4 research outputs found

    Ensemble Learning for Efficient VVC Bitrate Ladder Prediction

    Full text link
    Changing the encoding parameters, in particular the video resolution, is a common practice before transcoding. To this end, streaming and broadcast platforms benefit from so-called bitrate ladders to determine the optimal resolution for given bitrates. However, the task of determining the bitrate ladder can usually be challenging as, on one hand, so-called fit-for-all static ladders would waste bandwidth, and on the other hand, fully specialized ladders are often not affordable in terms of computational complexity. In this paper, we propose an ML-based scheme for predicting the bitrate ladder based on the content of the video. The baseline of our solution predicts the bitrate ladder using two constituent methods, which require no encoding passes. To further enhance the performance of the constituent methods, we integrate a conditional ensemble method to aggregate their decisions, with a negligibly limited number of encoding passes. The experiment, carried out on the optimized software encoder implementation of the VVC standard, called VVenC, shows significant performance improvement. When compared to static bitrate ladder, the proposed method can offer about 13% bitrate reduction in terms of BD-BR with a negligible additional computational overhead. Conversely, when compared to the fully specialized bitrate ladder method, the proposed method can offer about 86% to 92% complexity reduction, at cost the of only 0.8% to 0.9% coding efficiency drop in terms of BD-BR

    Subjective comparison of VVC and HEVC

    No full text
    Joint Video Experts Team (JVET) document JVET-O0451This document reports a subjective evaluation of VVC. A formal subjective test was carried out to compare HEVC with the latest VVC version (VTM 5.0) on a variety of HD and UHD SDR video sequences over a wide range of bit rates. Under these testing conditions, it is reported that the performance improvement of VVC over HEVC is in the range of 36% for HD and 40% in UHD

    Ensemble Learning for Efficient VVC Bitrate Ladder Prediction

    No full text
    International audienceChanging the encoding parameters, in particular the video resolution, is a common practice before transcoding. To this end, streaming and broadcast platforms benefit from so-called bitrate ladders to determine the optimal resolution for given bitrates. However, the task of determining the bitrate ladder can usually be challenging as, on one hand, so-called fit-for-all static ladders would waste bandwidth, and on the other hand, fully specialized ladders are often not affordable in terms of computational complexity. In this paper, we propose an ML-based scheme for predicting the bitrate ladder based on the content of the video. The baseline of our solution predicts the bitrate ladder using two constituent methods, which require no encoding passes. To further enhance the performance of the constituent methods, we integrate a conditional ensemble method to aggregate their decisions, with a negligibly limited number of encoding passes. The experiment, carried out on the optimized software encoder implementation of the VVC standard, called VVenC, shows significant performance improvement. When compared to static bitrate ladder, the proposed method can offer about 13% bitrate reduction in terms of BD-BR with a negligible additional computational overhead. Conversely, when compared to the fully specialized bitrate ladder method, the proposed method can offer about 86% to 92% complexity reduction, at cost the of only 0.8% to 0.9% coding efficiency drop in terms of BD-BR
    corecore