTS: Only 15.5% of children reported impacts associated with self-perceived malocclusion during the last 3 months. Of them, 18.4% reported impacts of severe or very severe intensity and 76.0% reported impacts on only one daily performance. Psychosocial activities such as smiling, emotion and social contact were the most frequently and severely impacted everyday activities. CONCLUSION: Impacts of self-perceived malocclusion primarily affected psychological and social everyday activities. These findings provide further evidence to support the importance of psychological and social components of oral health on children's lives

    Mammal-Like Organization of the Avian Midbrain Central Gray and a Reappraisal of the Intercollicular Nucleus

    Get PDF
    In mammals, rostrocaudal columns of the midbrain periaqueductal gray (PAG) regulate diverse behavioral and physiological functions, including sexual and fight-or-flight behavior, but homologous columns have not been identified in non-mammalian species. In contrast to mammals, in which the PAG lies ventral to the superior colliculus and surrounds the cerebral aqueduct, birds exhibit a hypertrophied tectum that is displaced laterally, and thus the midbrain central gray (CG) extends mediolaterally rather than dorsoventrally as in mammals. We therefore hypothesized that the avian CG is organized much like a folded open PAG. To address this hypothesis, we conducted immunohistochemical comparisons of the midbrains of mice and finches, as well as Fos studies of aggressive dominance, subordinance, non-social defense and sexual behavior in territorial and gregarious finch species. We obtained excellent support for our predictions based on the folded open model of the PAG and further showed that birds possess functional and anatomical zones that form longitudinal columns similar to those in mammals. However, distinguishing characteristics of the dorsal/dorsolateral PAG, such as a dense peptidergic innervation, a longitudinal column of neuronal nitric oxide synthase neurons, and aggression-induced Fos responses, do not lie within the classical avian CG, but in the laterally adjacent intercollicular nucleus (ICo), suggesting that much of the ICo is homologous to the dorsal PAG

    Directed assembly of layered perovskite heterostructures as single crystals

    No full text
    The precise stacking of different two-dimensional (2D) structures such as graphene and MoS2 has reinvigorated the field of 2D materials, revealing exotic phenomena at their interfaces1,2. These unique interfaces are typically constructed using mechanical or deposition-based methods to build a heterostructure one monolayer at a time2,3. By contrast, self-assembly is a scalable technique, where complex materials can selectively form in solution4,5,6. Here we show a synthetic strategy for the self-assembly of layered perovskite–non-perovskite heterostructures into large single crystals in aqueous solution. Using bifunctional organic molecules as directing groups, we have isolated six layered heterostructures that form as an interleaving of perovskite slabs with a different inorganic lattice, previously unknown to crystallize with perovskites. In many cases, these intergrown lattices are 2D congeners of canonical inorganic structure types. To our knowledge, these compounds are the first layered perovskite heterostructures formed using organic templates and characterized by single-crystal X-ray diffraction. Notably, this interleaving of inorganic structures can markedly transform the band structure. Optical data and first principles calculations show that substantive coupling between perovskite and intergrowth layers leads to new electronic transitions distributed across both sublattices. Given the technological promise of halide perovskites4, this intuitive synthetic route sets a foundation for the directed synthesis of richly structured complex semiconductors that self-assemble in water

    Zwitterions in 3D perovskites: organosulfide-halide perovskites

    No full text
    Although sulfide perovskites usually require high-temperature syntheses, we demonstrate that organosulfides can be used in the milder syntheses of halide perovskites. The zwitterionic organosulfide, cysteamine (CYS;&nbsp;+NH3(CH2)2S&ndash;), serves as both the X&ndash;&nbsp;site and A+&nbsp;site in the ABX3&nbsp;halide perovskites, yielding the first examples of 3D organosulfide-halide perovskites: (CYS)PbX2&nbsp;(X&ndash;&nbsp;= Cl&ndash;&nbsp;or Br&ndash;). Notably, the band structures of (CYS)PbX2&nbsp;capture the direct bandgaps and dispersive bands of APbX3&nbsp;perovskites. The sulfur orbitals compose the top of the valence band in (CYS)PbX2, affording unusually small direct bandgaps of 2.31 and 2.16 eV for X&ndash;&nbsp;= Cl&ndash;&nbsp;and Br&ndash;, respectively, falling in the ideal range for the top absorber in a perovskite-based tandem solar cell. Measurements of the carrier dynamics in (CYS)PbCl2&nbsp;suggest carrier trapping due to defects or lattice distortions. The highly desirable bandgaps, band dispersion, and improved stability of the organosulfide perovskites demonstrated here motivate the continued expansion and exploration of this new family of materials, particularly with respect to extracting photocurrent. Our strategy of combining the A+&nbsp;and X&ndash;&nbsp;sites with zwitterions may offer more members in this family of mixed-anion 3D hybrid perovskites.</p

    Fracture mechanics of adhesive joints

    No full text
    • …
    corecore